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Tumor/Brain Contrast Uptake Induced by

Radiation via Reversible Jump Markov Chain
Monte Carlo

Xiaoxi Zhang, Tim Johnson, and Roderick J.A. Little

Abstract

This work is motivated by a pilot study on the change in tumor/brain contrast
uptake induced by radiation via quantitative Magnetic Resonance Imaging. The
results inform the optimal timing of administering chemotherapy in the context
of radiotherapy. A noticeable feature of the data is spatial heterogeneity. The
tumor is physiologically and pathologically distinct from surrounding healthy tis-
sue. Also, the tumor itself is usually highly heterogeneous. We employ a Gaus-
sian Hidden Markov Random Field model that respects the above features. The
model introduces a latent layer of discrete labels from an Markov Random Field
(MRF) governed by a spatial regularization parameter. We further assume that
conditional on the hidden labels, the observed data are independent and normally
distributed, We treat the regularization parameter of the MRF, as well as the num-
ber of states of the MRF as parameters, and estimate them via the Reversible
Jump Markov chain Monte Carlo algorithm. We propose a novel and nontrivial
implementation of the Reversible Jump moves. The performance of the method
is examined in both simulation studies and real data analysis. We report the
pixel-wise posterior mean and standard deviation of the change in contrast up-
take marginalized over the number of states and hidden labels. We also compare
the performance with a Markov chain with fixed number of states and a parallel
Expectation-Maximization approach from a frequentist perspective.
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1 Introduction

As a non-invasive visualization tool, quantitative Magnetic Resonance Imaging (qMRI) en-

ables researchers to assess the pathological and physiological alterations of living tissue, such

as the brain. Recent work in measuring physiological changes (such as diffusion, perfusion,

vascular permeability, and metabolism) in diseased tissue include Cao et al. (2005), Mof-

fat et al. (2005), and Hamstra et al. (2005). It is expected that early prediction of (local)

therapeutic efficacy during treatment via qMRI can lead to individualized treatment in the

future.

Despite the advances in various treatment modes, the median survival time of high-grade

glioma patients is about 1 year after diagnosis. This is largely attributable to the tight en-

dothelia junction in the tumor (blood-tumor-barrier, BTB), which prohibits the passing of

large chemotherapeutic agents and leads to low treatment efficacy. Although it is known that

radiation can increase vascular permeability, recent attempts in sequential radiotherapy and

chemotherapy have had limited success (Medical Research Council, 2001). This manuscript

is motivated by a recent study on improving the effectiveness of chemotherapy among glioma

patients via local radiation at the University of Michigan (Cao et al. 2005). This was the

first study to use quantitative, high resolution MRI to assess the effectiveness of radiation on

the tumor/brain vascular permeability of a molecule in the size range of chemotherapeutic

agents used to treat high-grade gliomas (Cao et al. 2005). One of the goals was to deter-

mine the effects, over time, of radiation therapy on BTB relative to the blood-brain barrier

(BBB). If it can be demonstrated that radiation therapy transiently increases the vascular

permeability of the tumor to these large molecules, this suggests an optimal time for admin-

istering chemotherapy during radiation therapy, as opposed to waiting for the completion of

radiation therapy.

Eleven volunteers with primary, high-grade gliomas were recruited in the study. They

underwent T1-weighted qMRI with and without contrast enhancement prior to the initi-

ation of radiation therapy. The same imaging protocol was subsequently performed after
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approximately the first and third week of radiotherapy, and around 1, 3, and 6 months

after the completion of radiotherapy. The contrast agent used, Gadolinium diethylenetri-

aminepentaacetic acid (Gd-DTPA), has approximately the same molecule diameter as many

chemotherapeutic molecules; and hence its uptake rate can be used as a surrogate of tu-

mor/brain vascular permeability to these drugs (Cao et al. 2005). In this work, we focus

on the change in contrast uptake from baseline to week 3 (e.g. Figure 4a and 5a), which

is of special interest to the investigator. The continuous observed data, denoted by y, are

represented as a range of gray levels.

Solid mass tumors are physiologically different from surrounding tissue, and the contrast

uptake is highly heterogeneous. Thus the spatial continuity assumption usually made in

fMRI analysis does not hold in this dataset. Many qMRI analyses ignore the inherent spatial

correlation in the data (at the pixel level), and treat the data as independent observations

(e.g. Cao et al. 2005; Moffat et al. 2005; Hamstra et al. 2005) which leads to incorrect

variance estimates and invalid hypothesis tests.

To model the change of tumor/brain contrast uptake induced by radiation at the pixel-

level, we use a model that accounts for the spatial correlation in the data and respects

the distinct boundaries between tumor and healthy tissue. We introduce a layer of discrete

hidden labels from a Markov Random Field (MRF, Besag 1974) which avoids over-smoothing

of the data and accounts for spatial correlation. The MRF a priori encourages spatial

continuity but allows for sapatial heterogeneity. Like many hidden Markov Models, we

assume the observed data given the labels are independent and normally distributed.

We make the following additional comments on the proposed model: 1) The hidden la-

bels are purely used to model the spatial correlation in the data, and are of not interest

in and of themselves. We focus on the posterior distribution of change in contrast uptake.

