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Piecewise Constant Cross-Ratio Estimation for
Association in Bivariate Survival Data with
Application to Studying Markers of
Menopausal Transition

Bin Nan, Xihong Lin, Lynda D. Lisabet, and Sioban Harlow

Abstract

A question of significant interest in female reproductive aging is to identify bleed-
ing criteria for the menopausal transition. Although various bleeding criteria, or
markers, have been proposed for the menopausal transition, their validity has not
been adequately examined. The Tremin Trust data are collected from a long-term
cohort study that followed a group of women throughout their whole reproduc-
tive life, and provide a unique opportunity for assessing the association between
age at onset of a bleeding marker and age onset of menopause. Formal statistical
analysis of this dependence is challenging give the fact that both the marker event
and menopause are subject to right censoring and their association depends on age
at the marker event. We propose using cross-ratio to measure their dependence,
which is assumed to be a piecewise constant function of age at onset of the marker
event. Two estimation procedures using direct two-stage method and sequential
two-stage method are proposed, while the latter is extended to allow for covariates
in marginal survival functions. The proposed methods are applied to the analysis
of the Tremin Trust data, and their performance is evaluated using simulations.
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1 INTRODUCTION

1.1 The Tremin Trust Data

Considerable interest exists in developing a staging system for female reproductive aging
(Mitchell, et al., 2000; Soules, et al., 2001). Such a system will help assess for a woman
the need of contraception, the initiation of interventions such as bone density screening, and
the approach of menopause. Reproductive life is commonly divided into the reproductive
years and the transition years. The transition years include the early and late stages of
the menopausal transition. Several bleeding pattern change criteria have been proposed as
potential marker events for the early and late stages of the menopausal transition based on
expert assessment of clinical studies (Soules, et al., 2001). For example, it has been suggested
that age at onset of experiencing a menstrual cycle length at least 45 days might be a good
marker for the early menopausal transition (Lisabeth, et al., 2003). However, the validity of
these proposed bleeding markers and their associations with age at menopause have not been
adequately examined, and formal statistical analysis can be complicated.

The Tremin Trust data were collected as part of the Menstrual and Reproductive Health
Study (Treloar et al., 1967). This longitudinal cohort study followed participants throughout
their reproductive life span. It provides an unique opportunity to investigate the process of
female reproductive aging and the menopausal transition. The study sample consisted of white
college students enrolled at the University of Minnesota. Data collection started in 1935 and
enrolled a sample of 1,997 women over four years. Study participants were followed up to 40
years. Each woman was asked to use menstrual diary cards to record the days when bleeding
was experienced. Menopause was defined as the final menstrual period (FMP), with the FMP
confirmed after at least 12 months of amenorrhea. Only limited covariate information, e.g.,
age at menarche, was available.

Lisabeth et al. (2003) used a subset of the Tremin Trust data to study nine bleeding
pattern change criteria for the early and late stages of the menopausal transition proposed by
reproductive aging experts (Lisabeth, et al., 2003; Mitchell, et al., 2000; Soules, et al., 2001;
Taffe and Dennerstein, 2001), such as age at onset of a 45 day cycle, age at onset of a 60 day
cycle, etc. The subset consisted of 562 women in the original study cohort who were age 25
or less at enrollment, had information on age at menarche, and who were still participating
in the study at age 35 which was used as the baseline age in their study.

To evaluate the validity of a proposed bleeding marker, one is interested in assessing the
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association between age at a marker event, defined as age at onset of a specific bleeding
pattern change, and age at natural menopause, and studying how this association varies with
age at the marker event. In this paper, we focus on age at which a woman first experienced
a menstrual cycle at least 45 days in length, which has been proposed as a marker event for
entry into the early menopausal transition stage. We call it the 45-day cycle marker.

Both time to a marker event and time to menopause were subject to right censoring in
the Tremin Trust data. For each individual, the censoring time was the same for both events.
Figure 1 shows the Kaplan-Meier estimates of the survival curves of time to menopause and
time to the 45-day cycle marker in years. A total of 193 (34%) women were observed to
experience natural menopause, and a total of 357 (64%) women were observed to experience
a 45-day cycle marker. The median age at menopause was 51.7 years and the median age at
the 45-day cycle marker was 42.7 years.

This problem hence can be formulated as estimating the dependence between censored
bivariate survival times. The analysis, however, can be complicated by the observation in
Lisabeth et al. (2003) that the dependence between these two event times varies with age at
the 45-day cycle marker. Specifically, Lisabeth et al. (2003) explored the dependence between
these two event times descriptively using interesting side-by-side box-plots given in Figure
2, which is reproduced from Lisabeth et al. (2003). They divided age into several intervals
(35, 38), [38,40), and so on. For each age interval, a pair of box-plots were constructed to
compare the distributions of age at menopause between two groups of women: for those
who experienced a 45-day marker event within the age interval, their distribution of age at
menopause was estimated by the Kaplan-Meier method and plotted in a gray box-plot; for
those who had not yet experienced a 45-day marker event by the end of the age interval, their
distribution of age at menopause was estimated by the Kaplan-Meier method and plotted in
a white box-plot. The dependence of time to marker event and time to menopause can be
easily visualized by comparing the paired box-plots in Figure 2. This comparison suggests
that age at a 45-day cycle marker is weakly associated with age at menopause before age
40, but their association became much stronger after age 40. This indicates that the 45 day
cycle marker might not be useful before age 40 but might be a good marker after age 40. In
other words, the association between the two events varies with age at which the 45-day cycle
marker occurs.

Figure 2 provides a convenient graphical tool to explore the dependence between those two
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events. However, Lisabeth et al. (2003) were not able to develop a formal statistical method
to quantify this association displayed in Figure 2 and assess statistical significance of this
association as a function of age at a 45-day marker event. We develop a statistical method to
investigate this issue in this paper.

Our statistical model is motivated by our observation that the comparison between each
pair of gray and white box-plots in Figure 2 can be characterized by the hazard ratio of time to
menopause comparing women who experienced a 45-day cycle marker in a given age interval
with women who have not experienced a 45-day cycle marker by the end of the age interval.
As the width of each age interval approaches to zero, this hazard ratio becomes the cross-ratio
(Clayton, 1978; Oakes, 1989) of the bivariate failure times: time to the marker event and time
to menopause, which will be defined formally in Section 2. Hence quantitative analysis of the
dependence observed in Figure 2 can be formulated by modelling cross-ratio as a function of

age at marker event.

1.2 Statistical Background

There is a considerable recent literature on bivariate failure time analysis (Kalbfleisch and
Prentice, Ch. 10, 2002). Most research in bivariate failure time analysis focuses on either non-
parametric estimation of the joint survival function or estimation of regression coefficients in
marginal models. The main interest in our application, however, is modelling the dependence
between two event times (time to the marker event and time to menopause) as a function of
one event time (time to marker event).

Several global dependence measures have been proposed for bivariate failure times, such
as Kendall’s 7 and Spearman’s correlation coefficient (Hougaard, Ch. 4, 2000), and average
reciprocal cross-ratio (Fan, Hsu, and Prentice, 2000). However, these global measures are
not always desirable, since they can mask important features of the data and do not address
scientific questions of interest when the dependence of two event times is time-dependent and
modelling such dependence is of major interest, as in the analysis of the Tremin Trust data.

