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A Bayesian Hierarchical Approach to
Multirater Correlated ROC Analysis

Tim Johnson and Valen Johnson

Abstract

In a common ROC study design, several readers are asked to rate diagnostics
of the same cases processed under different modalities. We describe a Bayesian
hierarchical model that facilitates the analysis of this study design by explicitly
modeling the three sources of variation inherent to it. In so doing, we achieve
substantial reductions in the posterior uncertainty associated with estimates of the
differences in areas under the estimated ROC curves and corresponding reductions
in the mean squared error (MSE) of these estimates. Based on simulation stud-
ies, both the widths of confidence intervals and MSE of estimates of differences
in the area under the curves appear to be reduced by a factor that often exceeds
two. Thus, our methodology has important implications for increasing the power
of analyses based on ROC data collected from an available study population.
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SUMMARY

In a common ROC study design, several readers are asked to rate diagnostics of the same cases

processed under different modalities. We describe a Bayesian hierarchical model that facilitates the

analysis of this study design by explicitly modeling the three sources of variation inherent to it. In

so doing, we achieve substantial reductions in the posterior uncertainty associated with estimates of

the differences in areas under the estimated ROC curves and corresponding reductions in the mean

squared error (MSE) of these estimates. Based on simulation studies, both the widths of confidence

intervals and MSE of estimates of differences in the area under the curves appear to be reduced by a

factor that often exceeds two. Thus, our methodology has important implications for increasing the
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2 T. D. JOHNSON & V. E. JOHNSON

power of analyses based on ROC data collected from an available study population. Copyright c©

2004 John Wiley & Sons, Ltd.

INTRODUCTION

We propose a hierarchical latent variable model for analyzing multirater correlated ordinal

receiver operating characteristics (ROC) data. Recent research in ROC methodology has

focused on the inclusion of covariate effects and the combination of independent rating

information collected from multiple raters (e.g., [1, 2, 3, 4, 5]). An important and efficient

study design that has received less attention is one in which multiple readers rate several

diagnostic tests generated from data collected on the same subject. This design is common

in radiologic studies where, for example, radiologists evaluate images collected from the same

patient using distinct image modalities (e.g., PET, CT and MRI) or different reconstruction

algorithms within the same imaging modality. Outcomes from such a study design represent

correlated ordinal data. For the analysis of data collected in designs where only one reader rates

the outcomes, both parametric [6] and non-parametric methods [7, 8, 9] have been developed.

From a classical perspective, it is difficult to combine ROC data collected from several raters.

This difficulty is caused by the absence of a model component for rater variability, although

several methods have now been proposed to account for this source of variability (see, for

example [10, 11, 12]). Each of these methods require two stages of modeling. In the first

stage, estimates of the area under the ROC curve, commonly referred to as AZ , (and jackknife

pseudo-values of AZ) for each rater are obtained. In the second stage, these estimates are

used as observations in a mixed-effects analysis of variance model. Further discussion of these

approaches may be found in Zhou, Obuchowshi and McClish (ZOM) [13].

Copyright c© 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 00:1–28
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BAYESIAN ROC ANALYSIS 3

The problem of combining information across raters is more transparent from the Bayesian

perspective, and several Bayesian approaches have now also been explored. Among the earlier

efforts in this direction are those detailed in Ishwaran and Gatsonis [3] and Johnson and Albert

[14]. In this article, we describe an hierarchical latent variable model for analyzing multirater

correlated ordinal ROC data that combines modeling aspects from each of these approaches and

others currently being developed. The primary innovation of this model over more commonly

used ROC models is the manner in which it accounts for three sources of variation inherent

in this study design; namely, variation in ratings attributable to differences in patient/subject

characteristics, variation in ratings introduced by inaccuracies in the procedures used to

define the diagnostic measure (modality effects), and variation attributable to readers of the

diagnostic test. By explicitly modeling these three sources of variation, Bayesian models for

ROC analysis are able to achieve substantial increases in power for detecting modality effects,

which are the primary variables of interest in most ROC studies. This partitioning of error

variances also facilitates the study of individual reader characteristics and provides a natural

mechanism for predicting the diagnostic performance of the test when interpreted by a reader

drawn randomly from the larger population of potential readers.

This article is organized as follows. In the next section we review, arguably, the most widely

used ROC model for the analysis of mulitrater correlated data, that of Dorfman, Berbaum

and Metz [10] (henceforth referred to as DBM). In Section we present a Bayesian hierarchical

model for the analysis of multirater correlated ROC data and highlight its connection to the

standard bivariate-binormal model (e.g., [15]). We compare performance of our model with

that of DBM in Section . Finally, we illustrate our model in the analysis of a radiological data

set intended to compare lung nodule detection using film versus a 1K display in Section . We

Copyright c© 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 00:1–28
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4 T. D. JOHNSON & V. E. JOHNSON

conclude the manuscript with a short discussion.

