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Abstract

We propose a new unified framework to construct multi-server, information-theoretic Private Infor-
mation Retrieval (PIR) schemes that leverage global preprocesing to achieve sublinear computation per
query. Despite a couple earlier attempts, our understanding of PIR schemes in the global preprocess-
ing model remains limited, and so far, we only know a few sparse points in the broad design space.
Our framework not only unifies earlier results in this space, but leads to several new results. First, we
can improve the server space of the state-of-the-art scheme by a polynomial factor. Second, we can
broaden the parameter space of known results, allowing a smooth tradeoff between bandwidth and com-
putation. Third, while earlier schemes achieve better per-server bandwidth and computation as we add
more servers, the server space actually grows w.r.t. the number of servers. We offer a new scalable
family of schemes where the per-server bandwidth, computation, and space all decrease as we add more
servers. This scalable family of schemes also implies the so-called “doubly efficient” PIR scheme with
any super-constant number of servers, achieving n1+o(1) server space and preprocessing cost, and no(1)

bandwidth and computation per query.

1 Introduction

Private Information Retrieval (PIR), originally proposed by Chor et al. [CGKS95], allows a client to retrieve
an entry from a public database stored on one or more server(s), without leaking its query to any individual
server. PIR promises numerous applications such as private DNS [Fea, obl, SCV+21], privately checking
whether one’s password is in some leaked password database [hav,DRRT18], private contact discovery [sig],
private web search [HDCG+23], and so on. In classical PIR schemes [CGKS95, Cha04, GR05, CMS99,
CG97, KO97, Lip09, OS07, Gas04, BFG03, SC07, OG11, MCG+08, MG07, HHCG+23, MW22], the servers
store the original database and there is no preprocessing. Unfortunately, Beimel, Ishai, and Malkin [BIM04]
proved any classical PIR scheme (without preprocessing) suffers from a fundamental limitation, that is,
every query must incur a linear (in the database size) amount of server computation. Intuitively, if there is
some entry that the server does not look at to answer a client’s query, then the client cannot be interested in
that entry.

To scale PIR to large datasets, Beimel et al. [BIM04] introduced a new preprocessing model for PIR, and
showed that with preprocessing, we can overcome the linear server computation barrier. In the global pre-
processing model proposed by Beimel et al. [BIM04], the server computes and stores an encoded version of

*We would like to gratefully acknowledge Yuval Ishai and Henry Corrigan-Gibbs for suggesting the generic balancing technique
described in Section 4. The version described in our paper is a slight improvement of their original idea.

†Author ordering is randomized.
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the database which can be polynomial in size, and the same preprocessing is shared across all clients. Sub-
sequent works have also considered a client-specific preprocessing model [CK20, CHK22, ZLTS23, LP23,
LP22,SACM21,ZPSZ24,GZS24] where each client performs a separate preprocessing with the server (also
called the subscription phase), and at the end of the preprocessing each client stores a hint that is related to
the database. In comparison with client-specific preprocessing, the global preprocessing model enjoys some
advantages. First, the same preprocessing can be amortized to an unbounded number of clients. In other
words, the total preprocessing work and total space consumption do not depend on the number of clients.
Second, for a dynamically evolving database, PIR with global preprocessing can easily be made dynamic
using the standard hierarchical data structure by Bentley and Saxe [BS80], whereas with client-specific pre-
processing, every client would have to update its hint for each update to the database [KCG21, HPPY24],
and the costs can be significant for fast-evolving databases.

In this work, we focus on information-theoretic PIR schemes in the global preprocessing model, which
is exactly the model considered by Beimel et al. [BIM04]. We focus on the setting of two or more servers
which is necessary for achieving information-theoretic security due to well-known lower bounds [DMO00].
Since we focus on the global preprocessing model, we are particularly interested in PIR schemes that achieve
sublinear computation per query.

Status quo and open questions. Despite earlier attempts [BIM04, WY05], our existing understanding of
information-theoretic PIR in the global preprocessing model is rather limited. As we discuss below, so far,
we only know a few sparse points in the entire design space; and numerous open questions remain.

First, in the 2-server setting, Beimel et al. [BIM04] and the subsequent work of Woodruff and Yekhanin [WY05]
showed that with a polynomial amount of server space, we can get PIR schemes with O(n1/3) bandwidth
and n/poly log n computation per query, where n denotes the size of the database. The obvious disadvan-
tage is that the n/poly log n computation is only slightly sublinear, and it would be more desirable to get
schemes whose computation is significantly bounded away from linear, e.g., in the nδ regime for some con-
stant δ ∈ (0, 1). For this regime, the only known result is a scheme also proposed by Beimel et al. [BIM04],
who showed how to achieve n(1+ε)/2 cost per query both in terms of bandwidth and server computation.
Therefore, a natural question is the following:

Open question 1: Can we have a PIR scheme in the global preprocessing model with nδ server compu-
tation for some δ ∈ (0, 1), and moreover with bandwidth asymptotically smaller than n1/2?

Note that if we did not mind having linear server computation, it is known how to achieve bandwidth as
small as no(1) [DG16]. On the other hand, no scheme with less than n1/2 bandwidth is known if we require
the computation to be asymptotically less than n/poly log n.

More generally, in the S-server setting, no known scheme can achieve o(n1/S) bandwidth if we require
the per-query computation to be asymptotically less than n/poly log n. Beimel et al. [BIM04] showed
how to attain O(n(1+ε)/S) bandwidth and computation; alternatively, they showed another scheme with
O(n1/(2S−1)) bandwidth but at the price of O(n/ log2S−2 n) computation which is nearly linear.

Open question 2: Can we get an S-server information-theoretic PIR scheme with per-query bandwidth
asymptotically less than O(n1/S) and computation in the nδ regime for some constant δ ∈ (0, 1)?

So far, known results in the nδ-computation regime [BIM04] allow the server to store a poly(n)-sized
encoding of the database. Prior works suffer from a large poly which may be prohibitive for large datasets.
In fact, prior works did not even care about quantifying how large the poly is. Therefore, another natural
question is the following:
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Table 1: 2-server information-theoretic PIR. The expression marked ? assumes sufficiently large n and
sufficiently small ε.

Scheme Server Compute Bandwidth Server Space

[DG16] ≥ n no(1) 0
[BIM04] n(1+ε)/2 n(1+ε)/2 n0.368ε·2

(1+o(1))/ε
(?)

[BIM04] O(n/ log2 n) O(n1/3) O(n2)

[WY05] n/poly log n O(n1/3) poly(n)

Corollary 1.4
(∀1/3 ≤ α ≤ 1/2) n1−(1−ε)α n(1+ε)α n1−2α+0.368αε·21+(1+o(1))/ε

Table 2: S-server information-theoretic PIR. The expression marked ? and � assumes sufficiently large
n and sufficiently small ε, the expression marked � additionally assumes that S is a prime, prime power, or
sufficiently large.

Scheme Server Compute Bandwidth Server Space

[BIM04] n(1+ε)/S n(1+ε)/S n0.368(S/ logS)εS
(1+o(1))/ε

(?)
[BIM04] O(n/ log2S−2 n) O(n1/(2S−1)) poly(n) for S = O(1)

Theorem 1.1 n(1+ε)/S n(1+ε)/S n0.368εS
(1+o(1))/ε

(�)
Theorem 1.3
(∀ 1
S+1

≤ α ≤ 1
S

) n1−(S−1−ε)α n(1+ε)α n1−Sα+0.368αεS1+(1+o(1))/ε
(�)

Theorem 1.5 O(n2/(logS−1) logS) O(n2/(logS−1) logS) Õ(n1+2/(logS−1)))

Open question 3: Can we asymptotically improve the server space for S-server PIR schemes with sub-
linear computation?

Last but not the least, the earlier works of Beimel et al. [BIM04] and Woodruff and Yekhanin [WY05]
focus on optimizing the bandwidth consumption. The show that we can have a family of schemes where the
bandwidth and computation decrease w.r.t. the number of servers, unfortunately the server space increases
with more servers. In this paper, we want to have a family of schemes that are scalable w.r.t. the number of
servers, that is, we want the per-server bandwidth, computation, space and preprocessing cost to all decrease
with the addition of more servers.

Open question 4: Can we have a family of schemes that achieve scalability w.r.t. the number of servers
S?