Several local dependence measures have also been proposed for bivariate survival data. The
cross-ratio function is of particular interest because of its attractive hazard ratio interpretation
(Clayton, 1978; Oakes, 1989). When cross-ratio is constant, such as in Clayton model and
Gamma frailty model, many estimating methods have been developed. See e.g. Clayton
(1978), Oakes (1986b), Nielsen et al. (1992), Shih and Louis (1995), and Glidden (2000),
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among others. However, little work has been done to estimate the cross-ratio as a function
of bivariate event times. In our application in the Tremin Trust data, we are particularly
interested in estimating the cross-ratio as a function of age at a 45-day cycle marker event.
Estimating cross-ratio as an arbitrary function of event times is very challenging. Hsu et
al. (1999) discussed estimation of piecewise constant cross-ratios in a matched case-control
setting using a pseudo-partial-likelihood function. However, their method relies heavily on
the particular matched case-control design, and is not applicable to unmatched data which is
the usual situation for cohort studies.

In this paper, we focus on modelling the dependence of bivariate survival data from cohort
studies as a function of one event time using piecewise constants. When there is not covariate,
in the discussion of Oakes (1986a), he conjectured that one might extend the constant cross-
ratio model by assuming that the cross-ratio is a constant at each rectangle on the plane
of bivariate failure times and that a separate distribution, subject to left truncation and
right censoring, is defined within each rectangle. We first propose a direct two-stage method
by building upon Oakes’ proposal. A major limitation of this method is that it is difficult
to incorporate covariates in marginal survival models. We then propose a sequential two-
stage estimation procedure. A key advantage of this method is that it is applicable to both
cases without and with covariates in marginal survival distributions. The basic idea of the
sequential method is that one performs estimation sequentially under a modified Clayton
model within each interval by using the estimated right boundary survival function from the
previous interval as the left marginal survival function of the current interval.

The remainder of the paper is organized as follows. We first introduce in Section 2 our
piecewise constant cross-ratio model. We derive in Section 3 the joint survival function of
bivariate failure times under the piecewise constant cross-ratio model without/with covariates.
We discuss in Section 4 the direct and the sequential two-stage estimation methods. We
analyze the Tremin Trust data in Section 5 and conduct a simulation study in Section 6.

Finally, we give conclusions in Section 7.

2 THE PIECEWISE CONSTANT CROSS-RATIO MODEL

We first assume there is no covariate and then extend the proposed model to allowing for
covariates in marginal survival functions. Suppose that 77 and T, are bivariate failure times.

In the Tremin Trust data, 77 is time to a 45-day cycle marker and 75 is time to menopause.

4
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Both are subject to right censoring. The cross-ratio (CR) function (Clayton, 1978; Oakes,
1989) for (7%, T3) is defined as
MU|Ty =1)  M(t|Th =)

( b 2) )\1('151|T2 > tg) )\2(t2|T1 > tl) ’ ( )

where (71,T) € [0,00) X [0,00), and A;(-) and Ag(-) are conditional hazard functions for
Ty and T3, respectively. One can easily see that 0(¢1,%3) is the relative risk of experiencing
menopause at age t, comparing women who experiences the 45-day marker event at age t;
with women who has not experienced the 45-day marker event by age ¢;. The two event times
are independent if 0(t1,t2) = 1; positively correlated if 8(¢;,%2) > 1 and negatively correlated
if 0(t1,t2) < 1 (Kalbfleisch and Prentice, 2002).

Motivated by the Tremin Trust application, we assume 6(¢1,t5) is a function of t;, age at

marker event,
(9(751, tg) - H(tl) (2)

A comparison of each pair of the side-by-side box-plots in Figure 2 is fully determined by

cross-ratio 6(t¢;). Specifically, from (1) and (2), one can easily see

Flbo|Ts =) = exp{-/0t2 No(s|Th = 1) ds} = (Pt > 1)) (3)
where F(-|-) denotes a conditional survival function. Each gray box-plot in Figure 2 repre-
sents F(ty|/Ty = t;) approximately (exactly when age intervals approach to zero), and the
corresponding white box-plot represents F'(t5|T) > t). If 6(¢;) = 1, the two survival functions
in (3) are the same. If (;) > 1, then F(to|T1 > t1) > F(to|Ty = t;) for all ¢, and vice versa
if 8(t1) < 1. Examination of Figure 2 suggests that the CR 6(¢1,1,) is not a constant, and
varies with marker time ¢; as in (2).

We estimate 6(¢;) nonparametrically by assuming that the cross-ratio 6(¢;) is a piecewise
constant function of #;. Let [wq, w1), - .., [Wr_1, W), - - -, [Wk_1,wx) be a K finite partition of
[0,00), where wg = 0 and wx = oo. Suppose Pr(wy_1 <T; <wy) >0forall k, k=1,... K.

We assume that
9(151, tz) = 0(751) = Hk, lf (tl,tz) € Alc; (4)

where 6y, is a constant and Ay, = [wg_1, w) X [0, 00) is a strip corresponding to t; € [wy_1, w).

In practice, the follow-up time for any study is finite. Without loss of generality, we assume

5
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(T1,Ts) € [0,71] X [0, 7], and wx = 71. As an example, Figure 3(a) illustrates the piecewise
constant cross-ratio model (4) for a partition of the support of 77 into four intervals.

It is of significant practical interest to use the data to examine whether the piecewise
constant cross-ratio assumption (4) is appropriate. Equation (3) provides a convenient way
to graphically check this assumption. Specifically, simple calculations show that equation (4)

can be rewritten as

log[—log{ F (to|T1 = t1)}] — log[—log{F'(ta|T1 > t1)}] = log(6%), (5)

which is constant for w, ; < t; < wy. It follows that we can group the data into K groups
based on the data of ¢; similarly to that in Figure 1. Within each t; interval, plot the pair of
estimated survival functions corresponding to the gray and white boxplots on a log(-log) scale
and check whether they are parallel. This technique mimics the graphical method for checking
the proportional hazards assumption in Cox model. We applied this graphical technique
to The treminTrust data and found that the piecewise constant cross-ratio assumption is
reasonable. For more detailed discussions, see Section 4.

The above discussion assumes no covariate. It is of interest to extend the proposed model
to accommodate covariates in the marginal survival functions F(t;) and Fy(t;). In The
treminTrust data, the marginal survival distributions of menopause and the 45 day cycle
marker event are likely to be affected by age at menarche. To accommodate covariates, we

assume the marginal distributions of 7} and 75 follow the Cox model as
Ni(t5125 = 23) = Nolt;)e™s 7, (6)

where \;(t;|Z;) and Ajo(t;) are the marginal hazards and the marginal baseline hazards for

T;, and Z; are the covariate vectors associated with Tj, j =1, 2.