2) The qMRI signal (contrast) at a single pixel measures the relaxation time of millions

of nuclear spins averaged over hundreds of pulse sequences. Unlike positron emission to-

mography (PET) and single photon emission computed tomography (SPECT), there is no

3
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mechanistically-based probabilistic models for MRI. However, Lei and Udupa (2002) in-

vestigate the statistical properties of MRI, and conclude that the normality assumption is

reasonable. We also argue that in the MRI imaging process, spontaneous fluctuations (er-

rors) from various sources add up, such as magnetic field inhomogeneities, thermal motion

(Brownian motion) of free electrons in the electronics (mainly the radio frequency coil), and

motion of the imaged object. Therefore, the central limit theorem provides sound ground

for the normality assumption (see, e.g. , Liang and Lauterber, 1999, Ch. 8). The hidden

MRF model, also known as the Potts model in statistical physics (Potts, 1952), has been

applied in disease mapping (Green and Richardson, 2002), agriculture (Dryden, Scarr, and

Taylor, 2003), and landscape genetics (Francois, Ancelet, and Guillot, 2006; Guillot, Es-

toup, Mortier, and Cosson, 2004). All cases share the same feature as our problem, spatial

heterogeneity.

The spatial regularization parameter in MRF is traditionally treated as a fixed quantity

(Green and Richardson, 2002; Francois, Ancelet, and Taylor, 2006). However, results are

sensitive to the choice of this parameter (e.g., see Francois, Ancelet, and Guillot, 2006).

Estimation of the spatial regularization parameter requires a corresponding normalizing

constant, which is computationally intractable. We use the “thermal integration” method

(Ogata 1989). Others adopt the pseudo-likelihood approach (Besag, 1974). As pointed out

by Melas and Wilson (2002), this approach tends to overestimate the regularization parame-

ter and over-smooth the data. Another prevalent practice is to assume the number of states

of the MRF is known (Khalkighi, Soltanian-Zadeh, and Lucas, 2002; Marroquin, Arce, and

Botello, 2003). This is reasonable in cases with substantial scientific justification, as when

segmenting the brain into white matter, gray matter, and cerebrospinal fluid. However, the

segmentation labels lack a strong biologically meaningful interpretation in our application.

Therefore, it is natural to treat the number of labels as a model parameter, and estimate it

using a Reversible Jump Markov chain Monte Carlo (RJMCMC) algorithm (Green, 1995;

Richardson and Green, 1997). Zhang, Johnson, and Little (2007) employed the same model
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in analysis of the same dataset and developed a maximum likelihood (ML) approach via

the Expectation-Maximization (EM) algorithm with stochastic variation in the frequentist

paradigm. In this manuscript, we take a complete Bayesian approach, and compare the

performance of these two methods.

The current research builds on previous work by 1) estimating the spatial regularization

parameter rather than assuming it known; 2) treating the number of states of MRF as a

parameter and implementing RJMCMC on a large scale dataset; and 3) focusing on the

posterior of local change in contrast uptake marginalized over the number of states and the

hidden labels.

This manuscript is organized as follows. In the next section we introduce notation and

specify the model. In section 3, we detail the implementation. In section 4, we first present

results from simulation studies where we investigate the sensitivity to model assumption vio-

lations. We compare the results with the EM approach in Zhang, Johnson, and Little (2007).

Results from the motivating example are also presented. We conclude by summarizing the

strengths and weaknesses of our approach, and discussing future work.

2 Model Specification

We use the following notation. Pixels (short for picture element) will be indexed by i =

1, 2, · · · , N . If pixel i and i′ share a common edge, we call them neighbors, denoted i ∼ i′.

The set of neighbors of pixel i is denoted ∂i = {i′ : i′ ∼ i}. The observed image is denoted by

y = (y1, y2 · · · , yN)T (Figures 4a and 5a). In the proposed hidden MRF model, we introduce

a latent discrete label Zi from the state space S = {1, 2, · · · ,M} for each pixel i. The

collection of latent labels, z = (Z1 = z1, Z2 = z2, · · · , ZN = zN)T, is called a configuration.

The set of pixels with the same hidden label is referred to as a component, which can consist

of disjoint clusters of pixels.

5
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2.1 Distribution of the Data

We assume the observed data are conditionally independently distributed given the hidden

labels, (yi | zi = k, µk, σ
2
k) ∼ N(µk, σ

2
k), where 1 ≤ k ≤M . We write µ = (µ1, · · · , µM)T and

σ2 = (σ2
1, · · · , σ2

M)T. The hidden labels follow a Gibbs distribution with probability mass

function

Pr(Z = z | β,M) = g−1(β,M)exp
{
β
∑
i∼i′

I[zi = zi′ ]
}
, (1)

where I[·] is the indicator function. The regularization parameter β controls the spatial

smoothness of MRF. When β is large, the correlation between pixels is strong (neighboring

pixels have high tendency to assume the same label), and the configuration tends to be

smooth. In principle, the MRF encourages neighboring pixels to assume the same label.

Note that when β = 0, the pixels are independent. Furthermore, the spatial correlation

decreases as the distance between pixels increases. The normalizing constant in Equation

(1), g(β,M) =
∑

z∈SN exp
{
β
∑

i∼i′ I[zi = zi′ ]
}

, has MN outer summands, and therefore is

not computationally tractable. We approximate it using the “thermal integration” method

of Ogata (1989).

The joint distribution of the observed and unobserved data is

f(y,Z = z | µ,σ2, β,M) = Pr(Z = z | β,M)
N∏

i=1

f(yi | zi, µzi
, σ2

zi
).

Although we assume conditional independence of the observed data given the hidden labels,

one can show that the observed data are marginally correlated.

2.2 Prior Distributions

We specify

1. β ∼ Gamma(αβ, ββ);

2. M ∼ Poisson(λ) truncated to [Mmin,Mmax];

6
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3. µk ∼ N(µµ, σ
2
µ), for k = 1, 2, ...,M ;

4. βσ ∼ Gamma(a, b);

5. σ2
k | βσ ∼ Inv-Gamma(ασ, βσ), for k = 1, 2, ...,M .

We fix αβ, ββ, λ,Mmin,Mmax, µµ, µ
2
σ, a, b, and ασ as hyperpriors, the values of which are chosen

in Section 2.3. We write all parameters θ = (µ,σ2, βσ, β,M), and assume conditional

independence of the priors, i.e. f(θ) = f(β) Pr(M)f(µ)f(βσ)f(σ2 | βσ).