1.1 Our Results and Contributions

In this work, we propose a new, unified framework for constructing multi-server information-theoretic PIR
in the global preprocessing model. Using this unified framework, we can unify and asymptotically improve
all prior and concurrent results on multi-server information-theoretic PIR with sublinear computation. Not
only so, we can also generalize earlier and concurrent results to broader parameter regimes. Further, we
can get a scalable family of multi-server PIR from this unified framework. Thus we provide an affirmative
answer to all of the aforementioned questions. We now summarize our results and contributions.
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Polynomial improvement in server space. First, we propose an improved framework for constructing
S-server PIR such that we can match the bandwidth and computational overhead of Beimel et al. [BIM04],
while improving their server space by a polynomial factor. Below, we first give the general version parametrized
by an intermediate parameter θ, and then we interpret the parameters and compare with Beimel et al. [BIM04].
Henceforth, let H(·) be the binary entropy function.

Theorem 1.1 (Multi-server PIR with improved server space: general form). For any ε ∈ (0, 1) and 0 < θ ≤
1/2, there exists an S-server PIR scheme which achieves n(1+o(1))·H(θ/S)/H(θ) logS per-server bandwidth,
n(1+o(1))·H(θ/S)/H(θ) logS per-server computation and n(1+o(1))·H(θ/S)/H(θ)S log2 S client computation
per query, with n(1+o(1))(log q+H(θ/S))/H(θ) preprocessing time and server storage where Fq is the minimum
field such that q ≥ S. Specifically, when S is a constant, the preprocessing time and server storage are
bounded by poly(n).

In comparison, Beimel et al. [BIM04] achieves the same bandwidth and computation overhead, but their
preprocessing cost and server space are n(1+o(1))(S−1+H(θ/S))/H(θ). Concretely, when S = 2, our scheme
chooses q = 2 which means log q = S−1. Thus, our scheme has the same cost as Beimel et al. [BIM04] for
S = 2. For any S > 2, our scheme achieves a polynomial factor saving in server space and preprocessing
cost than Beimel et al. [BIM04]. In particular, we save a factor of (S − 1)/(logS + 1) to (S − 1)/ logS in
the exponent depending on S.

For sufficiently large S, n, and sufficiently small ε, it is possible to simplify the expressions in Theo-
rem 1.1 through Taylor expansion, leading to the following corrolary:

Corollary 1.2 (Multi-server PIR with improved server space). For sufficiently large n and sufficiently small
ε > 0, there exists an S-server PIR scheme such that, which achieves O(n(1+ε)/S logS) per-server band-
width, O(n(1+ε)/S logS) per-server computation and O(n(1+ε)/SS log2 S) client computation per query,
and the preprocessing time and server space are bounded by n0.368εS

(1+o(1))/ε
if S is either a prime, a prime

power, or sufficiently large. For an arbitrary S, the server space and preprocessing time are bounded by
n0.4εS

(1+o(1))/ε
for sufficiently large n and sufficiently small ε.

In comparison, with sufficiently large S, n, and sufficiently small ε > 0, Beimel et al. [BIM04] has
n0.368(S/ logS)·ε·S

(1+o(1))/ε
server space and preprocessing cost 1, and thus we save a factor of roughly

S/ logS in the exponent.

A general balancing technique. Chor et al. [CGKS95] showed that given a PIR scheme whose upload
bandwidth is larger than the download bandwidth, we can apply a generic balancing trick to asymptotically
reduce the total bandwidth. A restated version of this balancing technique can also be found in Lemma 4.4
of Beimel et al. [BIM04]. Unfortunately, this balancing trick no longer works when the underlying PIR has
larger download bandwidth than upload bandwidth, which is often the case for PIR schemes with sublinear
computation. In particular, the way Beimel et al. [BIM04] achieves sublinear computation is to ensure that
the upload bandwidth (i.e., query message length) is O(log n). This way, each server can precompute all
answers and simply look it up during the online query.

We propose a new generic balancing technique that works for the opposite scenario, i.e., when the
underlying PIR has larger download bandwidth than upload bandwidth. Applying this new generic technique
to the scheme of Beimel et al. [BIM04] or our earlier Theorem 1.1 both of which n(1+ε)/S bandwidth and
computation, we can make the bandwidth as small as n(1+ε)/(S+1) with a slightly increased computational
overhead of n(2+ε)/(S+1). In fact, this balancing technique allows a smooth tradeoff curve between the
bandwidth and computation, as stated in the following theorem:

1For both our scheme and Beimel et al. [BIM04], the o(1) in the exponent of S((1+o(1))/ε hides o(ε) + O(log log n/ logn)
terms which makes them directly comparable. Also for this reason, we cannot absorb the S/ logS part into the o(1).
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Theorem 1.3 (Minimizing the bandwidth through a balancing technique). Suppose that the number of
servers S is a constant. For any 1/(S + 1) ≤ α ≤ 1/S and an arbitrarily small ε > 0, there exists
an information-theoretic S-server preprocessing PIR scheme with n(1+ε)α bandwidth and client computa-
tion, and n1−(S−1−ε)α server computation per query, assuming poly(n) amount of server space. Further,
for sufficiently large n and sufficiently small ε, the server space and preprocessing cost is upper bounded
by n1−Sα+0.368αεS1+(1+o(1))/ε

if S is either a prime, prime power, or sufficiently large; or bounded by
n1−Sα+α0.4εS

1+(1+o(1))/ε
for any arbitrary S.

For the special case when S = 2, the above Theorem 1.3 immediately gives rise to the following
corollary.

Corollary 1.4 (2-server special case of Theorem 1.3). For any 1/3 ≤ α ≤ 1/2, for an arbitrarily small
ε ∈ (0, 1), there exists an information-theoretic 2-server preprocessing PIR scheme with n(1+ε)α bandwidth
and client computation, and n1−(1−ε)α per-server computation, assuming n1−2α+0.368αε·21+(1+o(1))/ε

amount
of server space.

For example, by taking α = 1/3, we get a scheme with n(1+ε)/3 and n(2+ε)/3 computation per query.
Due to the lower bound of Razborov and Yakhanin [RY06], we know that the n(1+ε)/3 bandwidth is (nearly)
optimal for a natural class of bilinear and group-based 2-server PIR schemes. So far, with the exception of
Dvir and Gopi [DG16], all known 2-server PIR schemes in the classical or the global preprocessing models
adopt this natural paradigm, including our new constructions. This provides some evidence that further
improving the bandwidth would require significantly different techniques.

Achieving scalability with more servers. Just like prior work [BIM04], the schemes mentioned so far
(Theorem 1.1, Corollary 1.2, Theorem 1.3, and Corollary 1.4) focus on optimizing the bandwidth while
keeping the computation in the nδ regime and the server space and preprocessing cost in the poly(n) regime.
While their the per-server bandwidth and computation decrease with more servers, the server space and
preprocessing costs actually grow with more servers.

We say that a scheme is scalable w.r.t. the number of servers if the per-server bandwidth, computation,
space and preprocessing cost all decrease with the addition of more servers. Using the same framework we
propose but relying on a different way of parameterization, we show how to get a new family of schemes
that achieve scalability. Specifically, for any S = ω(1) number of servers, we can construct an S-server
PIR scheme with no(1) communication and computation per query, with n1+o(1) preprocessing cost and
server space — a scheme with such performance is often referred to as a “doubly efficient” PIR [CHR17,
BIPW17, LMW23]. In comparison with the concurrent work of Lazzaretti et al. [LLFP24], they require
super-logarithmically many servers in order to achieve no(1) communication and computation and n1+o(1)

server storage simultaneously, whereas our framework can achieve this with only super-constant number of
servers.

The following theorem captures our scalable family of multi-server PIR more generally:

Theorem 1.5 (Scalable family of multi-server PIR). For any S, there exists an S-server PIR scheme
which achieves O(n2/(logS−1) logS) per-server bandwidth, O(n2/(logS−1) logS) per-server computation
and O(S logS · n2/(logS−1)) client computation per query, with Õ(n1+2/(logS−1)) preprocessing time and
server storage where Õ(·) hides a poly log n multiplicative factor.

It is not hard to see that for S = 2o(logn/ log logn), the term n2/(logS−1) dominates the term logS. In
other words, as long as S is sufficiently smaller than n the per-server bandwidth and computation as well as
server space and preprocessing costs all decrease as we add more servers. Since the client needs to receive
messages from all S servers, we allow the client computation to have a factor that grows linearly with S.
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Remark 1.6 (Comparison with the concurrent work of Lazzaretti et al. [LLFP24]). An initial version of
our paper was eprinted on May 19, 2024, more than one week before Lazzaretti et al. [LLFP24]. In this
new version, we further improved the server space by using a more generic balancing trick rather than a
non-black balancing trick. We also added the scalable family of schemes using the same unified framework,
which implies Lazzaretti et al. [LLFP24]’s “doubly efficient” notion with only super-constant number of
servers, and without the use of a polynomial evaluation data structure. We sent this version of the paper
(with minor editorial differences) to Lazzaretti et al. on June 13, 2024.