THE JACKKNIFE METHOD OF DBM

Arguably the most widely used method to analyze mulitrater correlated ROC data is that due

to DBM [10]. In this approach, reader ratings are jackknifed [16] to obtain pseudo-values for

the AZ for each case and modality one rater at a time. The pseudo-values are assumed to

behave as independent observations, and are subsequently entered into standard ME-ANOVA

software to fit a model of the form

Âijk = µ+ αi +Bj + Ck + (αB)ik + (αC)ik + (BC)jk + (αBC)ijk + εijk . (1)

In this equation, Âijk represents the AZ pseudo-value for test or modality i, reader j and case

k. We note that when each reader rates each image under each test only once (a common

study design), the terms (αBC)ijk and εijk are inseparable. In DBM, the overall mean µ

and the test effects αi are fixed with
∑

i αi = 0. The reader effects, Bj , case effects, Ck,

interaction terms and model error are assumed to be mutually independent, mean zero normal

random deviates with variances σ2
B , σ2

C , σ2
αB , σ2

αC , σ2
BC , σ2

αBC and σ2
ε , respectively. Typically,

differences between treatment means are assessed using Satterthwaite-approximate F tests [17].

Confidence intervals for parameters of interest are constructed using an approximate Student-

t distribution, although approximate confidence intervals for treatment means may also be

derived using a reduced model defined by omitting all but the rater-by-case interaction terms.

ZOM summarize three shortcomings of this approach which we paraphrase here. First,

pseudo-values are treated as observed data. Using pseudo-values as observed data has only

limited utility, and previous attempts to extract more than variance estimates from pseudo-

Copyright c© 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 00:1–28
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BAYESIAN ROC ANALYSIS 5

values have not been successful [16]. Second, pseudo-values are, in general, correlated. This

means that the ME-ANOVA assumption of independent observations is violated. Third, this

method applies the one-sample jackknife to a two sample problem (diseased and healthy

cases). Finally, we note that the AZ is supported on the interval [0, 1], but observed pseudo-

values often take values outside this interval. In practice, then, there are important differences

between pseudo-values for AZ and independent AZ observations. Despite these theoretical

shortcomings, this method enjoys much success in the radiological sciences.

Subsequent to the work of DBM, two other maximum-likelihood-based approaches have

been developed [11, 12]. Both approaches follow along the same lines as that of DBM. At

the first stage of modeling, AZ values are computed one rater at a time. At the second stage

of modeling, the AZ values are combined across raters and modalities using a ME-ANOVA

model. Both models have been compared to the DBM model with results comparable to that

of DBM [11, 12] and so are not presently compared. A short summary and critique of each is

provided in ZOM.

A BAYESIAN HIERARCHICAL MODEL

For the remainder of the paper, we assume that a panel of readers have assessed the disease

status of a population of controls and cases to produce ordinal ratings based on two or more

diagnostic tests (modalities). In performing our analysis, we assume that we know the true

disease status of all subjects. The model proposed here is closely related to a simpler model

described in Johnson and Albert [14], and may be considered approximately as a special

case of the model proposed in Ishwaran and Gatsonsis [3]. The primary generalization of this

model over that described in Johnson and Albert is the inclusion of a more flexible class of

Copyright c© 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 00:1–28
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6 T. D. JOHNSON & V. E. JOHNSON

prior distributions on model parameters. In contrast to the model proposed in Ishwaran and

Gatsonis we do not incorporate a regression model for the underlying latent variables, nor do

we consider semi-parametric link functions to account for non-normality of the latent trait

distributions. However, as Ishwaran and Gatsonis point out, such link functions are probably

not necessary (or estimable) when ROC data are collected using a small number of categories

(the case in which we are interested). We do, however, extend the Ishwaran and Gatsonis

model by allowing for distinct rater thresholds for each rater.