Figure 1 illustrates the model structure in a Directed Acyclic Graph (DAG). Some earlier

work (Chalmond, 1989; Won and Derin, 1992) avoid the normalizing constant in Equation

(1) and use the pseudo-likelihood

P̃r(Z = z | β,M) =
N∏

i=1

exp
{
β
∑

i′∈∂i
I[zi′ = zi]

}∑M
k=1 exp

{
β
∑

i′∈∂i I[zi′ = k]
}

as an approximation of Pr(Z = z | β,M). Barker and Rayner (1997) show that under certain

circumstances, this pseudo-likelihood may lead to an improper posterior distribution.

2.3 Hyperpriors

We follow the guideline given by Richardson and Green (1997). The prior mean (µµ) of the

components is the midpoint of the observed range of data, while the prior variance (σ2
µ) is

half the squared range. This makes the prior distribution N(µµ, σ
2
µ) fairly flat over the range

of the data. We set a = 2.5 and b = 5 such that the prior mode of βσ is 0.3, which favors

a smaller component variance (ασ = 2.1). We choose λ = 10, Mmin = 2, and Mmax = 20,

such that the number of components is neither too small nor too large. In Section 4.1.1 we

investigate the sensitivity of the algorithm regarding this hyperprior. Furthermore, we set

αβ = ββ = 2.
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2.4 Joint Distribution and Conditional Posterior Distributions

The kernel of the joint distribution function is

M∏
k=1

{
σµ

−1exp
[
−0.5σµ

−2(µk − µµ)2
]
βασ

σ (σ−2
k )ασ−1exp(−βσσ

−2
k )
}

(2)

×
N∏

i=1

1

σzi

exp
{
−0.5σ−2

zi
(yi − µzi

)2
}
× g−1(β,M)exp

{
β
∑
i∼i′

I[zi = zi′ ]
}

× βαβ−1exp(−βββ)× βa−1
σ exp(−bβσ)× λM(M !)−1 ×M !.

We comment that Equation (2) is invariant to permutation of the components conditional

on any M , which means the model parameters are not identifiable. In many fixed-dimension

problems with segmentation as the main goal, the constraints µ1 ≤ µ2 ≤ · · · ≤ µk are

imposed to resolve the identifiability issue. However, when M is treated as a parameter, the

components can still be unidentifiable even with the constraints. We further discuss this

towards the end of Section 3.3.2.

The conditional posterior distributions of µ, σ2, βσ, β, and Z are

(µk | ·) ∼ N

(∑
i∈Dk

yi + µµσ
2
k/σ

2
µ

Nk + σ2
k/σ

2
µ

,

(
Nk

σ2
k

+
1

σ2
µ

)−1
)

(3)

(σ2
k | ·) ∼ Inv-Gamma

(
0.5Nk + ασ, 0.5

∑
i∈Dk

(yi − µk)
2 + βσ

)
(4)

(βσ | ·) ∼ Gamma
(
a+Mασ, b+

M∑
k=1

σ−2
k

)
(5)

f(β | ·) ∝ g−1(β,M)exp
{
β
∑
i∼i′

I[zi = zi′ ]
}
× βαβ−1exp(−βββ) (6)

Pr(Z = z | ·) ∝ exp
{
β
∑
i∼i′

I[zi = zi′ ]
} N∏

i=1

σ−1
zi

exp
{
−0.5σ−2

zi
(yi − µzi

)2
}

(7)

for k = 1, 2, ...,M , where Dk = {i : zi = k} denote components k and Nk = |Dk| is the

number of pixels in the component. Here the dot denotes all the rest of the parameters. We

restrict the number of components M to change by no more than one at each iteration. The

details of the trans-dimensional move are in Section 3.3.
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2.5 Marginal Posterior Distribution of Change in Contrast Uptake

Our main goal is to establish the underlying change in contrast uptake, µzi
, and char-

acterize it by its posterior mean, ηi =
∑M

k=1 µk Pr(Zi = k | y), and variance, ψ2
i =∑M

k=1(µk − ηi)
2 Pr(Zi = k | y). These quantities are estimated via Markov chain Monte

Carlo (MCMC) draws, µ(t) and z(t), at iteration t (1 ≤ t ≤ T ), η̂i = T−1
∑T

t=1 µ
(t)

z
(t)
i

and

ψ̂i

2
= T−1

∑T
t=1

(
µ

(t)

z
(t)
i

)2 − η̂2
i , where µ

(t)

z
(t)
i

= µ
(t)
k when z

(t)
i = k.

From an ML perspective, Zhang, Johnson, and Little (2007) proposed a similar measure,

the “expected change in contrast uptake” calculated as
∑M

k=1 µk Pr(Zi = k | y,θ). However,

this estimate depends on the Maximum Likelihood Estimate (MLE), θ̂, and neglects the

uncertainty in estimating it.

We also summarize the standard deviation of pixel intensity with its posterior mean, φi,

and variance, ξ2
i . The corresponding Monte Carlo estimates are φ̂i = T−1

∑T
t=1 σ

(t)

z
(t)
i

and

ξ̂i
2

= T−1
∑T

t=1

(
σ

(t)

z
(t)
i

)2 − φ̂2
i , where σ

(t)

z
(t)
i

= σ
(t)
k when z

(t)
i = k.

3 Algorithm Details

The parameters µ, σ2, and βσ can be updated via standard Gibbs sampling steps due to

conjugacy (Equations (3), (4), and (5)). The spatial regularization parameter β requires a

Metropolis-Hastings step. We update the hidden labels via the Swendsen-Wang algorithm

(Swendsen and Wang, 1987), an efficient sampler for Potts models, as detailed in Section

3.2. The most difficult part of the sampler is updating the number of components. Since the

dimension of the parameter space is determined by the number of components, we employ

RJMCMC to update M .