3 CONSTRUCTION OF THE JOINT SURVIVAL FUNCTION

3.1 The Joint Survival Function Without Covariates

We are interested in constructing a bivariate survival function F(t;,t|z1,22) on the first
quadrant of the plane (¢, > 0,y > 0) using marginal survival functions F (t1|2z1) = F(t1,0|2)

and Fy(ta|22) = F(0,%5]2) and the piecewise constant cross-ratio model (4).
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We first consider the case without covariates, and construct the bivariate survival function
F(t1,t5) within each strip A;. The piecewise constant cross-ratio model (4) assumes the cross-
ratio 6(t1,t2) equals to the constant 6, when (t1,%2) € Ax = [wr_1, wk) X [0,00). Following
Clayton (1978) and Oakes (1986, 1989), equation (1) implies
k ) (7)

oty Oty

where fa, (t1,%2) is the joint density function and Fly,(t1,t2) the joint survival function of

fAk (t17t2)FAk (tlat2) = 9

(T1,Ts) given (t1,ty) € Ag. We show in Appendix that the solution of partial differential
equation (7) has the following form when (t1,%;) € Ay,

[0 — D{a(ty) + b(ta) ] /D, if 6 # 1, (®)
exp[—{a*(t1) + b*(t2) }], if 0, = 1;

Fy, (t1,t2;0;) = {
where the univariate functions a(-), b(-), a*(-), and b*(-) can be determined by the left and
bottom boundary conditions of A;. We illustrate in Figure 3(b) the strips A and their left
and bottom boundaries, denoted by L, and By respectively. Then a(-), b(-), a*(:), and b*(+)
can be determined by the marginal survival functions on the left and bottom boundaries Ly
and Bj,. We discuss the forms of FAk (t1, ta; Ox) for the following two cases of particular interest.

Details can be found in Appendix.

The Classical Clayton Model

Let K =1, i.e., f is constant at any point (¢1,%3) and the only strip A; becomes the whole
first quadrant. The marginal survival functions at the two boundaries L and B become the
marginal survival functions of T} and Ty: F(t1,0) = Fi(t;) and F(0,t3) = Fy(t2). Then if
6 # 1, calculations in Appendix show that F'(¢;,%;) in equation (8) becomes Clayton’s copula
model (Clayton, 1978; Oakes, 1989) as, for ¢;, t5 > 0,

Ftr, 1) = [{F1(t)} 0D + {Fa(ta)} 07 - 1]4/(0*1) .

(9)

When 6§ = 1, F(t,ty) = Fi(t1)Fy(t2), which means that 77 and Ty are independent.
The Piecewise Clayton Model with Left Truncation
Suppose there are K strips and the cross-ratio is a constant 6, in the kth strip A, k =
1,---, K. If the two boundary conditions By : Fy, (1,0) and Ly, : Fa, (wg_1,t2) are given, the
joint survival function Fla, (t1,ts) for (t1,t2) € Ax has the the following form when 6, # 1,
Fa(t,te) = [{Fa, (02,00} O + {Fy (wyy, 1)}~
_ {FAk(wk—l,0)}_(0k_1)]_1/(0k_1) (10)
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Let tl = Wk_1+ 51 and tQ = 7?2. Thus (51,52) € Ak = [O,U)k - wk—l) X [O, OO) Define

FAk (7?1,7?2) = PI‘(T1 > Wg_1 + El,TQ > £2|T1 > wk_l,TQ > 0)

= FAk(wk—l +£1;t~2)/FAk(wk—170) ) (11)

which is the bivariate survival function for left truncated failure times 7} and 75 truncated at

(wk_1,0) (Kalbfleisch and Prentice, 2002). It follows that equation (10) can be rewritten as

L . o g o C1/(05-1)
Fy, (F,) = [{Fg, (71, 00} 070 4 {Fy (0,8)} @D —1) 7 7 (12)

where F i, (£,,0) and F i, (0, ty) are fully determined by the original two boundary conditions
Fa,(t1,0) and Fa, (wy_1,%) at the boundaries Ly, and By. Hence the joint survival function
for left truncated failure times has exactly the same form as the Clayton model (9) when
(t,,1,) € Ay, or equivalently (t;,15) € Ag. They are identical for (,%,) € A; since Fy, (0,0) =
1. When 6y = 1 and (¢1,ts) € Ay, we have Fa, (t1,t2) = Fa, (t1,0)Fa, (wg—_1,t2)/Fa, (wk_1,0)
ie., FAk (t1,15) = ng (1, O)FAIC (0,%3). This means that T and T, are independent in Ay.

It should be noted that the two marginal survival functions F(¢;) and Fy(ty) and the
piecewise cross-ratio model (4) fully determine the bivariate survival function F'(¢1,3) on the
whole support of (t1,%2): t1 > 0, to > 0. We only need to demonstrate that the bottom
and left boundary conditions By : Fy4,(t1,0) and Ly : Fa, (wy_1,12) of each strip Ay, are fully
determined by the two marginal survival functions F}(¢;) and Fy(t2) and the cross-ratios 6;,
j < k, of the previous strips.

We refer to Figure 3(b) for the following discussion. First notice that the marginal survival
function F}(t;) fully specifies the boundary conditions at By, - -+, Bg. We only need to show
how the boundary conditions at Li,---, Lx are determined. Starting from the first strip
Ay, the two marginal survival functions Fi(¢;) and Fy(t;) specify the boundary conditions
on L; and B;. Given the cross-ratio parameter 6, the bivariate survival function in A; is
F(t1,t2;0) = Fa,(t1,ty;0,) which is specified by (12) with #; = ¢, and #, = t,. Thus the right
boundary of strip A; is fully determined. Notice that the right boundary of A; is the left
boundary of A,. It follows that the left boundary condition on Ly of A, is fully determined.
With the two known boundary conditions on L, and B, and the cross-ratio constant 5 in
Ay, equation (12) specifies the bivariate survival function in Ay as F(t1,ta;0) = Fa,(t1,t2; 05).
This now specifies the boundary condition on L3. By applying this sequentially, the bivariate
survival function F(t;,1,) is fully specified on the whole positive plane t;,t, > 0. One can

easily show that the resulting function F(t;,t;) constructed in such a piecewise fashion is a

8
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proper bivariate survival function as long as Fi(¢;) and F(t;) are proper survival functions,
i.e., F(t,ty) is a non-increasing function satisfying F(0,0) = 1 and F(co,00) = 0. These
calculations consist of the foundation of the sequential estimation method proposed in Section
4.

3.2 Extension to the Joint Survival Function with Covariates

The above results can be easily extended to construct the conditional bivariate survival func-
tion when the marginal survival functions of 7} and 75 depend on covariates Z; and Z
through the marginal Cox models in (6). Let Z = (Z;,Z) be the whole covariate vector.
Consider the kth strip Aj. Suppose that the two boundary conditions By, : Fl, (t1,0]2) and
Ly : Fa, (wy_1,12|2) are given. Define ng (t1,12|2) similarly to (11) but conditional on Z = z.
Similar calculations to Section 3.1 show that

ng(ﬂ,fﬂz) = FAk(wk—1+51752|Z)/FAk(wk—1,0|2)a (13)

~ ~ p ~ ~ p —1/(0x—1)
= [{F3,(0,002)} O 4 {F5, (0, 5:]2)} 0 —1] 7, (14)

which takes the same form as (12) except that the two boundary conditions Fy, (¢1,0[2) and
Fa, (wy_1,1t2|2) depend on covariates.