Finally, as a by-product, with the same unified framework and different choice of parameters, we can
also match the scheme with polylogarithmically many servers of Beimel et al. [BIM04] (see their Theorem
4.9 and our Appendix B).

1.2 Additional Related Work

So far, we reviewed related work on information theoretic PIR in the global preprocessing model. We now
review additional related work including computationally secure schemes and PIR schemes in the client-
specific preprocessing model.

Computationally secure PIR schemes. In this paper, we focus on information-theoretic PIR. In either
the classical setting or the global preprocessing setting, to achieve information theoretic security, we need
at least two servers due to well-known lower bounds [DMO00]. It is known, however, that with suitable
computational assumptions, we can get a single-server PIR scheme with polylogarithmic bandwidth and
computation per query, assuming polynomial amount of server space [LMW23]. Further, in the classical
setting, various works showed how to construct a computationally secure single-server PIR scheme with
sublinear bandwidth [CG97, CMS99, KO97, HHCG+23, MW22]. There have also been various attempts at
implementing these schemes and making them practical [HHCG+23,MW22,ACLS18,HDCG+23,MCR21].

The client-specific preprocessing model. Although our work focuses on the global preprocessing model,
it is worth noting that a flurry of recent results have showed more efficient constructions in the client-specific
model [CK20,CHK22,ZLTS23,LP23,LP22,ZPSZ24,GZS24,KCG21,HPPY24,MIR23], including efficient
implementations [ZPSZ24, GZS24, LP23, KCG21, MIR23]. As mentioned, in comparison, the global pre-
processing model enjoys some advantages such as the ability to amortize the preprocessing overhead among
many clients, and better practicality for fast evolving databases.

2 Technical Roadmap

2.1 A Unified Framework for Constructing Multi-Server PIR

Many of the results stated earlier in Section 1.1 can be viewed as different instantiations of a new, unified
framework. Beimel et al. [BIM04] suggest that we can construct multi-server PIR with sublinear compu-
tation with the following recipe. First, construct a classical PIR scheme with O(log n) per-server upload
bandwidth (i.e., query message length). With such a scheme, each server can simply precompute and store
all answers which takes poly(n) space, and during the online query, the server simply looks up the answer.

We start with the scheme of Woodruff and Yekhanin [WY05]. Unfortunately, Woodruff and Yekhanin’s
scheme does not enjoy succinct upload bandwidth. For this reason, they resort to a more complicated tech-
nique to achieve sublinear computation, and they can only achieve slightly sublinear (i.e., n/poly log n)
computation. We devise new techniques to compress Woodruff and Yekhanin’s upload bandwidth to loga-
rithmic.
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Background: the framework of Woodruff and Yekhanin. To understand our techniques, it helps to
quickly review their scheme first, and see why they suffer from large upload bandwidth.

• Encoding the database as a polynomial. Woodruff and Yekhanin’s scheme enocodes the database as an
m-variate polynomial F (x1, . . . , xm) of individual degree 1 and total degree d, over some finite field
Fq. Each database index i ∈ {0, 1, . . . , n − 1} can be uniquely encoded as a length-m vector denoted
E(i) ∈ Fmq , and it is guaranteed that DB[i] = F (E(i)). For this encoding to work, it must be that(
m
d

)
≥ n.

• Protocol. To obtain DB[i], the client chooses a random vector ~v and sends S distinct points on the line
E(i) + λ~v to each of the S servers, by choosing λ = ω0, ω1, . . . , ωS−1 respectively where ω is the S-th
root of unity. When a server s ∈ {0, 1, . . . , S − 1} receives a vector ~zs = E(i) + ωs~v, it responds with
the polynomial F evaluated at ~zs, as well as all derivatives of F up to d/S-th order, evaluated also at ~zs.

• Reconstruction. The client then considers the polynomial F projected onto the line E(i) + λ~v, that is,
g(λ) := F (E(i) + λ~v). g(λ) is a polynomial in λ of the form g(λ) =

∑
k≤d/S ckλ

kS . In other words,
only terms of form λj where j is a power of S survive in g(λ). Using the answers from the servers and
the chain rule for derivatives, the client can compute the derivatives g(1), g′(1), g(2)(1), . . . , gbd/Sc(1).
From these derivatives, it can reconstruct g by solving a linear system. Now, the desired value DB[i] is
simply g(0).

Woodruff and Yekhanin’s scheme suffers from large upload bandwidth because they need to work with
a large field size q > d. This is needed because otherwise, the higher-order derivatives of g may vanish to
0 and thus will not be useful for the reconstruction. Due to the simultaneously requirement q > d and the
requirement

(
m
d

)
≥ n, the query message length log q ·m must be super-logarithmic.

Our main idea: use Hasse derivatives rather than normal derivatives. To compress their upload band-
width, we want to work with a small field. To achieve this, we alter their reconstruction algorithm to avoid
the issue of the higher-order derivatives of g vanishing. Our main idea is to replace normal derivatives with
the use of Hasse derivatives which do not vanish even with a small field. We show how the client can
compute the Hasse derivates of g up to order bd/Sc denoted ∂

(0)
g(1), ∂

(1)
g(1), . . . , ∂

(bd/Sc)
g(1) from the

servers’ answers using a modified version of the chain rule, and then how to reconstruct the polynomial g
from the Hasse derivatives. With this change, we now only require that the field be large enough to contain
an S-th root of unity, and q = O(S) suffices. Further, we can choose m = O(log n) and d = O(log n) such
that

(
m
d

)
≥ n. Now, if S is a constant, the query message length is O(log n).

Additional techniques. Using the Hasse derivatives alone can reduce the upload bandwidth to O(log n),
but it is not sufficient for getting the results as tight as Theorem 1.1. To obtain these results, we need to
make some further optimizations to the scheme to get rid of the requirement that the field must contain
an S-root of unity. This can reduce the upload bandwidth by a constant factor — since the server space
is exponentially large in the upload bandwidth, effectively we can further reduce the server space by a
polynomial factor. Specifically, instead of having the client send to the servers distinct points on the line
E(i) + λ~v for a random ~v ∈ Fq, we instead have the client send distinct points on the curve λE(i) + ~v,
by choosing λ = 0, 1, . . . , S − 1, respectively. In this case, the value DB[i] is equal to the coefficient of
the degree-d monomial in the polynomial g(λ) = F (λE(i) + ~v). The server still sends back the original
polynomial F as well as all derivatives up to order bd/Sc evaluated at the point it receives. The client
still computes all the Hasse derivates of g up to order bd/Sc evaluated at 1. Finally, the client reconstructs
the polynomial g using Hermite Interpolation, from which it can recover DB[i]. With this modification, it
suffices to set q ≥ S — for example, for S = 2, 3, 4, 5, we can simply set q = S.
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2.2 A New Balancing Technique

Given a (preprocessing) PIR scheme whose upload and download bandwidths are asymmetric, we want to
use a balancing trick to balance the two to minimize the bandwidth.

Naı̈ve balancing. In Lemma 4.4 of Beimel et al. [BIM04], they cite a naı̈ve balancing trick originally
proposed by Chor et al. [CGKS95]. However, this naı̈ve trick is tailored for the case when the original
PIR scheme has more upload bandwidth than download bandwidth. The idea is as follows. Suppose we
have a database of n bits. We can divide it into B := n1−µ blocks each of length nµ for some appropriate
µ ∈ (0, 1). Now, to retrieve some index i ∈ {0, 1, . . . , n− 1} of the database that lies in block r := bi/nµc,
we run a separate PIR instance to retrieve the (i mod nµ)-th bit of each block, treating each block as a
separate database of nµ size. Further, all blocks may share the same query vector; however, the server needs
to send a separate response for each block. Therefore, if the original PIR scheme has α(n) upload bandwidth
and β(n) download bandwidth for a database of size n, then the balanced scheme would have α(nµ) upload
bandwidth, and n1−µ · β(nµ) download bandwidth. This naı̈ve balancing trick works the best if the original
PIR scheme has higher upload bandwidth than download bandwidth.

Unfortunately, Beimel et al. [BIM04]’s preprocessing PIR scheme as well as our improved version in
Section 6 have the opposite behavior: the upload bandwidth is asymptotically smaller than the download
bandwidth. In this case, this naı̈ve balancing trick cannot reduce the bandwidth. Take their 2-serer scheme as
an example: recall that it achieves n(1+ε)/2 computation and bandwidth per query. Suppose we now divide
the database into B := n1/3 blocks each of size n2/3. Applying this balancing trick, the new bandwidth and
computation per query becomes n(1+ε)/3 · n1/3 = n(2+ε)/3 which is worse than before.