Suppose then there are Nh healthy cases and Nd disease cases for total of N = Nh + Nd

subjects. Let D denote the set of subjects classified as diseased and let H denote the set

of subjects classified as being healthy. Let J > 1 denote the number of readers of each

diagnostic test and assume that each reader rates subjects who are diseased and healthy

using measurements derived from each diagnostic test. Let K > 1 denote the number of

tests or diagnostic measures available to readers for evaluating each case, and suppose, for

simplicity, that each subject is placed into one of C ordered categories by each reader under

each test. The observed rating from reader j scoring case i under test k is denoted by

Yijk . We adopt the convention that larger values of Yijk are indicative of a higher degree

of confidence that the subject is diseased. We assume the latent variable representation for

the data Y = {Yijk} detailed in Johnson and Albert. Under this representation, the ordinal

ratings of each case by each reader are hypothesized to result from the (possibly distorted)

observations of a continuous, scalar-valued random variable representing the presence of a

disease attribute. The distribution of this latent disease attribute is assumed to be drawn from

one of two distributions, one for healthy subjects and one for diseased individuals. We adopt

the binormal assumption and assume that these distributions are Gaussian. The practicality

Copyright c© 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 00:1–28
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BAYESIAN ROC ANALYSIS 7

of this assumption is discussed in Swets and Pickett [15], where an argument is presented

to suggest that even non-Gaussian continuous data can be adequately represented under this

model (when thresholds for the ordinal categories are estimated from data). The generality

of this assumption is clarified further in Pepe [18], who provides a proof that there exists

a monotone transformation of the continuous data to make the distributions of the healthy

group and that of the diseased group normal.

In the first level of our model, we assume that the latent (disease) trait for the ith subject,

denoted by Zi, follows a normal distribution. We assume that the latent value for healthy cases

is marginally distributed as a N(0, 1) random variable, while the latent value for a diseased

individual is distributed as a N(µ, ψ2) random variable. We treat the parameters µ and ψ2 as

unknown parameters and estimate them from data (see Figure 1, panel A). At the second level

of the hierarchy, we assume that a N(0, φ2
k) error is added to each latent disease trait. This

error term accounts for inaccuracies and distortions introduced by the diagnostic modality.

The parameter φ2
k denotes the variance of this error for modality k (Figure 1, panel B). The

parameter Zik denotes the value of the latent trait of case i that would be observed by an ideal

rater (a rater who scores the cases with no variability) using modality k. At the final stage of

the model hierarchy, we assume that the value of Zik is further distorted by the addition of a

N(0, θ2j ) random variable that represents error attributable to the jth reader’s observation of

Zik. The parameter θ2
j denotes the error variance particular to the jth reader. The sum of Zik

and the reader error for the jth reader is denoted by Zijk (Figure 1, panel C).

In assigning cases to categories, we assume that each reader uses a unique set of thresholds

γj having components that satisfy −∞ = γj0 < γj1 < · · · < γjC−1 < γjC = ∞. Reader

j assigns case i under modality k to category c if Zijk falls between the (j − 1)st and jth

Copyright c© 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 00:1–28
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8 T. D. JOHNSON & V. E. JOHNSON

threshold. That is, Yijk = c if and only if γjc−1 < Zijk ≤ γjc.

To summarize the hierarchical model as specified thus far, we have

Zi
iid∼ N(0, 1), ∀ i ∈ H and Zi | µ, ψ2 iid∼ N(µ, ψ2), ∀ i ∈ D Level 1 (2)

Zik | Zi, φ2
k

iid∼ N(Zi, φ
2
k), ∀ k Level 2 (3)

p(Zijk | Zik, θ2j ) = (K/θj) exp
[

−0.5(Zijk − Zik)/θj)
2
]

× Level 3 (4)

I(γjyijk−1 < Zijk ≤ γjyijk
)

The right hand side of (4) is a truncated normal density with normalizing constant K and

I(A) is the indicator function with I(A) = 1 if A is true and is equal to zero otherwise.

Heuristically, this model may be interpreted as follows. First, latent disease traits for

individuals in the population have inherent variability, and the magnitude of this variability is

different among diseased and non-diseased individuals. Without loss of generality, we assume

the variance of the latent traits among the non-diseased population is one, and among the

diseased population is ψ2. Second, measurements made by a diagnostic test or modality

introduce errors in the observation of a case’s latent disease trait. The variance of the error for

the kth diagnostic test is denoted by φ2
k . Finally, readers’ interpretations of diagnostic tests

are subject to error, and we allow for the possibility that different readers may have different

expertise. The variance of the jth reader’s error contribution is denoted by θ2
j .

To specify prior constraints on parameters appearing in (2)-(4), we adopt the following prior

factorization:




J
∏

j=1

π(γj)π(θ2j )





(

K
∏

k=1

π(φ2
k | θ21 , . . . , θ2J)

)

π(µ) π(ψ2).

For ψ2, we take an inverse gamma prior distribution with parameters 3 and 3 (i.e., IG(3, 3)).