3.1 Updating the Spatial Regularization Parameter

When updating the spatial regularization parameter at the t-th iteration, we use a Gaussian

proposal distribution centered at the current value β(t−1), β∗ ∼ N(β(t−1), σ2
pro), where the

variance of the proposal, σ2
pro, can be tuned. Since we use a symmetric proposal distribution,

9
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the acceptance probability only depends on the ratio of the conditional posterior distributions

in Equation (6). If the proposal is rejected, the current value is carried forward to the next

iteration, β(t) = β(t−1). We estimate the normalizing constant for a grid of β and M values

(β = 0, 0.05, · · · , 3.00 and M = 1, 2, · · · , 20) via MCMC simulations off-line, and interpolate

when necessary.

3.2 Updating the Hidden Labels via the Swendsen-Wang Algo-
rithm

The conditional posterior distribution of the configuration in Equation (7) consists of two

parts, an interaction term (between neighboring pixels) and a likelihood term (sometimes

referred to as the external field, Higdon, 1998). A pixel-wise updating scheme does not mix

well at the presence of the interaction term (Higdon, 1998). Hence, we use the Swendsen-

Wang algorithm, an efficient sampling scheme designed to speed up the mixing of Potts

models.

The Swendsen-Wang algorithm stochastically partitions the configuration into same-

labeled contiguous regions such that the label for these regions can be updated independently.

This clever idea is implemented in the following three steps.

1. We first generate a random variable, uii′ ∼ Uniform(0, exp{βI[zi = zi′ ]}), for each pair

of neighbors i ∼ i′. Clearly, the joint distribution of all auxiliary variables u = {uii′}i∼i′

is f(u) =
∏

i∼i′ exp {−βI[zi = zi′ ]} I[0 ≤ uii′ ≤ exp{βI[zi = zi′ ]}].

2. By Bayes theorem, the posterior distribution of the labels conditional on the auxiliary

variables is

Pr(Z = z | u,θ)∝
N∏

i=1

σ−1
zi

exp
{
−0.5σ−2

zi
(yi − µzi

)2
}∏
i∼i′

I[0≤uii′≤exp{βI[zi = zi′ ]}]. (8)

The second term in Equation (8) defines the range over which the posterior distribution

is non-zero. More concretely, when 1 ≤ uii′ ≤ exp{βI[zi = zi′ ]} holds, it builds a virtual

stochastic “bond” between i and i′ that requires both pixels to assume the same label.
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That is if pixel i and i′ assume the same label in the current configuration, they

are “bonded” to assume a common label (could be different from the current one)

with probability 1 − e−β. The bonds define an equivalence relation, and partition a

configuration into contiguous regions of bonded pixels. We denote these equivalence

classes by C1, C2, ..., CJ . According to the definition, a component consists of one or

more such equivalence classes.

3. According to Equation (8), the labels of the equivalence classes can be updated inde-

pendently. The new label C
(t+1)
j of class j satisfies

Pr(C
(t+1)
j = k | u(t),θ(t)) ∝

∏
i∈C

(t)
j

σ−1
k

(t)
exp

{
−.5σ−2

k

(t)
(
yi − µ

(t)
k

)2
}
.

3.3 Updating the Number of Components via Reversible Jump
MCMC

We estimate the number of components M via RJMCMC. Other applications of RJMCMC

in Potts models include Green and Richardson (2002), who analyzed disease mapping data

using a trans-dimensional proposal that emulates the spatial dependence structure of the

Potts model; and Dryden, Scarr, and Taylor (2003), who applied a similar scheme to analyze

weed and crop images. However, these proposal schemes only work for small or medium scale

problems. With tens of thousands of pixels per image, as in our dataset, the acceptance rate

is practically zero.

In the following, we propose a novel and nontrivial implementation of the trans-dimensional

move inspired by the Swendsen-Wang algorithm. We first randomly choose between a split

and a merge proposal with

Psplit(M) =


0 if M = Mmax

1 if M = Mmin

0.5 otherwise
and Pmerge(M) =


0 if M = Mmin

1 if M = Mmax

0.5 otherwise
.

11
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3.3.1 Split One Component into Two

If a split is chosen, we randomly pick a component k (1 ≤ k ≤ M) to split, i.e. Psplit
select(k) =

1/M . We need two extra parameters for the Gaussian mean and variance. To match the

increase of dimension, we introduce two independent random variables, u1, u2 ∼ Beta(2, 2),

and define a bijective transformation (µ∗k1
, µ∗k2

, σ∗k1

2, σ∗k2

2) = ψ(µk, σ
2
k, u1, u2) that matches

the first two moments,

µ∗k1
= µk − u1σk,

µ∗k2
= µk + u1σk,

σ∗k1

2 = 2u2(1− u2
1)σ

2
k,

σ∗k2

2 = 2(1− u2)(1− u2
1)σ

2
k.

We denote the new set of parameters with superscript ∗, µ∗ = (µ∗1, µ
∗
2, · · · , µ∗M+1)

T and σ∗2 =

(σ∗21 , σ
∗2
2 , · · · , σ∗2M+1)

T. It is intuitive that when there exists a component h (1 ≤ h ≤M + 1)

satisfying µ∗k1 < µ∗h < µ∗k2, the proposal is not likely to be accepted. We therefore reject such

proposals.

We propose a new labeling for each contiguous equivalence class defined by common hid-

den labels. In contrast to the Swendsen-Wang update in Section 3.2 which further breaks

contiguous same-labeled regions with stochastic “bonds”, here we deterministically partition

the configuration. This is equivalent to a Swendsen-Wang update with an infinite regular-

ization parameter (β →∞) where all same-labeled neighbors are “bonded”.