Now examine these boundary conditions Fy, (t1,0[2) and F4, (wg_1,12|2). Since the two
marginal survival function F}(t;|z1) = F(t;,0]z) follows Cox model (6), simple calculation
shows that the left truncated marginal survival function F A (t1,0]2) at the bottom boundary
By, of the kth strip Ay also follows Cox model. However, although the marginal survival
function Fy(ty]2e) = F(0,ts]2) follows Cox model, the left truncated marginal survival function
F 1, (0, 15|z) on the left boundary Lj, of A, generally does not follow Cox model any more for
k > 1. Specifically, we can show that ng (0,%5]2) takes the form

F; (0,%5|2) = Fa,(wp_1,ta]2)/Fa,(wp-1,02)
= [1+ {Fa, (wis,ta]2)/Fay, (w1, 02)} 0D
_ _ (1]~ Ox_1=1)
—{Fu,_, (we2,002)/Fa,_, (wp_1,0]2)} %= =0] 700 (1)
which obviously does not have the form of Cox model when 6; # 1 for some j < k. This result
complicates the estimation procedure in the presence of covariates. However, it should be
noted that from (15), using similar arguments as those in Section 3.1 one can show that the

function F(t,t,|2) is a fully specified proper survival function determined by the cross-ratio

model (4) and the two marginal Cox models (6).

9
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4 PIECEWISE CONSTANT CROSS-RATIO ESTIMATION

We discuss two methods in this section for estimating cross-ratio parameters § = (0y,-- -, 0x)":
the direct two-stage method and the sequential two-stage method. The direct two-stage
method is simple and is applicable when there is no covariate. However, the estimated survival
function might not be a proper survival function in finite samples, and it is not applicable in
presence of covariates. The sequential method is slightly more complicated but is applicable

no matter covariates are involved or not, and the estimated survival function is always proper.

4.1 The Direct Two-Stage Method

We first consider the case without covariates. In the discussions of Oakes (1986a), he conjec-
tured that one might define a separate distribution for 77 and 75 in each strip A, k =1, ..., K,
subject to left truncation at its left boundary and right censoring at its right boundary, and
estimate the cross-ratio 6 using the left truncated and right censored data in A;. We fully de-
velop this idea in this section using the results in Section 3 and term it as the direct two-stage
method.

Specifically, for each strip Ag, we first construct a left truncated and right censored data
set. Since the resulting left truncated data follow Clayton model (12), we adopt the two-stage
method of Shih and Louis (1995) by estimating the two boundary conditions Fﬁk (#1,0) and
F A (0,%2) nonparametrically at the first stage and then estimating the cross-ratio ) using the
likelihood specified by (12) at the second stage.

Suppose that there are n subjects. We introduce subscript 4 to indicate subject 7. Let Aj;
be the censoring indicator and Yj; = min(7};, C};) be the observed time for the jth failure time
of subject 7, where Tj}; is the jth failure time and C); is the jth censoring time, 7 =1,...,n,
(j = 1,2). For example, in The treminTrust data, T; is age at a 45-day cycle marker event
and T,; is age at menopause of subject 7.

For each strip Ay, we construct a data set using the original cohort data by left truncating
Y); at wg_; and right censoring Y3; at wg. Specifically, we consider a subset of n, subjects
whose Yi; > wi_;. Let the new survival time be Tu = T1; — wi_1, the new observed time be
Yy = min(Y3; — wg_1, wy — wg_1) and the new censoring indicator be Ay =1ifYy; =Ty, and
0 otherwise. All the variables associated with the second failure time 75 remain the same, i.e.,
Yy = Ya; and Ay; = Ag; forall i = 1, ..., ny. Denote by Dy, = {f/'lz, Ay, Yoi, Nojii=1,- - , T }

the resulting left truncated and right censored data set that will be used for estimation in
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Ag. For The treminTrust data, Dy contains the subset of women who had not experienced a
45-day cycle marker event by age wy_;. For those who had not experienced the marker event
by age wy, their times to the marker event, 7}, are censored at wy. The second failure time
T, is time to menopause.

At the first stage, we use the data set Dy to estimate the two marginal survival functions
on the left and bottom boundaries L, and By, of the strip Ax. They can be written as

Fa,(t1,0) - s Fu (wy_1,t2)

FAk (OJ t2) - FA (wk—la 0) : (16)

Fy (t1,0) = Fr (051,0)’
It can be easily seen that F 1, (1,0) and F A, (0,%5) can be estimated nonparametrically sim-
ply by Kaplan-Meier estimates using data (Yh, Ali) and (1721, AQi) respectively (Kalbfleisch
and Prentice, 2002). It is worth noting that the Kaplan-Meier estimator of F i, (t1,0) using
(Y1, Ay;) can be equivalently calculated from the Kaplan-Meier estimator of the marginal
survival function Fi(t;) = F(¢1,0) using all the data (Y3;, Ay;) in the original cohort.

At the second stage, we use the data set Dy to construct and maximize the likelihood
function specified using bivariate survival function (12) with respect to ) by treating the two
estimated marginal survival functions F i, (t1,0) and P 4,(0,3) as fixed. Following Shih and

Louis (1995), one can easily show that the likelihood function involving 6, can be written as

n {BQH(ui, vi; 1) }AA { —0H (us, vi; 6r) }A”“A”)

L) = ]I

i—1 auzavz (9’LLZ
(1-A1;) Ay
—OH (u:. v:: R, Ay
x{ : (g“v“ek)} {H(uiavz’;Hk)}(liA“)(liAm) (17)
()

~

where H (u,v;6) = {u_(”_l) —p= =1 — 1} ,u; = F; (Y1;,0) and v; = F ;g (0,Yy). The
standard error of the resulting maximum likelihood estimator f), can be estimated using the

method similarly to that described in Shih and Louis (1995).

~1/(6-1)

The direct two-stage method is easy to implement. However, it has two major limitations.
First, the estimated bivariate survival function F (t1,t2) might not be a proper survival function
in finite samples since it views the survival functionson A;, £k = 1,..., K, as separate functions
and might have positive jumps at the boundaries L;. Second, it is not straightforward to be
extended to the case with covariates.

With the classical Clayton model where cross-ratio € is constant on [0, 00) X [0, 00), Glidden
(2000) extended the two-stage method of Shih and Louis (1995) by allowing for covariates in

the marginal survival functions Fy(¢;) and F(t;) using Cox model (6). Specifically, one can
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simply fit Cox models to estimate the two marginal conditional survival functions at the first
stage and perform the same maximum likelihood calculations for # at the second stage. Under
piecewise constant cross-ratio assumption (4), when covariates are involved in the marginal
survival functions F}(t1|z) and Fy(tz|z) under Cox model (6), the bivariate survival function
of T1; and Ty; conditional on covariates still follows Clayton model (12). However, for each
strip A, k > 1, the marginal survival function F A, (0,%3]2) on the left boundary L of A
in (12) does not follow the Cox model any more. Its form is more complicated as seen in
(15), and its components depend on the two marginal survival functions Fi(¢;) and Fy(t;) and
all 0;’s, 7 = 1,...,k. Hence, if one uses the direct two-stage method by simply fitting the
marginal Cox models using data (}71,-, Ay, Zy;) and (1721, Ay, Zy;) at the first stage, then the

MLE estimator of 6, at the second stage would be inconsistent.