Under the parametrization of the inverse gamma distribution adopted here, this distribution

Copyright c© 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 00:1–28
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BAYESIAN ROC ANALYSIS 9

has a mean of 1.5 and a mode of 0.75. This reflects a prior constraint that variability in the

disease population is typically larger than in the healthy population. Ninety percent of the

mass of this prior lies between 0.48 and 3.7 (equal tail areas). We place an improper uniform

prior on the disease population mean, µ.

Some care must be exercised in specifying the priors for modality and reader variances.

Because the scale of the “observed” latent variables Zijk is not well defined from the priors

specified on the distribution of the latent disease traits Zi, application of non-informative

priors on both the components of {φ2
k} and {θ2j} can result either in a rater or modality

variance collapsing to zero—resulting in a marginal posterior density that becomes highly

peaked around zero—or variances that becomes arbitrarily large as category thresholds and

all “observed” latent traits become large simultaneously.

These problems can be avoided by using uniform shrinkage priors for the modality variances.

The Uniform shrinkage prior–first proposed by Strawderman [19]–represent a relatively vague

but proper prior specification. These priors derive their name from the fact that they place a

uniform distribution on the shrinkage of a posterior mean toward a prior mean in simple linear

models. More recently, they were investigated by Daniels [20] and Natarajan and Kass [21].

Daniels showed they possess favorable frequentist properties, particularly when compared to

other commonly used non-informative priors for variance components. To define the uniform

priors specified here, let Hθ denote the harmonic mean of the θ2
j : Hθ = J/

∑J
j=1 θ

−2
j and

consider the conditional posterior expectation of Zik:

E(Zik | Zi, φ2
k, Zijk , θ

2
j , j = 1, . . . , J) =

Hθφ
2
k

Jφ2
k +Hθ

J
∑

j=1

Zijk/θ
2
j +

Hθ

Jφ2
k +Hθ

Zi.

The uniform shrinkage prior for φ2
k can be induced by placing a uniform prior on the shrinkage

Copyright c© 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 00:1–28
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10 T. D. JOHNSON & V. E. JOHNSON

parameter Hθ/(Jφ
2
k +Hθ) and applying the appropriate transformation of variables. Thus

π(φ2
k | θ21 , . . . , θ2J ) = Hθ/(Jφ

2
k +Hθ)

2, k = 1, . . . ,K. (5)

In contrast to the improper priors mentioned above, the uniform shrinkage prior puts

arbitrarily small mass in neighborhoods of zero, thus avoiding a collapse of one or more of

the marginal posterior distributions on the variance parameters to zero. In conjunction with

this uniform shrinkage prior on the components of {φ2
j}, we take improper uniform priors on

the rater variances {θ2
j }.

With this choice of priors for the reader and modality variances, propriety of the posterior

distribution depends on the choice of prior density for the reader thresholds. The prior densities

specified for the thresholds in Ishwaran and Gatsonis [3], which are uniform for the components

of γjc on a finite interval (subject to an obvious order constraint), is adequate to establish a

proper posterior. However, the posterior distribution on both the components of γ j and the

variance components φ and θ are sensitive to the length of the interval chosen. To overcome

the sensitivity in the posterior to the choice of interval length, we induce a prior density for the

category thresholds by assigning probabilities to the event that a randomly selected subject

would be categorized into category c by an ideal rater (zero variance) under an ideal modality

(zero variance). The prior density induced in this way has support over the real line. To define

the specific form of this prior, let

F (x) =
Nh
N

Φ(x; 0, 1) +
Nd
N

Φ(x; 1.07, 1.5)

where Φ(x, µ, σ2) is the cdf of a normal distribution with mean µ and variance σ2. Here, the

disease group variance has been set to its prior mean and the disease group mean has been set

to 1.07, which lead to an ideal AZ of about 0.75. This value is midway between the minimum

Copyright c© 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 00:1–28
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BAYESIAN ROC ANALYSIS 11

informative value of 0.5 and the maximum of 1.0. Define the probability that a subject is placed

in category c under this idealized rating scheme by pjc = F (γjc) − F (γjc−1), for c = 1, . . . , C.

Then our prior density for the category thresholds is obtained by placing a Dirichlet prior on

the pj = {pj1, . . . , pjC} and transforming to the γ scale to obtain

π(γj) ∝ J

C
∏

c=1

{(Nh/N) [Φ(γjc; 0, 1)− Φ(γjc−1; 0, 1)]+

(Nd/N) [Φ(γjc; 1.07, 1.5)− Φ(γjc−1; 1.07, 1.5)]}(2−1)
.