New balancing technique: first attempt. We propose a new balancing trick for the case when the original
PIR has higher download bandwidth than upload bandwidth. The idea is still to divide the database into
blocks. However, we now want to aggregate the answers for all blocks rather than the queries for all blocks
to save the download bandwidth. To understand our idea, it helps to first think of the following flawed
attempt. Suppose that all S servers use the same deterministic algorithm to answer queries. We will have
the client send to each server an honestly constructed query for the relevant block r that contains the desired
index, and for all non-relevant blocks, the client sends the same random query to all S servers. Each server
computes the summation mod S of the answers of all blocks. Now, for each non-relevant block, all servers
have the same answer, so they cancel out under summation mod S. Unfortunately, with this scheme, the
client could only get the summation (mod S) of all answers for the relevant block r too, and it is not clear
how the client can reconstruct the correct answer — specifically, to correctly recover the answer using the
underlying PIR scheme, the client would need to know all S answers for the relevant block r. Likely for this
exact reason, Woodruff and Yekhanin [WY05] came up with their own non-blackbox balancing trick that is
tightly coupled with their scheme. However, their particular instantiation requires a large field size and this
is one reason why they cannot achieve tighter server space and preprocessing cost.

Our idea. Unlike Woodruff and Yekhanin [WY05], we salvage the above flawed attempt and devise a
general balancing trick for any “natural” (preprocessing) PIR scheme whose upload bandwidth is smaller
than download bandwidth. Specifically, we modify the this flawed approach such that all non-relevant cancel
out while still ensuring that the client can recover all S answers for the relevant block r.

The intuition is as follows. The n-bit database is divided into B = n1−µ blocks each of size nµ for
some appropriate µ ∈ (0, 1). Suppose the desired index i lies in the r-th block. Then, the client will send
real queries denoted Qr,0, . . . , Qr,S−1 for the relevant block r to the S servers, and for every non-relevant
block j 6= r, it will send the same random query denoted Qj,0 to all S servers. Each server will compute the
answers to all blocks. For each block’s answer, the server will XOR it into one of two slots, called slot 0 and
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slot 1 respectively. The client signals to each server which slot to encode each block’s answer by sending
the server a random bit per block. Our construction guarantees the following invariants:

1. For the relevant block r, at least one server XORs the answer into slot 0, and at least one server XORs
the answer into slot 1. In our actual construction, we simply make server 0 XOR it in a random slot br,
and make all other servers XOR it in slot 1− br.

2. For each non-relevant blocks j 6= r, all servers XOR the answer of block j in the same random slot bj .

This construction allows the client to recover all S answers for the relevant block r. Specifically, let Jb
be the set of non-relevant blocks chosen for slot b ∈ {0, 1}. Suppose for some server s ∈ {0, 1, . . . , S − 1},
the relevant block r’s answer is XOR’ed into slot 0. Then, server s’s response is of this form:⊕

j∈J0

ansj

⊕ ansr,s,
⊕
j∈J1

ansj (1)

In the above, ansr,s denotes server s’s answer (of the underlying PIR scheme) for the relevant block r.
Further, for j 6= r, ansj denotes the answer for block j of the underlying PIR scheme — since all S servers
have the same answer for each non-relevant block j 6= r, we omit the server index in the notation ansj .
Now, suppose there exists another server s′ who XORs the relevant block r’s answer into slot 1, then its
response to the client is of the form

⊕
j∈J0

ansj ,

⊕
j∈J1

ansj

⊕ ansr,s′ , (2)

Clearly, we can recover both ansr,s and ansr,s′ from Equation (1) and Equation (2). Specifically, this can
be done by XORing the two servers’ answers for the each of the two slots. Generalizing this, as long as
the above two conditions are satisfied, the client can recover all S answers (of the underlying PIR) for the
r-th block, denoted {ansr,s}s∈{0,...,S−1}. It can now call the underlying PIR’s reconstruction algorithm to
reconstruct the answer for the relevant block r.

Applying the balancing trick. Suppose we start with a scheme with n(1+ε)/S bandwidth and computation
and poly(S) preprocessing cost and server space such as Beimel et al. [BIM04] or our new scheme with
improved server space. We can apply this balancing trick by choosing µ = S · α for any α ∈ [1/(S +
1), 1/S]. The resulting scheme will enjoy O(n(1+ε)α logS) per-server bandwidth, n1−(S−1−ε)α per-server
computation, and the server space and preprocessing cost are still polynomially bounded. Specifically, if
we take α = 1/(S + 1), the upload and download bandwith will be balanced (up to 1 + ε factors in
the exponent). In this case, the per-server bandwidth is minimized to n(1+ε)/(S+1), and the per-server
computation is n(2+ε)/(S+1).

2.3 Scalable Family of Schemes

To get a scalable family of schemes, we can also work with the same unified framework, and simply change
the choice of the polynomial and parameters. Specifically, instead of using a polynomial of individal degree
1 and homogeneous total degree d, we now simply require the individual degree to be bounded by d. In
other words, the total degree can be as large as m · d. To be able to encode the entire database with such a
polynomial, we need that (d + 1)m ≥ n. We will set S = d and q = S + 1 — for simplicity we assume q
is a prime or prime power for now, and we describe the more general case in Section 7. With this parameter
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choice, if we want to precompute anm-variate polynomial (or a derivative polynomial) at all possible points
in Fmq , the total number of points qm = (d+ 1)m = n is only linear in n.

The rest of the scheme follows the same framework. The client needs to reconstruct g(λ) = F (E(i) +
λ~v) which is a degree-md polynomial in λ. For the reconstruction to be possible using Hermite Inter-
polation, each server needs to send back the original polynomial as well as all derivatives of order up to
md/S = m evaluated at the query point. The number of such derivative polynomials is upper bounded by
the number of ways to choose m items from 1, . . . ,m with repetition, that is,

(
2m
m

)
= O(n2/ log q). With a

little more analysis, we get Theorem 1.5.

3 Definitions: S-Server PIR with Global Preprocessing

We give a formal definition of an S-server information-theoretic PIR with global preprocessing. We index
the servers by 0, 1, . . . , S − 1.

Definition 3.1 (S-server PIR). An S-server PIR scheme consists of the following possibly randomized
algorithms:

• D̃Bs ← Preprocs(DB): given database DB ∈ {0, 1}n, server s ∈ {0, 1, . . . , S−1} calls this algorithm
to do a one-time preprocessing and computes an encoding of the database denoted D̃Bs.

• st,Q0, . . . , QS−1 ← Query(n, i): given the database size n and a query index i ∈ {0, 1, . . . , n − 1},
the algorithm outputs some private state st as well as Q0, . . . , QS−1 representing the query messages to
be sent to each of the S servers.

• Answers(D̃Bs, Qs): given the encoded database D̃Bs and a query messageQs of server s ∈ {0, 1, . . . , S−
1}, this algorithm outputs the response message anss;

• Recons(st, ans0, . . . , ansS−1): given the private state st and the responses ans0, . . . , ansS−1 from all
the servers, this algorithm reconstructs the answer DB[i].

The scheme should satisfy the following properties:

Correctness. Correctness requires that the client should output the correct answer under an honest execu-
tion. Formally, we want that for any n, DB ∈ {0, 1}n and i ∈ {0, 1, . . . , n− 1},

Pr

 ∀s ∈ {0, . . . , S − 1} : D̃Bs ← Preprocs(DB),
st, Q0, . . . , QS−1 ← Query(n, i),

∀s ∈ {0, . . . , S − 1} : anss ← Answers(D̃Bs, Qs)

: Recons(st, ans0, . . . , ansS−1) = DB[i]

 = 1

Security. Security requires that any individual server’s view leaks nothing about the client’s desired index.
Formally, for any n, S, for any i1, i2 ∈ {0, 1, . . . , n − 1} and any s ∈ {0, . . . , S − 1}, the distributions
{Qs : (Q0, . . . , QS−1)← Query(n, i1)} and {Qs : (Q0, . . . , QS−1)← Query(n, i2)}, are identical.

4 A Generic Balancing Method

In this section, we describe our generic balancing technique. We explained the intuition in Section 2, so in
this section, we jump directly into the formal description.

We first state some natural assumptions on the underlying PIR scheme. Later in Appendix A, we show
that these natural assumptions can actually be removed, i.e., we can generalize this balancing technique for
any PIR scheme whose upload bandwidth is smaller than the download bandwidth.
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Natural assumptions on the underlying PIR scheme. We assume that for a “natural” S-server (prepro-
cessing) PIR scheme, the preprocessing algorithm and response algorithm are deterministic and identical for
all servers, and the distribution of the messages sent to all servers are identical. More formally, we assume
the following:

Assumption 4.1. 1. Each server s ∈ {0, 1, . . . , S − 1} uses same deterministic preprocessing algorithm
D̃B← Preproc(DB) and response algorithm Answer(D̃B, Qs).