4.2 The Sequential Two-Stage Method

We propose in this section a sequential two-stage method to overcome the two major limita-
tions of the direct two-stage method. This method ensures the estimated bivariate survival
function is a proper survival function and accommodates covariates in the marginal survival
functions under Cox model (6).

The sequential two-stage method differs from the direct two-stage method by calculating
the left and bottom boundary conditions at each strip sequentially from the first strip A; to
the last strip Ax. Unlike the direct two-stage method, which treats F'(t1,t,) separately in
each strip Ay, the sequential two-stage method views F(¢,%;) as one whole survival function
in [0,00) x [0,00) under the piecewise constant cross-ratio model (4) and specifies F(t,t,)
sequentially using the procedure layed out at the end of Section 3.1. Hence F(t1,,) is seamless
at the left boundary of Ay’s, i.e., the right boundary condition of A, and the left boundary
condition of Ay, are identical.

The main idea of the sequential two-stage method can be easily illustrated by referring
to Figure 3(b). We first estimate the two marginal survival functions Fi(t;) and Fy(ty) or
F\(t1|Z1) and Fy(ty|Z,), which specify the boundary conditions on L; and all By’s, k =
1,---, K. We start from the first strip A; whose boundary conditions L; and B; are given.
Estimation proceeds sequentially from strip A; to strip Ax. Within each strip Ay, given the
left and bottom boundary conditions Ly and By, we estimate 0 and Fla, (¢1,t2) using the left

truncated and right censored data Dy, under Clayton model (12) or (14). The survival function
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on the right boundary of Ay is then available and specifies the left boundary condition Ly
of the next strip Ax;1. One hence can estimate the left boundary condition Ly of each strip
sequentially and obtain estimators of 6 and Fy, (t1,ts) sequentially.

We describe below in detail the sequential two-stage method. For simplicity, We focus
on the case with covariates. The method for the case without covariates is the same except
that the two marginal survival functions Fi(t;) = F(t1,0) and Fy(ty) = F(0,t;) are estimated

using Kaplan-Meier method.

Step 1. Estimate the two marginal survival functions. We fit the marginal Cox models (6)
using (Y14, A, Z1;) and (Ya;, Aoy, Zo;) respectively, i = 1,- - - n, and calculate the estimators of
marginal survival functions F}(t;|z) = F(t1,0|z) and Fy(ts]2) = F(0,t|z), where the marginal
baseline hazards are estimated using Breslow estimator and the regression coefficients f;
and (B, are estimated using the partial likelihood method. These calculations provide us the
estimators of the left boundary condition Fy,(0,%3|2) on L; of strip A; and all the bottom
boundary conditions Fy, (t1,0[z) on By, of strips A, k=1,..., K.

Step 2. Estimation of 0, and Fy, (t1,t3]2z). Use the right-censored data D; and treat the
estimators of the left boundary condition £y, (0,%;|2) on L; and the right boundary condition
Fy,(t1,0]z) on B; obtained from Step 1 as known. Calculate the maximum likelihood esti-
mator of #; by maximizing the likelihood (17). Then estimate the bivariate survival function
F, (t1,12|2) from equation (14).

Step 3. FEstimation of 0y for k > 1. Suppose one obtains the estimators of #;_; and the
bivariate survival function Fa, | (t1,t2]2) in strip Ag_;.

(i) Use the estimator of bivariate survival function Fa, ,(t1,%2]2) to compute the estima-
tor of marginal survival function on the right boundary of A;_;, denoted as F Ay (We—1, t22).
This gives the estimator of the survival function on the left boundary L of strip Ay, i.e.,
I%Ak_l(wk_l,tg\z) = Z%Ak(wk_l,tg\z). Convert ﬁ’Ak (wg—1, t2]z) to the marginal survival func-
tion for the left truncated failure time T; using equation (13).

(ii) Plug the estimators of the left marginal survival function FAk (wy, t2|2) obtained in (i)
and the bottom marginal survival function FAk (t1,0|z) obtained in Step 1 into the likelihood
function (17) using data Dy and treat them as known. Maximize (17) with respect to 6.
The standard error estimator of depends on the variability of all the estimated marginal
survival functions and cross-ratios ¢;’s for allj < k of the previous strips, and can thus be

very complicated. We hence use bootstrap to calculate the standard error estimator of @k
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Step 4. Let kK = k + 1, and iterate Step 3 until £ = K.

As discussed at the beginning of Section 4.2, comparing to the direct method, the main
advantages of the sequential method are that it ensures the estimated survival function to be
proper and is able to accommodate covariates in the marginal survival functions. It is also
worth noting that in the absence of covariates, if the piecewise cross-ratio model (4) holds,
the estimators of 6;’s under the sequential method might be more efficient than those given
by the direct method. The direct method on the other hand might be more robust against
model misspecification of piecewise constant cross-ratios, since estimation of the left margin
of Ay by the direct method does not depend on the estimators of the previous strips.

A brief discussion of the asymptotic properties of the direct and the sequential two stage
estimators is given in the Appendix. The estimators 0r, k=1,...,K, are consistent and each
has an asymptotically normal distribution. Their bootstrap standard deviation estimators are

also consistent.

5] ANALYSIS OF THE TREMIN TRUST DATA

We applied both direct and sequential two-stage methods to the analysis of The treminTrust
data discussed in Section 1.1. Our main interest was to estimate the piecewise constant cross-
ratios for assessing the association between time to the 45-day cycle marker event and time
to menopause. Our secondary interest was to estimate the survival distribution of menopause
given a woman’s age at her 45-day cycle marker event. In our analysis, time zero was defined
as age 35, 11 was time to the 45-day cycle marker event and 75 was time to menopause. Both
event times were subject to censoring. The detailed descriptive statistics of the data can be
found in Section 1.1.

We first ignored covariates by assuming the marginal distributions of time to the 45 day
cycle marker and time to menopause did not depend on covariates, and analyzed the data
under piecewise constant cross-ratio model (4). We began with considering two different
partitions for the time axis of the 45-day cycle marker to investigate how sensitive the results
were with respect to different partitions. The first partition consisted of one-year intervals
from age 35 to 49 and the interval of age 50 and above. The second partition was exactly
the same as that used by Lisabeth et al. (2003) in Figure 2, which consisted of 8 intervals
including the interval of 50+ that was not shown in the figure. We found both partitions gave
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similar estimators of the cross-ratios #’s. To save some space, we only present here the results
using the second partition which corresponds to the partition used in Figure 2.

We next applied the graphical technique discussed in Section 2 to examine the piecewise
cross-ratio assumption. Specifically, using the results in equation (5), we plotted in Figure 4
the paired log(-log) conditional survival functions corresponding to the paired gray and white
boxplots in Figure 1. The results in Figure 4 suggest that the curves are roughly parallel
within each pair. This provides empirical evidence that the piecewise constant cross-ratio
assumption (4) is appropriate for the Tremin Trust data.

We then applied both the direct two-stage method and the sequential two-stage method
proposed in Section 4 to estimating the cross-ratios ;. The results are presented in Table
1. For the direct two-stage method, both the model-based standard errors and the bootstrap
standard errors were calculated. For the sequential two-stage method, only the bootstrap
standard errors were calculated. The bootstrap standard error estimators were obtained based
on 1000 bootstrap samples. The results in Table 1 suggest that the cross-ratio estimates are
very close for both methods.