(6)

Here, J is the Jacobian of the transformation. The parameters of the Dirichlet prior effectively

place 2 observations, a priori, in each category for each reader. This prior prevents the escape

of the reader thresholds to ±∞, but imposes only weak information about the values of the

reader thresholds. This completes the specification of the model.

CONNECTION TO THE BIVARIATE-BINORMAL MODEL

We now compare the distributional assumptions implicit in our hierarchical Bayesian model for

ROC data with the assumptions implicit to the classical bivariate-binormal model. To this end,

we adopt the following simplified notation and assume that interest focuses on a comparison of

only two diagnostic tests for one particular rater. Let Aj be a two-by-two diagonal matrix with

diagonal elements (1+φ2
1+θ2j )

−1/2 and (1+φ2
2+θ2j )

−1/2. If we marginalize over {Zi} and {Zik}

in (2), (3), and (4) and apply the transformation of variables (Xij1, Xij2)
T = Aj(Zij1, Zij2)

T ,

we find that the marginal distribution for the latent traits observed under each modality for a

healthy case under our Bayesian hierarchical model can be expressed as

(Xij1, Xij2)
T ∼ Φ2((0, 0)T ,Σh), (7)

where Φ2 denotes a bivariate normal distribution. Similarly, the marginal distribution for the

latent traits observed under each modality of a diseased case under the Bayesian model can

Copyright c© 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 00:1–28
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12 T. D. JOHNSON & V. E. JOHNSON

be expressed

(Xij1, Xij2)
T ∼ Φ2((µ1, µ2)

T ,Σd). (8)

Conditionally on the observed values, yij , of Yij the latent trait distributions are truncated to

the the interval (γjyij1−1, γjyij1
]Aj × (γjyij2−1, γjyij2

]Aj , where

µ1 =
µ

√

1 + φ2
1 + θ2j

and µ2 =
µ

√

1 + φ2
2 + θ2j

,

and

Σh =









1
1+θ2j√

(1+φ2

1
+θ2

j
)(1+φ2

2
+θ2

j
)

1+θ2j√
(1+φ2

1
+θ2

j
)(1+φ2

2
+θ2

j
)

1









,

Σd =









ψ2+φ2

1
+θ2j

1+φ2

1
+θ2

j

ψ2+θ2j√
(1+φ2

1
+θ2

j
)(1+φ2

2
+θ2

j
)

ψ2+θ2j√
(1+φ2

1
+θ2

j
)(1+φ2

2
+θ2

j
)

ψ2+φ2

2
+θ2j

1+φ2

2
+θ2

j









.

Equations (7) and (8) reflect the distributional assumptions made for the latent variables in

the standard bivariate-binormal model. However, in the standard bivariate-binormal model, the

covariance matrix of the latent traits for the disease population between the two diagnostic tests

is completely arbitrary. So is the correlation between the two tests in the healthy population.

In the hierarchical Bayesian model, the equations for the marginal covariance matrices given

above imply that the correlations between traits is forced to be positive. We feel that this

is a reasonable constraint to impose on the covariance between latent traits observed for the

same subject, making this a feature rather than a drawback of the model. Furthermore, the

standard bivariate-binormal model can only be applied to data from one rater at a time,

thus the need for a second stage ME-ANOVA model in the commonly used likelihood-based

approaches previously mentioned.
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BAYESIAN ROC ANALYSIS 13

MCMC DETAILS

The complexity of the joint posterior distribution on model parameters precludes the analytical

study of posterior expectations. For that reason, we rely on Markov chain Monte Carlo

(MCMC) methodology to generate samples from the posterior distribution and base model

inferences on these sampled values.

After initializing model parameters, the particular steps in the MCMC scheme we propose

may be described as follows.

1. Sample ψ2 ∼ IG(3 + 0.5Nd, 3 + 0.5
∑

i∈D
(Zi − µ)2).

2. Sample µ ∼ N(
∑

i∈D
Zi/Nd, ψ

2/Nd).

3. For i ∈ H, sample Zi ∼ N(mh, v
2
h) where mh = v2

h

∑

k Zikφ
−2
k and v2

h = (1 +
∑

φ−2
k )−1.

4. For i ∈ D sample Zi ∼ N(md, v
2
d) where md = v2

d(µψ
−2 +

∑

k Zikφ
−2) and v2

d =

(ψ−2 +
∑

k φ
−2
k )−1.

5. For k = 1, . . . ,K draw a candidate value φ2
k∗ ∼ IG(−1 + N/2, 0.5

∑N
i=1(Zik − Zi)

2).

Accept φ2
k∗ with probability min

[

1, (Hθ + Jφ2
k)

2/(Hθ + Jφ2
k∗)

2
]

.