Suppose there are L such classes ξ1, ξ2, · · · , ξL with current labels E1, E2, · · · , EL (by

definition, L ≥ M , and when i ∈ ξl, zi = El). In our split proposal, we randomly draw

the new label of these equivalence classes with probability proportional to the likelihood.

Specifically, the probability of class ξl assuming a new label k is

pl
k ∝

∏
i∈ξl

σ∗−1
k exp

{
−0.5σ∗−2

k (yi − µ∗k)
2
}
, for k = 1, 2, · · · ,M + 1, (9)

where the pl
k are normalized so that

∑M+1
k=1 pl

k = 1 for all l. Let E∗
l denote the new label of
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class ξl from Equation (9), i.e. pl
E∗

l
= Pr(z∗i = E∗

l ,∀i ∈ ξl). The allocation probability in the

current state conditional on the equivalence classes is Palloc(z) =
∏L

l=1 p
l
E∗

l
.

Note that in the above proposal, any two adjacent equivalence classes must assume

different labels in the current configuration by definition. However, the two classes can

possibly assume the same new label in the proposed configuration. Hence, the resulting new

configuration appears “smoother” with fewer different-labeled neighbors. The sum of the

interaction terms
∑

i∼i′ I[zi = zz′i
] is guaranteed nondecreasing.

We also compute the allocation probability for the new configuration given the same

equivalence classes, Palloc(z
∗) =

∏L
l=1 p

l∗
El

, where pl∗

k ∝
∏

i∈ξl
σ−1

k exp
{
−0.5σ−2

k (yi − µk)
2
}
,

for k = 1, 2, · · · ,M .

The overall acceptance probability for a split proposal is min(1, A) with

A =
Pr(z∗,µ∗,σ2∗, βσ, β,M + 1 | y)

Pr(z,µ,σ2, βσ, β,M | y)
× Pmerge(M + 1)Pmerge

select (k1, k2)Palloc(z
∗)

Psplit(M)Psplit
select(k)Palloc(z)b(u1)b(u2)

×
∣∣∣∣∂(µ∗k1

, µ∗k2
, σ∗k1

2, σ∗k2

2)

∂(µk, σ2
k, u1, u2)

∣∣∣∣ . (10)

Here b(·) is the density function of the Beta(2, 2) distribution. The first line is the product

of the posterior ratio and the proposal ratio, while the second line is the Jacobian of the

bijective transformation.

3.3.2 Merge Two Components into One

The merge proposal is determined by the above split move. We randomly pick a pair of com-

ponents with adjacent means k1 and k2 (Pmerge
select (k1, k2) = 1/(M −1)). Reversing the bijective

transformation in the split proposal, we compute the parameters for the new component by

µ∗k = 0.5 (µk1 + µk2) ,

µ∗k
2 + σ∗k

2 = 0.5(µ2
k1

+ σ2
k1

+ µ2
k2

+ σ2
k2

).

The new set of parameters are µ∗ = (µ∗1, µ
∗
2, · · · , µ∗M−1)

T and σ∗2 = (σ∗21 , σ
∗2
2 , · · · , σ∗2M−1)

T.

Again, we propose a new configuration z∗ with M − 1 components based on the same-

labeled contiguous equivalence classes. The new label E∗
l of class ξl is drawn from pl

k ∝
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∏
i∈ξl

σ∗k
−1exp

{
−0.5σ∗−2

k (yi − µ∗k)
2
}
, for k = 1, 2, · · · ,M−1. The associated allocation prob-

ability is Palloc(z) =
∏L

l=1 p
l
E∗

l
. Similarly, the allocation probability for the new configuration

is Palloc(z
∗) =

∏L
l=1 p

l∗
El

, where pl∗

k ∝
∏

i∈ξl
σ−1

k exp
{
−0.5σ−2

k (yi − µk)
2
}
, for k = 1, 2, · · · ,M .

Similar to Equation (10), the overall acceptance probability is min(1, B), where

B =
Pr(z∗,µ∗,σ2∗, βσ, β,M − 1 | y)

Pr(z,µ,σ2, βσ, β,M | y)
× Psplit(M − 1)Psplit

select(k)Palloc(z
∗)b(u1)b(u2)

Pmerge(M)Pmerge
select (k1, k2)Palloc(z)

×
∣∣∣∣ ∂(µ∗k, σ

∗
k
2, u1, u2)

∂(µk1 , µk2 , σ
2
k1
, σ2

k2
)

∣∣∣∣ .
We mentioned in Section 2.3 that the identifiability issue exists in RJ even under the

constraints (µ1 ≤ µ2 ≤ · · · ≤ µM). For instance, suppose there are three components labeled

1, 2, and 3, after the merge of component 1 and 2 is accepted, the component with original

label 3 is automatically relabeled as 2 under the constraints. It is clear that the component

with new label 2 (originally labeled 3) is not the component with original label 2. Fortunately,

we are only interested in the “true” change in contrast uptake, and will marginalize over

M as well as the labels as discussed in Section 2.5. The identifiability of the parameters is

not of our main concern. We employ the constraints to automatically reject unlikely split

proposals and to propose two components to merge.

4 Results

To evaluate the performance of the proposed method, we conduct a set of simulation studies.