2. For any s1, s2 ∈ {0, . . . , S − 1}, the distributions {Qs1 : (Q0, . . . , QS−1) ← Query(n, 0)} and
{Qs2 : (Q0, . . . , QS−1)← Query(n, 0)} are identical.

The above guarantees that if the desired index is 0, then the query message is identically distributed
for all servers. Together with the PIR’s security property, it also implies that the distribution of the query
message is identical for all servers no matter what index is queried.

Indeed, to the best of our knowledge, all known S-server PIR schemes, including the new schemes
proposed in our paper, satisfy Assumption 4.1. We also observe that these assumptions can be removed —
see Appendix A for detailed proof.

4.1 Construction

Parameters and notations. We will choose the following parameters.

• Let PIR = (PIR.Preproc,PIR.Query,PIR.Answer,PIR.Recons) be a PIR scheme with global
preprocessing that satisfies the aforementioned natural assumptions.

• Suppose that the n-bit database is partitioned into B := n1−µ blocks each with nµ bits, we use the
notation DBj to represent the j-th block of database. Without loss of generality, we assume that B :=
n1−µ is an integer.

Balancing technique. We construct a new PIR scheme that makes blackbox calls to the underlying PIR.

• Preproc: For each block j, each server performs D̃Bj ← PIR.Preproc(DBj) to obtain an encoded
database of the block and stores it.

• Query: Let i ∈ {0, 1, . . . , n− 1} be the queried index, and r = bi/nµc be the block where i resides.

For block j = r, client performs actual query algorithm of index i to obtain

stj , Qj,0, . . . , Qj,S−1 ← PIR.Query(nµ, i mod nµ)

For other blocks j 6= r, client simply performs a dummy query:

stj , Qj,0, . . . , Qj,S−1 ← PIR.Query(nµ, 0)

Then, the client randomly picks b0, b1, . . . , bB−1 ∈ {0, 1} and prepares the query messages:

For s = 0, the client sets
~mj,s = (Qj,0, bj)

And for other servers s ∈ {1, . . . , S − 1}, the client sets

~mj,s =

{
(Qj,0, bj) if j 6= r

(Qj,s, 1− bj) if j = r

The client then sends (~m0,s, . . . , ~mB−1,s) to each server s ∈ {0, . . . , S − 1} and stores private state
st = (str, br).
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• Answer: The s-th server parses the message received from the client as (Q′0,s, b
′
0,s, . . . , Q

′
B−1,s, b

′
B−1,s).

For each block j, it computes ansj,s = PIR.Answer(D̃Bj , Q
′
j,s).

Then, for every block j, depending on the control bit b′j,s, the server accumulates the response messages
for block j into one of two slots, denoted sums,0 and sums,1, respectively:

sums,0 =
B−1⊕
j=0

ansj,s(1− b′j,s)

and

sums,1 =

B−1⊕
j=0

ansj,sb
′
j,s

Finally, it sends back sums,0 and sums,1 to client.

• Recons: Parse st as (str, br). The client first extracts all S answers (of the underlying PIR) for the
relevant block r:

ansr,s =

{
sums,1−br

⊕
sum0,1−br if s 6= 0

sums,br

⊕
sum1,br if s = 0

Then, it reconstructs DB[i] by applying the reconstruction algorithm of the underlying PIR:

DB[i] = PIR.Recons(str, ansr,0, . . . , ansr,S−1)

4.2 Proof of Correctness

It suffices to show that client successfully extracts ansr,s = PIR.Answer(D̃Br, Q
′
r,s) = PIR.Answer(D̃Br, Qr,s)

for each server s ∈ {0, 1, . . . , S− 1} since rest of proof immediately follows from correctness of the under-
lying PIR. Since the S-server PIR scheme PIR is natural (Assumption 4.1) and each server receives same
query messages for all blocks j 6= r, hence they must compute same response messages ansj,· for such
blocks.

Formally, we have

sums,b′r,s = PIR.ansr,s
⊕

noiseb′r,s

sums,1−b′r,s = noise1−b′r,s

where

noiseb :=

B−1⊕
j=0,j 6=r

PIR.Answer(D̃Bj , Qj,0)1bj=b

Observe that when s 6= 0, b′r,s = 1− br and sums,br = noisebr ; when s = 0, b′r,s = br and sums,1−br =
noise1−br . Thus for s 6= 0,

ansr,s = sums,b′r,s

⊕
noiseb′r,s

= sums,1−br
⊕

noise1−br

= sums,1−br
⊕

sum0,1−br
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for s = 0,

ansr,s = sums,b′r,s

⊕
noiseb′r,s

= sums,br

⊕
noisebr

= sums,br

⊕
sum1,br

4.3 Proof of Security

Observe that bj
$←− {0, 1} is randomly generated for each block j, thus b′j,s is also randomly distributed in

{0, 1} for each server s. We claim that Q′j,s is also randomly distributed: for j 6= r we have

{Q′j,s} ≡ {Qj,0 : (Qj,0, . . . , Qj,S−1)← PIR.Query(nµ, 0)}
≡ {Qj,s : (Qj,0, . . . , Qj,S−1)← PIR.Query(nµ, 0)}

where the second equation follows from Assumption 4.1; and for j = r

{Q′j,s} ≡ {Qj,s : (Qj,0, . . . , Qj,S−1)← PIR.Query(nµ, i mod nµ)}
≡ {Qj,s : (Qj,0, . . . , Qj,S−1)← PIR.Query(nµ, 0)}

4.4 Efficiency

• Bandwidth: Assume the per-server upload and download bandwidth of PIR is bounded by Cup(n) and
Cdown(n), respectively.

For each server s, it receives a query message Q′j,s and a bit b′j,s for each block j, thus in total takes
upload bandwidth O(n1−µCup(nµ)), and it sends back two response messages which takes download
bandwidth O(Cdown(nµ)). Hence the total bandwidth is O(n1−µCup(nµ) + Cdown(nµ)).

• Server computation: Assume the per-server computation of PIR is bounded by Tanswer(n), then each
server needs to perform PIR.Answer operation for each block j and compute the XOR sum of each
response messages, in total takes server computation O(n1−µTanswer(n

µ)).

• Client computation: Assume PIR.Query operation takes time Tquery(n) and PIR.Recons operation
takes time Trecons(n). The client needs to compute PIR.Query for every blocks but only perform
PIR.Recons once, in total takes client computation O(n1−µTquery(nµ) + Trecons(n

µ)).

• Server space and preprocessing time: Assume the server space and preprocessing time of PIR is
bounded byM(n) and Tpreproc(n), then clearly the new scheme takes server spaceO(n1−µM(nµ)) and
preprocessing time O(n1−µTpreproc(n

µ)).

In conclusion, we have

Lemma 4.2. Suppose there exists an S-server PIR scheme satisfying Assumption 4.1 in which achieves
Cup(n) per-server upload bandwidth, Cdown(n) download bandwidth, Tanswer(n) per-server computation,
Tquery(n) Query operation complexity per query and Trecons(n) Recons operation complexity per query,
with M(n) server storage and Tpreproc(n) preprocessing time. Then for any 0 < µ ≤ 1, there exists
an S-server PIR scheme satisfying Assumption 4.1, it can achieve O(n1−µCup(nµ) + Cdown(nµ)) per-
server bandwidth, O(n1−µTanswer(n

µ)) per-server computation, O(n1−µTquery(nµ) + Trecons(n
µ)) client

computation per query, with O(n1−µM(nµ)) server storage and O(n1−µTpreproc(n
µ)) preprocessing time.
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5 Preliminaries on Polynomials over a Finite Field

5.1 Notations

We define Ak,d ∈ {0, 1, . . . , d}m to be the set of all vectors of length m and 1-norm exactly k:

Ak,d = {~a ∈ {0, 1, . . . , d}m : wt(~a) = k}

where wt(~a) = ~a1 + . . .+ ~am denotes the 1-norm of the vector ~a. Let A≤k,d := A0,d ∪A1,d . . . ∪Ak,d.
Given ~a := (~a1, . . . ,~am) ∈ Nm, and a polynomial F , we define the partial derivative operator ∂~a as:

∂~a ◦ F :=
∂wt(~a)F

∂X~a1
1 . . . ∂X~am

m

Henceforth, given a vector ~X := ( ~X1, . . . , ~Xm) of variables and a vector ~a := (~a1, . . . ,~am) of expo-
nents, we use the following vector exponentiation notation:

~X~a :=
m∏
k=1

~X~ak
k

Definition 5.1 (Hasse derivatives). For m-variate polynomial F ∈ F[X1, . . . , Xm] over the field F, the
Hasse derivative of f with respect to ~a = (~a1, . . . ,~am) ∈ Nm is defined as

∂
~a ◦ F =

∑
~e=(~e1,...,~em)∈Nm

m∏
i=1

(
~ai
~ei

)
· Coeff

X
~e1
1 ...X~emm

(F ) ~X~a−~e

where Coeff
X
~e1
1 ...X~emm

(F ) denotes the coefficient of X~e1
1 . . . X~em

m in F .