6. For i = 1, . . . , N and k = 1, . . . ,K, sample Zik ∼ N(mik , v
2
ik) where mik = v2

ik(Ziφ
−2
k +

∑

j Zijkθ
−2
j ) and v2

ik = (φ−2
k +

∑

j θ
−2
j )−1.

7. Draw a candidate value θ2
j∗ ∼ IG(−1 + NK/2, 0.5

∑N
i=1

∑K
k=1(Zijk − Zik)

2) for j =

1, . . . , J . Accept θ2j∗ with probability min
[

1, (Hθ + Jφ2
k)

2/(Hθ∗ + Jφ2
k)

2
]

.

8. For j = 1, . . . , J and for c = 1, . . . , C−1 draw γjc∗ from a truncated normal distribution

with mean γjc and variance V , truncated to (γjc−1∗, γjc+1) where γj0∗ ≡ −∞ and
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Prepared using simauth.cls

Hosted by The Berkeley Electronic Press



14 T. D. JOHNSON & V. E. JOHNSON

γjC∗ ≡ ∞. Let γj∗ = (γj1∗, . . . , γjC∗). Accept γj∗ as the new value of γj with probability

min

(

1,
π(γj∗ | µ, ψ2, θ2j , φ

2
1, . . . , φ

2
K)

π(γj | µ, ψ2, θ2j , φ
2
1, . . . , φ

2
K)

N
∏

i=1

K
∏

k=1

Φ(γjyijk∗;Zik, V ) − Φ(γjyijk−1∗;Zik, V )

Φ(γjyijk
;Zik, V ) − Φ(γjyijk−1;Zik, V )

×
C−1
∏

c=1

Φ(γjc+1; γjc, V ) − Φ(γjc−1∗; γjc, V )

Φ(γjc+1∗; γjc∗, V ) − Φ(γjc−1; γjc∗, V )

)

.

V was chosen so that the acceptance rate was approximately 35%. This Metropolis-

Hastings strategy for updating the category thresholds was proposed by Cowles [22].

9. For all i, j and k, draw Zijk ∼ N(Zik, θ
2
j ) truncated to the interval (γjyijk−1, γjyijk

].

Samples from the posterior distribution on the model parameters can be used to obtain

posterior samples of AZ values as follows. Let Wjk denote the latent variable of a randomly

chosen healthy individual from rater j under condition k and let Ujk denote the latent variable

of a randomly chosen diseased individual. Then, AZjk = Pr(Wjk < Ujk) yields a sample

from the posterior distribution of the AZ for rater j under condition k [7]. From the model

assumptions, it follows that AZjk = 1−Φ(0;µ, 1 + ψ2 + φ2
k + θ2j ). Similarly, we define the AZ

for an ideal rater as the AZ for a rater with zero variance. The AZ for such a rater is denoted

by AZk and is equal to 1 − Φ(0;µ, 1 + ψ2 + φ2
k).

SIMULATION STUDIES

In this section we examine the frequentist properties of our model. The particular parameters

that we examine include AZs obtained for individual modalities and differences in AZs obtained

from an ideal rater, as well as ratios of rater variances (note that absolute magnitudes of rater

variances are only defined relative to the prior densities assumed for the latent traits). We also

compare the coverage of posterior probability intervals to their nominal values, and compare

the lengths of these intervals to the lengths of the corresponding intervals generated using the
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DBM models. Finally, we examine the mean squared error (MSE) of the AZ and differences

of AZs computed from our Bayesian hierarchical model and the multirater method of DBM.

A difficulty that arose in performing this simulation study involved the selection of study

populations. Clearly, if we had chosen to simulate data according to our prior model, then

the posterior properties of parameter estimates would be optimal and little would be learned

concerning the relative performance of our model to alternative formulations. Alternatively, we

might have compared parameter estimates obtained from different models for the same data,

but this is also problematic since the baseline truth for the data is then not known. Because

of these difficulties, we decided to perform two simulation studies. In the first, we drew model

parameters from prior densities that differed markedly from the prior densities assumed in

our formulation, and then used these parameters to generate ROC data. These data were

then analyzed using our model and the model described by DBM. In the second simulation,

we identified a real ROC data set in which both models generated similar estimates of the

difference in AZ values. After adding random noise to these data, we then used a resampling

procedure to obtain smaller samples from this data set, and then compared AZ estimates

obtained under each model based on the subsampled data to the AZ estimates obtained under

that model using the full data set.