We compute the Mean Squared Error (MSE) of pixel mean (MSE(µz) = N−1
∑N

i=1(η̂i −

µtrue
zi

)2) and standard deviation (MSE(σz) = N−1
∑N

i=1(ψ̂i − σtrue
zi

)2), where µtrue
zi

and σtrue
zi

are the “truth”. We run multiple simulations and compute the average MSE and bias. We

also implement the EM approach discussed by Zhang, Johnson, and Little (2007). The

performance of the two approaches is compared under the conditionally independent noise

assumption, as well as under various violations of the assumption. Analysis of a real dataset

is also presented.
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4.1 Simulation Study with Conditionally Independent Noise

We first divide a 128×128 lattice into 64 blocks of size 16×16. We assume the observed inten-

sities of pixels within the same block follow the same distribution, which is randomly chosen

from eight candidate Gaussian distributions (µ = (−5.95,−4.25,−2.55,−0.85, 0.85, 2.55, 4.25, 5.95)T,

σ = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)T). An example of pixel-wise true mean (µtrue
zi

) and ob-

served data (yi) is found in Figures 2. We simulate twenty sets of such images.

Zhang, Johnson, and Little (2007) report biased parameter estimates when the spatial

structure is ignored (i.e. fixing β = 0), even if the number of components is held at the true

value (M = 8). This is essentially a Gaussian mixture model (GMM) with equal component

weights. We experience similar results; the average MSEs are MSE
M=8

GMM(µz) = 0.849± 0.043

(mean ± standard deviation) and MSE
M=8

GMM(σz) = 0.032 ± 0.021. We then run the EM

algorithm with stochastic variation discussed by Zhang, Johnson, and Little (2007) with M

fixed at the true value (M = 8). The initial values of µ are evenly spaced on the range of

the data. The MSEs are lower than for GMM, namely, MSE
M=8

EM (µz) = 0.119 ± 0.085 and

MSE
M=8

EM (σz) = 0.010± 0.009.

We also run a fixed-dimension MCMC (M = 8) with β as a parameter. The average MSEs

are smaller than the EM approach, MSE
M=8

MCMC(µz) = 0.040 ± 0.028 and MSE
M=8

MCMC(σz) =

0.0002± 0.003. We then run the proposed algorithm for 20000 iterations after 20000 burn-

in iterations on each simulation set. The RJ acceptance rate ranges from 4% to 20%. We

display the posterior mean (η̂i) and standard deviation (ψ̂i) for one such simulation in Figure

2. The proposed algorithm further reduces the MSEs, MSERJ(µz) = 0.028 ± 0.003 and

MSERJ(σz) = 1 × 10−4 ± 3 × 10−4. All three approaches have minimal bias in estimating

pixel mean, −2× 10−4 ± 0.008 for EM, −4× 10−4 ± 0.007 for fixed-dimension MCMC, and

−4× 10−4 ± 0.007 for RJ.

We reason that the relatively poor performance of the EM approach is due to the fact

that about half of the EM runs are trapped at local modes. The fixed-dimension MCMC

explores the parameter space better. The extra flexibility in estimating the number of states
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in RJ further improves the mixing of the Markov chain, and results in even smaller MSEs.

4.1.1 Sensitivity Analysis

Green (1995) reports that the RJMCMC algorithm is sensitive to the choice of hyperprior

for the number of states λ. We run the proposed algorithm with λ = 5 and 15 in addition

to the original value 10 chosen in Section 2.3. In our case, the marginal posterior mean of

pixel intensities are almost identical under different λ (top row of Figure 3). The posterior

distributions are not highly sensitive to the choice of the prior parameter. The average MSE

of pixel mean intensity under all three scenarios are all 0.028± 0.003.

We also examine the proposed method under various signal to noise ratios. The current

set of simulation studies has signal level ∆µ = µk+1 − µk = 1.7 and noise level σ = 1.0.

A significant portion of posterior draws of M lies at the true value 8, which suggests the

data contain considerable amount of information on the number of components. In other

simulations, we varied the signal level (∆µ = 1.6, 1.5, · · · , 1.0) with the same noise level.

The average MSE increases as the signal level decreases from 0.031 ± 0.007 for ∆µ = 1.6,

0.049± 0.026, 0.065± 0.035, 0.121± 0.043, 0.157± 0.058, 0.159± 0.030, to 0.192± 0.058 for

∆µ = 1.0. We observe M as low as 4 with a significant portion of posterior density for M

less than 8.

4.2 Simulation Studies with Correlated Noise

We apply Gaussian smoothing kernels on the simulated data to evaluate the robustness of

our method to violations of the conditional independence assumption. We follow the same

Gaussian kernel parameters as Zhang, Johnson, and Little (2007) (σ = 0.42, 0.85, 1.70, and

3.40). Note that large σ indicates heavy smoothing.

We display the smoothed observed image and the results for σ = 0.85 and 3.40 in the

bottom two rows of Figure 2. The “edge preservation” of the proposed algorithm is more

evident when the degree of smoothing is small. The average MSEs under all degree of

smoothing are displayed in Table 1. The average MSE of pixel intensity of the proposed
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method is uniformly lower for the RJMCMC approach than for the EM approach under all

degrees of smoothing. This occurs despite the fact that the number of components is fixed

at the “true” value in the EM approach. The difference in average MSE decreases as the

smoothing parameter σ increases.

4.3 Application

In the motivating study, eleven subjects received fractionated three-dimensional conformal

radiation with a median dose of 70 Gy at 2 Gy per fraction, and underwent Gd-DTPA

contrast enhanced T1-weighted qMRI before, during, and after treatment. All images were

registered to anatomical Computed Tomography (CT) images obtained for treatment plan-

ning purpose. The natural logarithm of the ratio of the post- and pre-enhanced T1-weighted

qMRI images are used as the Gd-DTPA contrast uptake index after image normalization

(Cao et al. 2005). We apply the proposed algorithm on a subset of the data that is of special

research interest, i.e. the pre-radiation visit and the visit at approximately 3 weeks into ra-

diotherapy. Due to space limitations, we only display the images on the same two subjects

as reported by Zhang, Johnson, and Little (2007). The results on all subjects are reported

in Table 2.