For the two age intervals of experiencing a 45 day cycle marker event before age 40, the
cross-ratio estimates were similar and were both a little less than 1, suggesting a weak negative
association between time to the 45-day cycle marker and time to menopause before age 40.
For the three intervals of 77 between 40 and 45, the cross-ratio estimates were similar and
were close to 2, suggesting a strong positive association between the two events. For the two
intervals of 77 between 46 and 49, the cross-ratio estimates were both larger than 3, suggesting
a very strong positive association between the two events. For the interval of T} > 50, the
cross-ratio estimate was reduced to 1.57, suggesting a weak positive association between the
two events. Under the direct method, the model based standard error estimates of 6;’s of Shih
and Louis (1995) were smaller than their bootstrap counterparts. This discrepancy might be
due to instability of the estimates and fine partitions. The bootstrap standard error estimates
using the direct and the sequential methods, however, were similar.

The above discussions suggest that we might consider a wider partition by assuming the
cross-ratio #(t;) to be piecewise constants in four intervals of T;: 35-39, 40-45, 46-49 and 50+.
The resulting cross-ratio estimates are likely to be more stable. The results for this partition
calculated using both direct and sequential methods are also presented in Table 1. Under the

direct method, both the model based standard error estimates and the bootstrap standard
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error estimates now agreed well with each other. The cross-ratio estimates and their standard
errors using both methods were also similar.

To examine whether it was appropriate to group the original 8 intervals into the wider
4 intervals, we performed formal statistical tests. Specifically, we were interested in testing
whether the cross-ratios corresponding to the 8 interval partition were the same within each
of the final four intervals, i. e., we considered three null hypotheses (a) Hy : 6, = 6; (b)
Hy : 63 =0, = 605; and (c) Hy : 0 = 6, and performed a test for each Hy. Under each Hy, we
used the point estimates of corresponding #’s and their bootstrap covariance estimates, and
performed a chi-square test for the specified contrast. For example, to test (a) Hy : 0 = 65, we
calculated the contrast T = (—1,1)(6y, 65)" and var(T) = (—1,1)cov{fs,8:)}(—1,1)". We then
used the test statistic 7% /var(T'), which follows a chi-square distribution with one degree of
freedom asymptotically. Note that the chi-square test for the second null hypothesis (b) was
based on a two degree-of-freedom test. The p-values for these three null hypotheses were 0.90,
0.91, 0.54 using the direct method and 0.93, 0.91, 0.29 using the sequential method. They
suggested that the four interval partition was appropriate and it was reasonable to assume a
constant cross-ratio within each of the final four intervals.

We now interpret the cross-ratio estimates. Our results suggest that time to the 45-day
cycle marker event and time to menopause are weakly negatively associated (CR=0.80, 95%
CI=(0.60, 1.00)) if a woman experiences the 45 day cycle marker event before age 40. Hence
the 45 day cycle marker is not very useful for assessing menopause age if it occurs before age 40.
Between age 40 and 49, the association of the two event times becomes positive and strong
with the strongest association observed between age 46 and 49 (CR=2.17, 95% CI=(1.47,
2.87) if 40 < T < 45; CR=4.11, 95% CI=(2.41,5.81) if 46 < T} < 49). These cross-ratios
can be interpreted as the relative risks. For example, CR=2.17 means the risk of experiencing
menopause at any given age for a woman who experiences the 45-day cycle marker event at
any time ¢; € [40,45) is 2.17 times higher than a woman who experiences the 45-day cycle
marker event after age ¢;. This strong positive association indicates if a woman experiences
the 45-day cycle marker between age 40 and 49, the earlier she experiences the marker event,
the earlier she will experience menopause. Hence the 45-day cycle marker event is useful for
assessing menopause age in this age interval. After age 50, the estimated cross-ratio declines
towards 1 and is not statistically significant. This indicates that the positive association of

the two event times diminishes after age 50, and the 45-day cycle marker after age 50 is not
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particularly useful for assessing age at onset of menopause.

Our secondary interest was to estimate the survival function for time to menopause
(T3) given age at the 45-day cycle marker event (77), i.e., we were interested in estimat-
ing F(Ty|T; = t;). This estimation is of both clinical and a woman’s own interests. For
example, if a woman first experiences a 45-day cycle at a certain age, say 45, she would like
to know her expected median age of menopause. This information is also helpful for clinicians
to evaluate a woman’s need for continuing contraception and the appropriateness of initiating
interventions such as bone density screening.

We used equation (3) to estimate the conditional survival function F(Ty|T; = t,), since the
conditional survival function F'(¢,|T; > t;) could be estimated either nonparametrically using
left truncated data or using model (10). We computed the estimates of the conditional survival
function F(to|Ty = t1) at t; = 36,39,42,45,48,51, where the cross-ratios were estimated
using the sequential two-stage method, and the conditional survival function F(t;|T7 > t;)
was estimated nonparametrically using the Kaplan-Meier method. The estimated survival
curves are plotted in Figure 5, and several estimated percentiles are presented in Table 2.
For example, if a woman experiences the 45-day cycle marker at age 36, 39, 42, 45, 48, or
51, her median age of menopause is expected to be 52.2, 52.2, 50.2, 51.1, 51.7, or 53.9. One
can easily see from Figure 5 that the survival distribution of age at onset of menopause is
similar for women experiencing the 45 day cycle marker before age 40, e.g., comparing the
T} = 36 and 39 curves. This result is consistent with the weak cross-ratio estimates before age
40. Women who experience the 45 day cycle marker before age 40 are likely to have a later
onset of menopause than women who experience the 45 day cycle marker between 40 and 49.
Among women who experience the 45 day cycle marker between 40 and 49, a later onset of
the marker event would imply a later onset of menopause.

We next incorporated the covariate, age at menarche, in our analysis. Specifically, both
event times, time to the 45-day cycle marker and time to menopause were assumed to
marginally follow the Cox proportional hazards model (6), while the cross-ratios were as-
sumed to follow the piecewise constant model (4). Only the sequential two-stage method was
applicable in the presence of covariates.

Similarly to the analysis without covariate, we assumed 6(t;) be piecewise constants in four
intervals: 36-39, 40-45, 46-49, and 50+. The cross-ratio estimates and their standard error

estimates are also given in Table 1. The results were rather similar to those without covariate.
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This was not surprising for the Tremin Trust data since the association of age at menarche
with age at menopause was of borderline significance (relative risk =0.89 and p-value=0.038),
and age at menarche was not significantly associated with age at 45-day cycle marker event
(relative risk =0.94 and p-value=0.17). The estimated conditional survival distributions of
age at menopause given age at the 45-day cycle marker were similar to those in Figure 5. Due
to space limitation, these conditional survival curves are not presented here. However, we
present in Table 2 the estimated percentiles of age at menopause given a series of values of
age at the 45-day cycle marker and the median age of menarche that is 12 years old. One can
see that the results are similar to those without covariate. The interpretation of the results

are similar to those without covariate and thus are omitted.

6 SIMULATION STUDIES

We conducted simulation studies to examine the finite sample performance of the direct and
the sequential two-stage methods without/with covariates. We first considered the case with-
out covariates. The marginal distributions of T} and 75 were specified as unit exponential, and
the distributions of the two censoring times were assumed to be independent and uniformly
distributed over (0,2.3) as in Shih and Louis (1995) and Glidden (2000).