SYNTHETIC DATA

In this simulation, we repeatedly generated ROC data from a hierarchical model that had

a structure similar to our Bayesian hierarchical model, but which used different priors on

model parameters. In particular, the data generating model used values of µ drawn from a

U(0, 3) distribution (an improper prior was used in the estimation model), values of ψ2 drawn
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16 T. D. JOHNSON & V. E. JOHNSON

from a U(0.5, 3) distribution (an IG(3,3) distribution is used in the estimation model), and

modality variances φ2
k and rater variances θ2

j drawn independently from a U(0.1, 3) distribution

(uniform shrinkage and improper prior densities were assumed for φ2
k and θ2j , respectively, in

the estimation model). Figure 2 gives a visual comparison of the model priors and the priors

used to generate the synthetic data.

We simulated 1000 data sets, each with parameters drawn from the distributions just

described. Each data set consisted of 100 healthy and 100 diseased cases, each rated by four

readers based on observations generated from two diagnostic tests. A 5-point rating scale was

used. For simplicity, category thresholds were drawn from their actual prior distribution. After

generating model parameters, latent variables Zi, Zik and Zijk were generated according to

(2)-(4). Ordinal data values Yijk were then determined according to the rule Yijk = c if and

only if Zijk ∈ (γjc−1, γjc]. Posterior distributions were estimated from 150,000 iterations after

a burn-in of 100,000 iterations. One MCMC simulation took approximately 17.5 minutes on a

PowerMac G4, 1.42 GHz processor.

AZ coverage rate, interval lengths and MSE from our model and those from DBM are

presented in Table I. AZ statistics for the hierarchical Bayesian model correspond to the AZ

for an ideal rater.

For the study of a single modality, from Table I we see that the DBM model provides more

accurate coverage of AZ values than the Bayesian model. Coverage of the Bayesian model is

slightly low. When considering only a single modality, the average length of the 95% confidence

interval for the AZ and the MSE of the estimate of the AZ values were comparable for the

DBM and Bayesian models.

In most ROC studies, the parameters of primary interest are differences in AZ areas between
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modalities. For such differences, our Bayesian model provides important gains in efficiency.

For example, the average length of the confidence interval for the difference in AZ areas

between two modalities obtained from the Bayesian model is only about 1/2 as wide as the

corresponding confidence interval obtained using the DBM model. Similarly, the MSE error

for the difference in AZ values under the Bayesian model is only 1/3 as large as the MSE of the

DBM models. This gain in precision is attributable to two factors. First, biases inherent in the

Bayesian estimates of the AZ areas largely cancel when differences in areas are examined. In

this regard, it is important to note that the distribution of parameter values used to generate

the simulated data differed substantially from the prior models used for estimation. Second,

because the distribution of differences in AZ values are computed with respect to the joint

posterior distribution in the Bayesian model, the positive correlation between simulated values

of the AZ attributable to common draws of the rater variances reduces the variance of the

distribution of the difference, much as it does in a paired t-test. The classical methods cannot

exploit this covariance because it is not reflected in the marginal distribution of AZ (or AZ

pseudo-values) values used in the follow-on ME-ANOVA analyses. Finally, it is interesting to

note that the coverage rate for the difference in modality AZ values is best for the Bayesian

model.

Table I. AZ 95% Coverage Rates, interval lengths and MSE. Comparison with the DBM model.

Coverage Rates Interval lengths MSE

Modality Difference Modality Difference Modality Difference

Bayes 91.6 94.7 0.113 0.064 0.00115 0.00029

DBM 96.0 93.6 0.132 0.139 0.00097 0.00118
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18 T. D. JOHNSON & V. E. JOHNSON

Coverage rates for ratios in the values of rater variances obtained from within the Bayesian

model were close to their nominal values. The coverage of 95% posterior probability intervals

was 95.4 in repeated sampling in this simulation study.

RESAMPLING CORRUPTED ROC DATA

An unpublished ROC study was conducted in 1993 in the UCLA Department of Radiology. The

purpose of this study was to compare the diagnostic capabilities of chest film radiographs to

digitized film displayed on a 1K by 1K video display. The basis of comparison were radiologists’

abilty to detect lung nodules in the radiographs. A panel of expert radiologists determined

“truth” by consensus on 772 archived chest radiographs (59 cases with nodules and 713 disease

free cases). Each of the 772 radiographs were then digitized for video display.

Three experienced radiologists and two radiology residents read each case under both

systems (film vs. video display) and ranked the presence of nodules on a scale of 1 to 5.