We run the proposed algorithm for 50000 iterations after 25000 burn-in iterations. The

acceptance rate of the trans-dimensional proposals is 12.5% for subject 1. The marginal

posterior mean of change in contrast uptake and associated standard deviation (Figure 4b

and 4c) delineate the heterogeneous response of the tumor. The results from subject 2 are

similar (Figure 5b and 5c).

4.3.1 Interpretation of the Results

In the original analysis, Cao et al. (2005) divided the tumor into two regions, one with rel-

atively high pre-treatment contrast uptake and the other with relatively low initial contrast

uptake. This more-or-less divides the tumor into a “core” (low initial contrast uptake) sur-

rounded by an “annulus” (high initial contrast uptake). It can be argued that the core of
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the tumor is typically hypoxic (low oxygen content) due to a lack of blood supply, which is

known to have a protective effect against damage due to both radiation and chemotherapy.

This region is usually a source of tumor regrowth. Hence, the focus was on demonstrating

that radiation therapy has a transient effect on the core of the tumor with respect to increas-

ing the contrast uptake. The time when this increase is greatest can be an optimal time for

initiating chemotherapy, allowing for more effective control of the tumor core. As in Zhang,

Johnson, and Little (2007), we smooth the baseline contrast uptake image under the spatial

model, and use the 95th percentile of the healthy tissue contrast uptake as a cutoff to divide

the tumor into “core” and “annulus”.

As discussed in the introduction, large increases in contrast uptake are indicative of heav-

ier damage to the BTB/BBB. This suggests that chemotherapeutic agents, in the size range

of the contrast medium, may pass the BTB/BBB more easily. Hence, a large increase in the

tumor and a small increase (or even decrease) in healthy tissue may suggest the opportu-

nity to deliver these agents more effectively during this window of time. An alternative to

comparing the mean change is to define a threshold of change and compare the proportions

of healthy and diseased tissue that exceed this threshold. Without an established biologi-

cally meaningful threshold of change in this exploratory study, we first apply the illustrative

threshold, 0.06, used by Zhang, Johnson, and Little (2007).

For subject 1, 8.2% of the normal tissue exceeds the threshold, while 59.5% of the tumor

“core” has an increase in contrast uptake above the threshold, compared to 15.6% in the

tumor “annulus” (Figure 4e). Similarly, for subject 2, 4.0% of the healthy tissue exceeds

the threshold. While 54.3% of the tumor “core” has a change in uptake that exceeds the

threshold, compared to 12.7% in the “annulus” (Figure 5e). The percentages are very similar

to those reported by Zhang, Johnson, and Little (2007).

We take the threshold idea one step further, and argue that the Area Under the Curve

(AUC) of a Receiver Operating Characteristic (ROC) curve can be used to better sum-

marize the the differential response of the tumor “core/annulus”. Although the AUC is
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traditionally used to quantitate a diagnostic test, it essentially provides a distribution-free

summary statistic of the distance between two distributions (Pepe, 2003), namely the tumor

(core/annulus) and the healthy tissue in our case. The AUC can be interpreted as the prob-

ability of a randomly picked tumor pixel having a higher mean change in contrast uptake

than a randomly picked normal pixel. A larger AUC value, which indicates better separation

between the tumor and the brain, is desirable. The AUC is computed at each iteration for

both the tumor “core” and “annulus” versus the healthy tissue.

The 95% posterior credible interval of AUC between the tumor “core” and the healthy

tissue is (0.74, 0.76) for subject 1, which suggests the “core” region has a substantial increase

on average in contrast uptake compared to the healthy tissue. The tumor “core” of subject 2

is also well separated from the healthy tissue with 95% posterior credible interval (0.81, 0.82).

The AUC between the tumor “annulus” and the healthy tissue is under 0.5 for both subjects

((0.23, 0.25) for subject 1 and (0.25, 0.26) for subject 2), which means the “annulus” on

average has decreased contrast uptake compared to the healthy tissue. The AUC for all

eleven subjects are given in Table 2. Most subjects, except for one, demonstrate significantly

increased contrast uptake in the tumor “core” relative to the healthy tissue.

4.3.2 Sensitivity Analysis

We report the marginal posterior distribution of M under various choices of prior parameters

(λ = 5, 10, and 15) in the bottom two rows of Figure 3. Again, the posterior distribution of

M as well as the Monte Carlo estimate η̂i are relatively unaffected by the choice of λ.

Admittedly, the choice of 95th percentile for defining the tumor “core” and “annulus” is

ad-hoc. We performed a small study to address the sensitivity of our results to this choice.

We used alternative cutoffs of the 90th and 97.5th percentiles of the healthy tissue contrast

uptake. The percentages of the “core” and “annulus” of the tumors that exceed the various

thresholds are given in Table 2. Although the AUC varies as the threshold of “core/annulus”

changes, the trend is the same.
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5 Conclusion

In this article, we implement a statistical imaging model that respects the key feature of

spatial heterogeneity in the qMRI data. Compared to previous work, we integrate many

parts that have been previously discussed individually. First, we estimate the normalizing

constant via thermal integration, instead of using the pseudo-likelihood. Second, we estimate

the spatial regularization parameter from the data, rather than holding it fixed. Third, we

acknowledge that there is no clear substantive knowledge regarding the number of compo-

nents, given the lack of physical interpretation of the hidden labels. We therefore marginalize

over both, and focus on the marginal posterior distribution of the pixel change in contrast

uptake, which is of primary scientific interest. We also note that the implementation of the

RJ steps is non-trivial. The split scheme proposed by Richardson and Green (1997) is inad-

equate for our application, although it has proved successful in smaller scale problems. The

split proposal we use is inspired by the Swendsen-Wang algorithm, and works well because

it produces smoother new configurations. Finally, we propose the use of AUC to summarize

the differential change in contrast uptake of the tumor “core/annulus” versus the healthy

tissue.