Specifically, for a univariate degree-d polynomial f(λ) =
∑d

k=0 ck · λk ∈ F[λ], we omit the vector

notation and denote its r-th Hasse derivative as ∂
(r)
f(λ) = ∂

~(r) ◦ f(λ) =
∑d

k=r ck ·
(
k
r

)
λk−r. If the field F

has characteristic 0, then ∂
(r)
f(λ) = 1

r!f
(r)(λ).

5.2 Chain Rule

Given a univariate polynomnial g ∈ F[λ], we use g(k) to denote the k-th derivative of g, and we use ∂
(k)
g to

denote the k-th Hasse derivative of g. We will need to use the chain rule for higher-order derivatives. We first
state the chain rule for normal derivatives which was used by Woodruff and Yekhanin’s PIR scheme [WY05],
and then state the version for Hasse derivates which is the version we will need.

Lemma 5.2 (Chain rule for normal derivatives). For m-variate polynomial f(X1, . . . , Xm) over field F,
~u,~v ∈ Fm, and let g(λ) = f(~u+ λ~v) be a univariate polynomial in λ, we have

g(k)(λ) =
∑

l1,...,lk∈[m]

∂kf

∂Xl1 . . . ∂Xlk

(~u+ λ~v)
k∏
i=1

~vli .

In the above, the same partial derivative may appear multiple times in the summation depending on the
order of the variables; however, in the chain rule for Hasse derivatives, the same partial derivative appears
only once as stated below:
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Lemma 5.3 (Chain rule for Hasse derivatives). For m-variate polynomial f(X1, . . . , Xm) with individual
degree d over field F, let g(λ) = f(~u+ λ~v) be a univariate polynomial in λ, we have

∂
(k)
g(λ) =

∑
~a=(~a1,...,~am)∈Ak,d

∂
~a ◦ f(~u+ λ~v) · ~v~a

Specifically, when f is a multilinear polynomial (a multivariate polynomial with individual degree 1 in each
variable), clearly ∂

~a ◦ f = ∂~a ◦ f for any ~a ∈ Ak,1, therefore,

∂
(k)
g(λ) =

∑
~a=(~a1,...,~am)∈Ak,1

∂~a ◦ f(~u+ λ~v) · ~v~a

5.3 Hermite Interpolation

It is well-known that for a polynomial f over field with characteristic 0, given sufficiently many evaluations
of f and higher-order (normal) derivatives of f at some points, it suffices to reconstruct f , known as Hermite
interpolation. The same holds for Hasse derivatives, the difference is that Hasse derivative version works
not only on field with characteristic 0, but also arbitrary finite fields:

Lemma 5.4 (Hermite interpolation of Hasse derivatives [Has36, BGKM22]). Let f be an univariate poly-
nomial of degree d over finite field F, and m positive integers e1, . . . , em such that e1 + · · · + em > d.
Given m distinct elements α1, . . . , αm ∈ F. For all i ∈ [m] and j ∈ [ei], let ∂

(j−1)
f(αi) = yi,j . Then, the

coefficients of f can be recovered from {(αi, j, yi,j)}i∈[m],j∈[ei] in time poly(d, log |F|).

5.4 Polynomial Interpolation and Evaluation

We use DB ∈ {0, 1}n to denote the database indexed by 0, 1, . . . , n − 1. Let d ≤ m be integers such
that

(
m
d

)
≥ n. Let E : {0, 1, . . . , n − 1} → {0, 1}m be an an injective index function which takes an

index i ∈ {0, 1, . . . , n − 1} and outputs a vector in {0, 1}m of Hamming weight exactly d. We can use the
following polynomial F ∈ Fq[X1, . . . , Xm] of homogeneous degree d to encode a database DB ∈ {0, 1}n:

F ( ~X) =
∑

i∈{0,1,...,n−1}

DB[i] · ~XE(i)

It is easy to see that F (E(i)) = DB[i] for i ∈ {0, 1, . . . , n− 1}.
The following lemma shows that there exists some choicem = O(log n) and d = θm for some constant

θ ∈ (0, 12), such that
(
m
d

)
≥ n:

Lemma 5.5. For any constant 0 < θ ≤ 1/2, if we want
(
m
θm

)
≥ n to hold, for sufficiently large n, it suffices

to set m = logn
H(θ)(1 + o(1)), where H(p) = −p log2 p− (1− p) log2(1− p) is the binary entropy function,

and o(1) hides a function that goes to 0 as n goes to infinity.

The proof of Lemma 5.5 is deferred to Appendix C.
In [KU11, Theorem 4.1], the authors state that given an m-variate polynomial F over prime field Fq,

we can simultaneously evaluate it at every points of Fmq in almost linear time:

Lemma 5.6 ( [KU11]). There is a deterministic algorithm that takes coefficients of anm-variate polynomial
F over finite field Fq (W.L.O.G. we may assume F has individual degree at most q − 1 in each variable) as
input then outputs F ( ~X) for all ~X ∈ Fmq , and runs in time O(qm ·m · poly log q).
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6 New S-Server PIR Scheme

In this section, we first propose an S-server PIR that is a strict improvement Beimel et al. [BIM04]. Specifi-
cally, while both our new scheme and Beimel et al. [BIM04] achieve n(1+ε)/S bandwidth and computation,
our scheme achieves a polynomial improvement in the server space and preprocessing cost for every S ≥ 3.
Then, in Section 6.2, we apply the generic balancing trick of Section 4 to further reduce the bandwidth to
n(1+ε)/(S+1).

6.1 Base Construction with n(1+ε)/S Bandwidth

We first describe a base S-server PIR scheme with Hasse derivative as building block achievingO(n(1+ε)/S)
bandwidth. This scheme has exactly same bandwidth and computation as [BIM04, Theorem 4.5], but the
preprocessing time and server storage have been further improved by a factor of S/ logS over the exponent.

6.1.1 Construction

Parameters and notations. We will choose the following parameters.

• Let Fq be a finite field with order q ≥ S, by Bertland’s postulate, q is bounded by 2S − 1.

• We will encode each block as an m-variate polynomial of homogeneous degree d. We will choose
m = O(log n) and d = θm for some constant 0 < θ ≤ 1/2, such that

(
m
d

)
≥ n — this is possible due

to Lemma 5.5.

• We use the following polynomial F over Fq to encode database.

F ( ~X) =
∑

i∈{0,1,...,n−1}

DB[i] · ~XE(i)

where E : {0, 1, . . . , n − 1} → {0, 1}m is an injective index function which takes an index i ∈
{0, 1, . . . , n − 1} and outputs a vector in {0, 1}m of Hamming weight exactly d. Clearly this map
E can be chosen such that E(i) can be evaluated in time poly log n.

S-Server PIR. Our S-server PIR works as follows.

• Preprocs: The same holds for each server s ∈ {0, 1, . . . , S − 1}: for each ~a ∈ A≤bd/Sc,1, each
~x ∈ Fmq , calculate ∂~a ◦ F (~x), and store all results, this step can be efficiently implemented by applying
Lemma 5.6 to polynomial ∂~a ◦ F .

• Query: Let i ∈ {0, 1, . . . , n − 1} be the queried index. Let vector ~u = E(i) ∈ Fmq . The client first
picks S distinct elements in Fq called λ0, . . . , λS−1, then randomly picks ~v ∈ Fmq .

For each server s, the client sets
~zs = ~v + λs~u

The client then sends Qs = ~zs to each server s ∈ {0, . . . , S − 1}.