Large ratings represented high confidence that nodules were present. We analyzed this data

with the Bayesian hierarchical model and the method proposed by DBM. The outcome of

interest was the difference in AZs. For the complete data set, the estimated posterior mean

difference in AZs (film - video display) under the Bayesian model was -0.0002 with a 95%

posterior probability interval (−0.003, 0.002) (equal tail areas). From this, we conclude that

the AZ values for the two methods are not substantively different.

When we attempted to apply the DBM method to these data, we experienced two numerical

problems. First, the ratings obtained from one of the radiologists was “degenerate”. That is

to say the likelihood method used to compute AZs and pseudo-values was unable to produce

AZs for that rater because of the lack of variation in his/her ratings of images. Second, while
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jackknifing several of the cases for the other radiologists, the likelihood methods failed to

converge. As a consequence, we were unable to obtain reliable estimates of AZ values for the

full data set using the DBM method.

Because of these convergence problems, the second simulation study was carried out using a

contaminated version of the data. Noise was added to the data set by randomly choosing half

the cases, and for each selected case randomly changing all radiologist’s rating of that case by

1 unit with probability .2 for ratings between 2 and 4, and with probability .1 for ratings of 1

and 5. For example, if a case’s rating by a radiologist was 2, then with probability .1 it was

changed to a 1 and with probability .1 it was changed to a 3. For the extreme ratings of 1 and

5, with probability .1 the rating was changed by 1 unit toward the center of the rating scale.

The contaminated data set was then analyzed under each model, and the point estimates so

obtained were subsequently assumed to represent the “truth” for the corresponding modality.

For the likelihood-based models, the average rater AZ for film was .717 and for the video

display .698. The difference was .019. For the Bayesian model, the ideal rater AZ for film was

.801 and for video display .807; the difference in AZ values was -0.006. The AZ differences

were not significantly different from zero under all models considered.

The contaminated data was then repeatedly resampled with replacement. In each data set

simulated in this way, 150 samples from the “healthy population” were sampled and 50 samples

from the “diseased population” were sampled. A total of 1,000 ROC data sets were obtained

in this way.

A summary of AZ coverage rates, interval lengths and MSE values obtained from these 1,000

simulated data sets appear in Table II. Qualitatively, the results in Table II are similar to those

reported in Table I. Coverage rates for individual modality AZ values are more accurate under
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20 T. D. JOHNSON & V. E. JOHNSON

the DBM model than they are under the Bayesian model. For differences in AZ values, the

DBM model provides somewhat low coverage, while coverage for the difference in AZ values is

high for the Bayesian model. Interval lengths of the individual AZ values and their difference

are shortest for the Bayesian model. Both methods have comparable MSE values for individual

modality AZ values. However, the Bayesian model provides the smallest MSE for the difference

in AZ values. The MSE is nearly 7 times smaller than that provided by the DBM model.

Table II. AZ 95% Coverage Rates, interval lengths and MSE under resampling from the contaminated

data set

Coverage Rates Interval lengths MSE

Film Video Diff. Film Video Diff. Film Video Diff.

Bayes 91.6 91.5 99.5 0.186 0.188 0.041 0.0032 0.0033 0.00050

DBM 94.8 97.7 93.6 0.267 0.326 0.217 0.0036 0.0029 0.00330

DISCUSSION

The Bayesian hierarchical model described in this article provides a new approach towards

analyzing multirater correlated ROC data. The primary advantage of this approach over

existing methods is a marked decrease in the length of confidence intervals associated with

differences in AZ values and corresponding decreases in the MSE of these differences. In our

simulation studies, confidence interval lengths were reduced by a factor of more than 2, while

MSEs were reduced by a factor greater than 3. These finding have important implications for

study design and the power of ROC analyses for detecting differences in AZs.

Aside from increases in the efficiency of the model, this framework provides reliable estimates
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of ratios of rater variances, and so has the potential for providing feedback to readers regarding

their precision in rating subjects relative to their peers. A similar potential also exists for the

model to help readers calibrate their category thresholds.

Computer programs to implement the models described in this paper are available from the

authors’ website.
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Figure 1. Graphical representation of our Bayesian hierarchical model. Panel A: The distributions of

the latent case traits. Panel B: Modality k adds noise to the latent trait Zi. Panel C: Rater j adds

more noise to the system centered at Zik. The dashed vertical lines represent hypothetical perceived

values.
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Figure 2. Graphical representation of the priors used for data generation (dashed lines) and the model

priors (solid lines). UL: Priors for µ. UR: Priors for ψ2. LL: Priors for φ2

k. The uniform shrinkage prior

assumes J = 4 and θ2

j = 1, j = 1, 2, 3, 4 [see (5)]. LR: Priors for θ2

j .
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