In some respects, the current work is a Bayesian parallel of the EM approach proposed

by Zhang, Johnson, and Little (2007). However, we find in the simulation studies that

the proposed method is less sensitive to the initial values chosen. Also, the RJ approach

yields estimates with smaller MSE than the fixed-dimension MCMC, and the fixed-dimension

MCMC yields smaller MSE than the EM approach. The comparative advantage is greatest

when the data are analyzed without any kernel smoothing. We also find that when the

data-generation mechanism is known, a fixed-dimension MCMC performs comparably with

the proposed method. However, the loss associated with mis-specified mechanism can be

severe. We therefore conclude the proposed method robust and efficient.

An alternative MCMC technique dealing with variable and unknown parameter space

dimension is the birth-and-death MCMC (BDMCMC, Stephens 2000). Extending some
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early work, BDMCMC shares the essence of RJMCMC in variable dimensional problems,

and can be further generalized to continuous-time MCMC. It is shown in Cappe, Robert, and

Ryden (2003) section 4 that under some week regularity conditions, there exists a sequence of

RJMCMC processes converging to a birth-and-death MCMC sampler. In the nonparametric

Bayesian field, there is a large body of literature on infinite mixture models using the Dirichlet

prior. Another possible extension is an infinite spatial mixture model (Guillot, Estoup,

Mortier, and Cosson, 2005, Francois, Ancelet, and Taylor, 2006). However, implementation

of both alternatives may be challenging given the large volume of data.

It appears that model fitting is improved by using RJMCMC than EM. However, we

comment that the image model itself is insufficient to provide an integrated picture of the

differential profiles of the tumor/brain contrast uptake induced by radiation. The model only

utilizes a subset of the data (the baseline and week 3) that is of primary research interest. In

a sense, it emulates a hypothesis testing scenario, in which the credibility of a null hypothesis

is examined. Obviously, this only provides partial information about the possible optimal

timing of administering chemotherapy with respect to radiation. To capture the entire profile

of contrast uptake, we need a model that simultaneously captures the spatial and temporal

correlation inherent in the data. This is a future direction of our research.
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Table 1: Average MSE of the proposed method vs. the ML approach

Smoothing Reversible Jump Maximum Likelihood
Kernel (σ) MSE(µz)± SD MSE(σz)± SD MSE(µz)± SD MSE(σz)± SD

0 0.028± 0.003 0.001± 0.000 0.119± 0.085 0.010± 0.009
0.42 0.032± 0.003 0.048± 0.002 0.065± 0.058 0.045± 0.005
0.85 0.542± 0.084 0.469± 0.022 0.549± 0.089 0.378± 0.004
1.70 1.369± 0.209 0.576± 0.006 1.396± 0.211 0.391± 0.009
3.40 2.878± 0.448 0.544± 0.014 2.932± 0.441 0.340± 0.010

Table 2: Posterior 95% credible interval of AUC between the tumor “core/annulus” and the
healthy tissue for all subjects

Subject “Core” “Annulus”
ID 90th 95th 97.5th 90th 95th 97.5th

1 (0.75,0.77) (0.74,0.76) (0.71,0.73) (0.26,0.28) (0.23,0.25) (0.20,0.22)
2 (0.83,0.84) (0.81,0.82) (0.81,0.82) (0.28,0.29) (0.25,0.26) (0.23,0.24)
3 (0.42,0.44) (0.40,0.42) (0.36,0.38) (0.08,0.09) (0.05,0.07) (0.04,0.05)
4 (0.55,0.57) (0.53,0.55) (0.52,0.53) (0.18,0.20) (0.15,0.16) (0.13,0.15)
5 (0.49,0.54) (0.46,0.52) (0.42,0.49) (0.25,0.31) (0.24,0.30) (0.24,0.29)
6 (0.91,0.92) (0.91,0.91) (0.89,0.90) (0.57,0.68) (0.55,0.56) (0.53,0.54)
7 (0.92,0.96) (0.90,0.94) (0.89,0.93) (0.31,0.33) (0.29,0.31) (0.29,0.31)
8 (0.23,0.25) (0.30,0.31) (0.35,0.36) (0.92,0.94) (0.95,0.97) (0.96,0.97)
9 (0.62,0.65) (0.59,0.62) (0.58,0.60) (0.21,0.35) (0.21,0.39) (0.21,0.42)
10 (0.87,0.89) (0.86,0.88) (0.85,0.87) (0.59,0.60) (0.59,0.60) (0.59,0.60)
11 (0.69,0.72) (0.68,0.71) (0.66,0.68) (0.25,0.27) (0.23,0.25) (0.20,0.23)
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Figure 1: Directed Acyclic Graph (DAG) of the proposed model
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Figure 2: One set of simulations: the “true”scene (µtrue
z , top), the observed images (y, left),

the posterior mean (η̂i, middle) and standard deviation (ψ̂i, right) of pixel mean intensity
when FWHM = 0, 2, and 8 from the second to fourth row.
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Figure 3: Sensitivity analysis on the hyperprior of number of components (λ), from top to
bottom simulation study with conditionally independent noise, real data analysis for subject
1 and subject 2.
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Figure 4: Results on subject 1: (a) observed change in contrast uptake (light shades standing
for large increase); (b) marginal posterior mean of change in contrast uptake µ̃zi

and (c)
standard deviation σ̃zi

; thresholded image (d) without and (e) with consideration of spatial
structure; (f) tumor “core/annulus”.
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Figure 5: Results on subject 2: (a) observed change in contrast uptake (light shades standing
for large increase); (b) marginal posterior mean of change in contrast uptake µ̃zi

and (c)
standard deviation σ̃zi

; thresholded image (d) without and (e) with consideration of spatial
structure; (f) tumor “core/annulus”.
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