• Answers: The s-th server parses the message received from the client as vector ~zs. For each ~a ∈
A≤bd/Sc,1, it sends back

anss,~a = ∂~a ◦ F (~zs)︸ ︷︷ ︸
precomputed during preproc

• Recons:
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1. Define univariate polynomial f(λ) = F (~v + λ~u), clearly ~zs = ~v + λ~u. The client computes the
Hasse derivatives ∂

(k)
f(λs) for all s ∈ {0, 1, . . . , S − 1} and 0 ≤ k ≤ bd/Sc by the chain rule

(Lemma 5.3):
∂
(k)
f(λs) =

∑
~a∈Ak,1

∂~a ◦ F (~zs) · ~u~a =
∑

~a∈Ak,1

anss,~a · ~u~a (3)

2. Reconstruct f by its Hasse derivatives. It is obvious that f has degree at most d, for each s ∈
{0, 1, . . . , S − 1}, the client has already known its k-th order Hasse derivatives at point λs for any
0 ≤ k ≤ bd/Sc. Since S(bd/Sc + 1) > d, the coefficients of f can be recovered by Hermite
interpolation (Lemma 5.4).
Finally, the client outputs the highest term of f , i.e., Coeffλd(f(λ)) as the answer.

6.1.2 Proof of Correctness

Observe that the client successfully reconstruct the polynomial f by correctness of chain rule (Lemma 5.3)
and Hermite interpolation (Lemma 5.4). It remains to show that Coeffλdf(λ) is exactly the answer DB[i].
Notice that F is a polynomial of homogeneous degree d with individual degree at most 1, say

F ( ~X) =
∑

~a∈Ad,1

Coeff ~X~a(F ( ~X)) ~X~a

For each ~a ∈ Ad,1, clearly

Coeffλd((~v + λ~u)~a)

=Coeffλwt(~a)((~v + λ~u)~a)

=~u~a

thus

Coeffλd(f(λ)) = Coeffλd(F (~u+ λ~v))

=
∑

~a∈Ad,1

Coeff ~X~a(F ( ~X)) ~X~a · Coeffλd((~v + λ~u)~a)

=
∑

~a∈Ad,1

Coeff ~X~a(F ( ~X))~u~a

= F (~u)

= DB[i]

6.1.3 Proof of Security

The privacy proof is easy to see: for each server s, since ~v $←− Fmq is randomly sampled, ~zs = ~v + λs~u
is also randomly distributed in Fmq , so the message received by s-th server doesn’t reveal any nontrivial
information.

6.1.4 Efficiency

Let Λ(m,w) :=
∑w

h=0

(
m
h

)
. We denote log the logarithmic function with base 2. For θ ∈ [0, 1], we

denote the binary entropy of θ by H(θ), where H(θ) = −θ log θ − (1 − θ) log(1 − θ) for θ ∈ (0, 1), and
H(0) = H(1) = 0.
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• Bandwidth: For each server s, the client will send a vector ~zs ∈ Fmq to the server. Recall that m =
logn
H(θ)(1+o(1)) (Lemma 5.5) and each element in Fq takesO(logS) space since q < 2S, so the per-server
upload bandwidth is

O(m logS) = no(1) logS.

For each server s and each ~a ∈ A≤bd/Sc,1, the server returns answer anss,~a ∈ Fq. By the fact that
|A≤bd/Sc,1| = Λ(m, bθm/Sc) ≤ 2H(θ/S)m for 0 < θ ≤ 1/2, the per-server download bandwidth is

O(|A≤bd/Sc,1| logS) = n((1+o(1))H(θ/S)/H(θ) logS.

• Server computation: For each server s and each ~a ∈ Abd/Sc,1, the server only needs send back one
element anss,~a and takes time O(logS), so the computation of each server is bounded by

O(|A≤bd/Sc,1| logS) = n(1+o(1))H(θ/S)/H(θ) logS.

• Client computation: First the client computation is not less than the bandwidth i.e. O(mS logS +
|A≤bd/Sc,1|S logS). Then we consider the time complexity of Recons.

Since the Hermite interpolation takes only poly(d, log q) = poly(log n, logS) time (Lemma 5.4), the
time complexity of Recons is bounded by the arithmetic operations in Fq to reconstruct the Hasse
derivatives of g (see Equation (3)).

For each server s and ~a ∈ A≤bd/Sc,1, the client should do O(m) = no(1) multiplications in Fq (where
each takes O(log2 S) time), since there are S servers, the total client computation is bounded by

O(mS logS + |A≤bd/Sc,1| · Sm log2 S)

=n(1+o(1))H(θ/S)/H(θ)S log2 S.

• Server space: Recall that we use a precompute-all approach: for each ~a ∈ A≤bd/Sc,1 and each ~x ∈ Fmq ,
each server stores an element in Fq. The server space is

O(|A≤bd/Sc,1|qm logS)

=qmn(1+o(1))H(θ/S)/H(θ) logS

=n(1+o(1))(log q+H(θ/S))/H(θ)

≤n(1+o(1))(logS+1+H(θ/S))/H(θ)

• Preprocessing time: Each element stored by each server can be computed in an amortized poly(m, log q) =
poly(log n, logS) time (Lemma 5.6), so the preprocessing time is bounded by n(1+o(1))(log q+H(θ/S))/H(θ) ≤
n(1+o(1))(logS+1+H(θ/S))/H(θ).

Theorem 6.1 (Our base scheme: general form). For any ε ∈ (0, 1) and 0 < θ ≤ 1/2, there exists an S-
server PIR scheme which achieves n(1+o(1))·H(θ/S)/H(θ) logS per-server bandwidth, n(1+o(1))·H(θ/S)/H(θ) logS
per-server computation and n(1+o(1))·H(θ/S)/H(θ)S log2 S client computation per query, with n(1+o(1))(log q+H(θ/S))/H(θ)

preprocessing time and server storage where Fq is the minimum field such that q ≥ S. Specifically, when S
is a constant, the preprocessing time and server storage are bounded by poly(n).
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Analyzing the concrete poly(n) for large S. By the fact that H(θ/S)
H(θ) → 1/S (and H(θ/S)

H(θ) > 1/S)

when θ → 0, if we choose the constant θ to be sufficiently small, we can achieve n(1+ε)/S bandwidth and
computation per query for any constant ε > 0. Further, since S and θ are both constants, the server space
and preprocessing time is bounded by some polynomial in n.

We can further characterize the server space and preprocessing cost. For sufficiently small θ,

H(θ/S)

H(θ)
− 1/S ≤ ln(S)

S(1 + ln(1θ ))
· (1 +O(θ)) (4)

If we want to achieve n(1+o(1))(1+ε)/S logS bandwidth and server computation and n(1+o(1))(1+ε)/SS log2 S
client computation, we can choose Equation (4) to be upper ε/S, i.e.,

lnS

S(1 + ln(1θ ))
· (1 +O(θ)) = ε/S

Thus it suffices to set 1 + ln(1/θ) = (1 + o1(1)) lnSε for some function o1(1) that goes to 0 as ε goes to
0. Therefore, θ = 1/ exp((1 + o1(1)) lnS/ε − 1). In this case, the server space and preprocessing cost is
upper bounded by

n(1+o(1))((logS+1)/H(θ)+(1+ε)/S)

In particular,

(logS + 1)/H(θ) ≤ ln 2(logS + 1)

θ(1 + ln 1
θ )

(1 + o2(1))

where o2(1) is a function on θ that goes to 0 as θ goes to 0. Therefore, we have

(logS + 1)/H(θ) ≤
ln 2(logS + 1) · exp

(
(1+o1(1)) lnS

ε − 1
)

(1 + o1(1)) lnSε
· (1 + o2(1))

≤ ln 2(logS + 1) · ε · S(1+o1(1))/ε

lnS · e
· (1 + o2(1))

≤ 0.3678(1 + o(1)) · εS
1+o(1)
ε

where o(1) hides terms that go to 0 as S goes to infinity or as ε goes to 0. Therefore, for sufficiently small
ε, sufficiently large S and n, the server space and preprocessing cost is upper bounded by

n0.3679εS
(1+o(1))/ε

In summary, for sufficiently small ε, sufficiently large S and n, we can achieve n(1+ε)/S logS band-
width and server computation, n(1+ε)/SS log2 S client computation, and n0.368εS

(1+o(1))/ε
server space and

preprocessing cost where the o(1) term is a function that goes to 0 as ε goes to 0, S and n go to infinity. To
get the above, observe that for sufficiently large S and n and sufficiently small ε, we can use 1 + ε to absorb
(1 + o(1))(1 + ε′) for some ε > ε′, and we can use 0.368 to absorb 0.3679 · (1 + o(1)). Further, the o(1)
term in the exponent of S(1+o(1))/ε becomes a little larger than before when we substitute the ε′ with ε. With
more careful analysis and using the proof in Appendix C, the o(1) in the exponent of S(1+o(1))/ε actually
hides o(ε) +O(log log n/ log n) terms when we use 1 + ε to absorb (1 + o(1))(1 + ε′).