To mimic the analysis results of the Tremin Trust data, we assumed the cross-ratio 6(t;)
was piecewise constants over four intervals: 0(¢;) = 0.9 when ¢; € [0,0.25), § = 2.0 when
t; € [0.25,0.5), # = 4.0 when ¢; € [0.5,0.75), and = 1.5 when ¢; > 0.75. To generate bivariate
random variables (77, T5) following the piecewise Clayton model (10), we first generated two
independent uniform (0, 1) variables U; and U,. We then set 77 = —logU; and calculated T5
by solving the equation F'(T3|T}) = U, for Ty, where the conditional distribution F(ty|t;) was
derived sequentially from the joint survival function F(t1,%;) in (10) and the two exponential
margins as k increases from 1 to 4. The resulting random variables (77,7,) followed the
bivariate survival function F'(¢1,%) in (10). We set the sample size n = 500, which is close to
the sample size in The treminTrust Data set. A total of 100 replications were conducted.

For each simulated data set, we analyzed the data using both direct and sequential two-
stage methods. Under the direct method, the nonparametric estimates of the marginal sur-
vival functions F}(t;) and Fy(t;) were obtained using Kaplan-Meier method. The standard
errors of the cross-ratio estimates were calculated using both the model based method (Shih

and Louis, 1995) and the bootstrap method based on 100 bootstrap samples. Under the
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sequential method, only the bootstrap standard errors were calculated. For both methods,
the empirical 95% coverage probabilities using the bootstrap standard errors were calculated.
The simulation results are reported in Table 3.

The results in Table 3 suggest that both direct and sequential methods perform very well
and their performances are similar. The biases of the cross-ratio estimates using both methods
were less than 3%. Under the direct method, both the model-based SEs and the bootstrap
SEs agreed well with the empirical SEs. Under the sequential method, the bootstrap SEs were
also close to the empirical SEs. The coverage probabilities were close to the normal value.
These indicate that the bootstrap method performed well in estimating standard errors.

We next simulated the case where covariates were present in the two marginal survival func-
tions under Cox model (6). Specifically, we assumed F}(t;]|z1) = exp(Bi21) and Fi(tz|z) =
exp(fBe22), where 31 = S = 1 and Z; and Z, were simulated from Uniform (0,1) and Nor-
mal(1,1), respectively. We chose the same setting for 6, & = 1,...,4. The results are
presented in Table 4. Each simulated data set was analyzed using the naive direct method
and the sequential two-stage method. The naive direct method used the left-truncated and
right censored data Dy and assumed the left and bottom margins L, and By of strip Ag
followed Cox models. The results in Table 4 show that the sequential method performs well
and the bias of cross-ratio estimates is minimal. However, the cross-ratio estimates given by

naive direct method had considerable bias when the true value of cross-ratio is large.

7 DISCUSSION

We consider in this paper modelling the dependence between two event times using a piecewise
constant cross-ratio model, where the cross-ratio is assumed to be a step function of one of
the two failure times. This model is motivated by research in female reproductive aging,
where it is of interest to model the dependence of time to a bleeding pattern based marker
event and time to menopause as a function of time to the marker event. We propose two
estimation procedures: the direct two-stage method and the sequential two-stage method.
The former is applicable to the case without covariates, while the latter is applicable to both
cases with/without covariates. Our simulation results suggest both methods work well in
the absence of covariates and the sequential method also performs well when covariates are
present.

Our analysis of the Tremin Trust data indicates that the onset of a 45-day cycle marker
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is not statistically significantly associated with age at onset of menopause before age 40 and
after age 50. However, it is strongly positively associated with age at onset of menopause
between age 40 and 50, and the association is the strongest between age 45 and 50. This
analysis supports the descriptive results of Lisabeth et al. (2003). Women who experience
the 45 day cycle marker before age 40 might represent a group of women who have different
menstrual histories and will experience a prolonged period of transition from late reproductive
life to menopause. The onset of a 45 day cycle marker is a good candidate marker for entering
into the early stage of menopausal transition if it is experienced between age 40 and 50. It
is of scientific interest to apply the proposed method to the analysis of the other proposed
bleeding markers.

We consider in this paper two types of two-stage methods. A key advantage of both meth-
ods is that they are computationally easy. Several alternative methods might be investigated
in future research. Instead of estimating 6y individually in each strip, one approach is to
modify the second stage of the two stage method by simultaneously estimating all 6;’s using
all the observed data from the likelihood constructed by the bivariate survival function (10)
for all k. This method might yield more efficient estimators of 6;’s. However, a main challenge
is that the form of the marginal hazard function on the left margin L is complicated and
depends on the cross-ratios 6;, 7 < k. The joint estimation would be computationally diffi-
cult. Another approach is to use the semiparametric maximum likelihood method where the
likelihood is specified using (10). One simultaneously estimates the cross-ratios ;’s and the
marginal survival functions F(¢;) and Fy(t) or their Cox model version with covariates (6),
where the baseline marginal hazards are estimated nonparametrically. Although this method
might yield semiparametrically efficient cross-ratio estimators, its computation is even more

difficult. More future research is needed.

APPENDIX A: THE SOLUTION TO EQUATION (7)

The General Solution

We show the results for a more general situation where € is constant when (¢1,%,) € A =
[u1, ug) X [v1, v9). The strip Ay can be viewed as a special rectangle A with u; = wy_1, ug = wy,
v = 0, and vy = oo. For simplicity, we drop the subscription A; from survival functions and

replace 0y, by 6. Let h(t;,t;) = —logF(t1,t,). Suppose  is constant when (t;,%,) € A. Then
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equation (7) becomes the following second order partial differential equation:

0*h o_ Oh Oh

1
8t16t2 + ( )atl atQ =0 ’
which is equivalent to
0?h Ooh Oh
exp{ (6= Dh} 5= + (0= Dexp{(0— D}t =2 =0.

When 6 # 1, the above equation is equivalent to

82
0t 0ty

(60— 1) texp{(f — 1)h}| =0
Thus we have

(0 —1) 'exp{(0 — 1)h} = a(t1) + b(t2)
for arbitrary functions a(-) and b(-). Hence

F(t1,t2) = [(6 — 1){a(t) + b(t2)}] 77OV,

It is trivial to show that when # = 1, the solution to the equation 8?h/0t,0ty = 0 is h(ty,ts) =
a*(t1) + b*(t2) for arbitrary functions a*(-) and b*(-). Hence

F(t1,ts) = exp[—{a’(t:) + 0" (t2) }].

The Classical Clayton Model
Let u; = v; = 0 and up = v, = co. We have F(0,0) = 1. Given the two boundary
conditions F'(t;,0) = Fi(t;) and F(0,t5) = Fy(ty), if 6 # 1, from equation (8) we have

a(t,) +b(0) = (6—1)"1F ()",
CL(O) + b(tg) = (0 — 1)_1F2(t2)_(0_1),
a(0) +b(0) = (O—1)"1.

Thus we have (8 — 1){a(t1) + b(t2)} = Fi(t1)" Y + Fy(ty)~@=" — 1, and we then obtain

equation (9). When 6 = 1, from equation (8) we have
a*(t)) + b*(0) = — logFi (1), a*(0)+b*(t2) = — logFy(t2), a*(0) +b*(0) = 0.
Thus a*(t;) + b*(t2) = — log{ F1(t1) F5(t2)}, and we then have F(t1,ty) = Fy(t1) Fa(to).
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The Clayton Model with Left Truncation
Suppose that u;, v; > 0 and F(t;,v,) and F(us,t;) are known. We only show the case
when 6 # 1. The proof of the case with § = 1 is similar. When (¢;,%3) € A, from equation (8)

we have
a(tl) + (’Ul) = (0 — 1)_1F(t1, ’1)1)_(0_1),
a(ur) +b(tz) = (0 —1)""F(ug, 1),
a(u) +b(v1) = (0—1)"F(u, vl)_(e_l).
Thus

(0 — D{a(t1) + b(ty)} = F(ty,v1) Y 4+ Fluy, ta) "D — Fuy,v) "0 |

and we then obtain equation (10) with u; = wy 1 and v; = 0. The Clayton model for left
truncated data in equation (12) follows easily from equation (10) using the left truncated

survival function in equation (11).

APPENDIX B: ASYMPTOTIC PROPERTIES

Since Pr(wy 1 < T} < wg) >0 for all k (k= 1,...,K), the number of subjects ny used for
estimating each 6y goes to infinity proportionally as the sample size n — oo. For each strip
Ap, the estimates of the two marginal survival functions are root-n consistent in the support
region (t1,t2) € [0,7) X [0,72) with P(Ty > 7,Cy > 1) > 0 and P(Ty, > 7,0y > 1) > 0
which can be shown sequentially, thus as in Shih and Louis (1995) and Glidden (2000) we have
that \/ﬁ(ék —0)) converges weakly to a mean zero normally distributed random variable under
their regularity conditions and model assumption (4). More rigorous proof of consistency for
two-stage method in Clayton model can be found in Hu (1998). It can further be shown
using the functional delta method that /n(f; — 6;) and the bootstrapped /7 (6} — 6;) given

observed data converge weakly to random variables following the same normal distribution.
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Table 1: Two-stage estimates of the piecewise constant cross-ratios for time to the 45-day cycle
marker event (77) and time to menopause in the Tremin Trust data. The bootstrap standard
errors were calculated using 1000 bootstrap samples. The labels are 0 point estimate; SE, :
model-based standard error estimate in Shih and Louis (1995); SE, : bootstrap standard

error estimate.

Direct method

Sequential method

Without covariate Without covariate With covariate

T; 0 (SEs,,SE,s) 0 (SEg,,SE,) 0 (SE,s) 0 (SE,) 0 (SE,s)
35-37 0.80 (0.14, 0.15) 0.80 (0.15)

38.39 0.83 (0.20, 0.17) 0.80 (0.12, 0.11) 0.82 (0.18) 0.80 (0.10) 0.81 (0.11)
40-41 2.44 (0.50, 0.70) 2.48 (0.74)

42-43 1.98 (0.47, 0.71) 2.19 (0.27, 0.33) 2.04 (0.77) 2.17 (0.35) 2.17 (0.34)
44-45 2.18 (0.39, 0.63) 2.12 (0.70)
46-47 4.48 (1.19, 1.92) 5.72 (1.95)

’ .64 (0.71, 0. 4.11 (0. 4.41 (0.94

48-49 3.18 (0.81, 0.97) 3.64 (0.71,0.78) 3.28 (1.10) (0.85) (0.94)

50+ 1.57 (0.40, 0.55) 1.57 (0.40, 0.55) 1.39 (0.38) 1.37 (0.41) 1.47 (0.47)

Table 2: Estimated percentiles of survival probability for age at menopause given age at the

45-day cycle marker.

Without covariate

With Covariate
Age at menarche = 12

Age at marker | 90% 75% 50% 25% 10% [ 90% 75% 50% 25% 10%
36 479 499 52.2 54.2 555|479 499 522 541 553
39 479 499 522 54.1 553 |47.8 49.8 52.1 54.1 553
42 472 485 50.2 51.8 52.8 464 481 499 51.6 52.8
45 48.8 49.5 51.1 52.2 53.0 | 474 489 50.8 52.2 53.3
48 50.5 51.4 bH1.7 52.2 52.7|48.2 49.7 514 522 53.0
o1 93.1 53.2 539 55.2 55.5|52.8 53.8 54.7 555 56.2
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Table 3: Simulation results for the cross-ratio estimates without covariates based on 100 repli-
cations. The true values are 6 = (0.9,2.0,4.0,1.5) when ¢; is in intervals [0, 0.25), [0.25,0.5),
[0.5,0.75) and above 0.75, The sample size is 500. The labels are 0: point estimate average;
SE,,: average of the standard error estimates using Shih and Louis (1995); SE,.: average of
the bootstrap standard error estimates using 100 bootstrap samples; SE _: empirical standard
error; CP: empirical 95% coverage probability.

Oakes’s Method Sequential Method

0 § SE, SE,, SE, CP § SE,, SE, CP
0.9 092 0.12 0.12 0.12 0.93 092 0.12 0.12 0.93
2.0 2.04 0.29 0.29 0.31 0.95 2.04 029 0.31 0.93
4.0 4.09 0.70 0.73 0.66 0.97 4.09 0.71 0.65 0.96
1.5 1.51 0.25 0.25 0.25 0.93 1.51 0.25 0.25 0.94

Table 4: Simulation results base on 100 replications for the cross-ratio estimates with covari-
ates assuming the two marginal survival distributions follow the Cox model. The sample size
is 500. The true values are 6§ = (0.9,2.0,4.0,1.5) when ¢; is in intervals [0, 0.25), [0.25,0.5),
[0.5,0.75) and above 0.75, respectively. The labels are 0: average of the point estimates; SE :
empirical standard error.

Direct Method Sequential Method
0 0 SE, 0 SE,
0.9 0.89 0.08 0.89 0.08
2.0 213 0.22 2.02 0.27
4.0 235 0.33 3.98 0.68
1.5 1.52  0.31 1.51 0.30
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Figure 1: Kaplan-Meier estimators for time to menopause (solid line), time to the 45-day cycle
marker (dash line), and time to censoring (dot line).
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Figure 2: Paired box-plots of estimated survival probabilities comparing women experiencing
the 45-day cycle marker event at a given age interval and those having not experienced the
marker event by the end of the age interval.
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Figure 3: (a) Illustration of the piecewise constant cross-ratio model; (b) Illustration of the
partition of 77 with strips Ay and their left and bottom boundaries L, and Bj.
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Figure 4: Paired log(-log) survival plots for checking the assumption of piecewise constant
cross-ratios. In each plot, the solid line represents log[—log{F(t2|T; = t;)}] for data with
Ty € (t; —1,t; +1) except the first interval which is T} € (¢, —1.5,¢; +1.5); dot line represents
log[—log{ F'(to|Ty > t;)}] for data with ¥; > ¢;. From left to right and top to bottom,
t1 = 36.5,38,40,42,44,46,48, and 50.
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Figure 5: Estimated survival functions for time to menopause given age at the 45-day cycle
marker event: —— Age 36; — — — Age 39; - - - Age 42; — - — Age 45; — — Age 48; — - —
Age 51.
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