Corollary 6.2 (Our base scheme: for large S). For sufficiently large S, n, and sufficiently small ε > 0,
there exists an S-server PIR scheme such that, which achieves O(n(1+ε)/S logS) per-server bandwidth,
O(n(1+ε)/S logS) per-server computation and O(n(1+ε)/SS log2 S) client computation per query, with
n0.368εS

(1+o(1))/ε
preprocessing time and server storage.
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Remark 6.3. It is not hard to see that the above Corollary 6.2 also holds any prime or prime power S, as long
as n is sufficiently large and ε is sufficiently small. This is because for a prime or prime power S, we choose
q = S, so the logS + 1 term can be replaced with logS, and we need not rely on the “sufficiently large S”
condition to absorb the +1 term into the o(1) part. In fact, the expression log(q)/ log(S) is maximized when
S = 6 and q = 7. In this case, the server space and preprocessing cost is upper bounded by n0.4εS

(1+o(1))/ε

for sufficiently large n and sufficiently small ε. Therefore, the same bound n0.4εS
(1+o(1))/ε

also holds for any
S as long as n is sufficiently large and ε is sufficiently small.

Comparison with Beimel et al. We now compare with the scheme of Beimel et al. [BIM04]. For band-
width and server computation, both schemes achieve n(1+o(1))H(θ/S)/H(θ) logS cost. The server space and
preprocessing cost of Beimel et al. [BIM04] is n(1+o(1))(S−1+H(θ/S))/H(θ), and ours is n(1+o(1))(log q+H(θ/S))/H(θ)

where Fq is the smallest filed that size is at least S (in other words, q is the minimal prime power that is
at least S). For S = 2, our scheme chooses q = 2 and log q = S − 1. Therefore, for S = 2 servers,
both schemes achieve the same server space and preprocessing cost. Our server space and preprocessing
cost starts to outperform Beimel et al. when S = 3 and larger. For S = 3, our field size q = 3, and
log q < S − 1. Specifically, for S = 3, Beimel et al.’s constant in the exponent is (3 − 1)/ log(3) ≈ 1.26
times larger than ours. For sufficiently large S, n, and sufficiently small ε, our server space and prepro-
cessing cost is n0.368εS

(1+o(1))/ε
and Beimel et al. [BIM04] has n0.368(S/ logS)·εS

(1+o(1))/ε
server space and

preprocessing cost — assuming we fix the bandwidth and computation to n(1+ε)/S . In other words, their
constant in the exponent is a factor of S/ logS larger than our scheme. Table 3 compares the exact exponents
of server storage for some concrete server numbers when ε = 0.5.

Table 3: Numerical Experiments for ε = 0.5. The last three columns represents the exponents of commu-
nication/work, server storage of our base scheme and server storage of [BIM04, Theorem 4.3], respectively
(e.g. 0.75 means n0.75+o(1)).

S q θ Comm./Work Our Storage [BIM04]’s Storage

2 2 0.4110 0.75 1.7735 1.7735
3 3 0.2259 0.5 2.5563 3.0947
4 4 0.1410 0.375 3.7832 5.4874
5 5 0.0956 0.3 5.4051 9.0947
6 7 0.0687 0.25 8.0230 14.0940
7 7 0.0516 0.2143 9.7838 20.0667
8 8 0.0402 0.1875 12.5322 28.9918
9 9 0.0321 0.1667 15.6510 39.2448

10 11 0.0262 0.15 19.9255 51.5976

6.2 Applying the Balancing Technique to Reduce Bandwidth

Combining our base S-server PIR scheme with balancing technique (Lemma 4.2), we immediately obtain
the desired result:

Corollary 6.4. For any ε ∈ (0, 1) and 0 < θ ≤ 1/2, there exists an S-server PIR scheme which achieves
(n1−µ+o(1) +nµ(H(θ/S)/H(θ)+o(1))) logS per-server bandwidth, n1−µ+µ(H(θ/S)/H(θ)+o(1)) logS per-server
computation and (n1−µ+o(1) + nµ(H(θ/S)/H(θ)+o(1)))S log2 S client computation per query, with
n1−µ+µ((log q+H(θ/S))/H(θ)+o(1)) preprocessing time and server storage where Fq is the minimum field such
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that q ≥ S. Specifically, when S is a constant, the preprocessing time and server storage are bounded by
poly(n).

For any 1/(S + 1) ≤ α ≤ 1/S, we may choose µ = S · α, by the fact that 1 − µ ≤ µ/S when
1/(S + 1) ≤ α, the scheme has

O(nSα(H(θ/S)/H(θ)+o(1)) logS)

per-server bandwidth,
O(n1−Sα+Sα(H(θ/S)/H(θ)+o(1)) logS)

per-server computation, and
O(nSα(H(θ/S)/H(θ)+o(1))S log2 S)

client computation.
Moreover, similar as the previous analysis, for sufficiently large S, n and sufficiently small ε > 0, it

suffices to choose θ = 1/ exp((1 + o(1)) lnS/ε− 1) for H(θ/S)/H(θ) < (1 + ε)/S to hold, therefore we
have the following corollary:

Corollary 6.5. For sufficiently large S, n, and sufficiently small ε > 0, for any α ∈ [1/(S + 1), 1/S],
there exists an S-server PIR scheme such that, which achieves O(nα(1+ε) logS) per-server bandwidth,
O(n1−(S−1−ε)α logS) per-server computation and O(nα(1+ε)S log2 S) client computation per query, with
n1−Sα+α0.368εS

1+(1+o(1))/ε
preprocessing time and server storage.

In above theorem, if we take constant S and parameter α = 1/(S + 1) to minimize total bandwidth, in
which the upload and download bandwidth are balanced up to some 1 + ε factor of exponents, then the PIR
scheme achieves O(n(1+ε)/(S+1) logS) per-server bandwidth, O(n(2+ε)/(S+1) logS) per-server computa-
tion and O(n(1+ε)/(S+1)S log2 S) client computation per query with poly(n) preprocessing time and server
storage.

7 Scalable Family of Schemes

In this section, we show how to use the same unified framework to get a scalable family of schemes, by
changing the choice of the polynomial and the parameters.

7.1 Additional Preliminaries: Fast Polynomial Interpolation

In Lin et al. [LMW23], authors present an interpolation algorithm [LMW23, Lemma 2.2], in order to encode
a database of at most qm elements into a m-variate polynomial F over Fq:

• Given an injective map E : {0, 1, . . . , n− 1} → Fmq , there is an interpolation algorithm that takes n ≤
qm values {yi}i∈{0,1,...,n−1}, and recovers coefficients of a polynomialF (X1, . . . , Xm) ∈ Fq[X1, . . . , Xm]
with individual degree q − 1 in each variable such that F (E(i)) = yi for all i ∈ {0, 1, . . . , n− 1}. Fur-
ther, the algorithm runs in time O(qm ·m · poly log q).

7.2 Construction

Parameters and notation. For database size n, we choose the following parameters:

• Let S(n) be number of servers, we pick S∗(n) ≤ S(n) to be the maximum integer such that S∗(n) + 1
is a prime (by Bertrand’s postulate, S∗(n) ∈ [bS(n)/2c, S(n)]), then use only S∗(n) servers, and ignore
the other servers.

• We set q = S∗(n) + 1, and will work on finite field Fq.
• Set m = dlog n/ log qe such such that qm ≥ n.
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S-server PIR. Our S-server PIR works as follows. It is analogous to scheme in Section 6.1 except that
we flip the roles of query vector ~u and randomized vector ~v so that we can minimize the degree of encoded
polynomial F .

• Preprocs: Encode database DB to m-variate polynomial F with individual degree d = q − 1. Con-
cretely, we construct E : {0, 1, . . . , n − 1} → Fmq be an injective index function, and recover F by
interpolating on the set {DB[i]}i∈{0,1,...,n−1} using the techniques described by Lin et al. [LMW23].

So for each ~a ∈ A≤m,d, we can use the preprocessing algorithm described in Lemma 5.6 to precompute

evaluation of ∂
~a ◦ F at any point x ∈ Fmq .

• Query: Given query index i, the client uniformly generates ~v ∈ Fmq , and sets ~u = E(i). Then it picks
S∗(n) distinct and nonzero elements in Fq called λ0, . . . , λS∗(n)−1.

For s ∈ {0, 1, . . . , S∗(n)− 1}, the client sets

~zs = ~u+ λs~v.

The client sends Qs = ~zs to each server s ∈ {0, . . . , S∗(n)− 1}.

• Answers: The s-th server (s ∈ {0, 1, . . . , S∗(n)}) parses the message received from the client as a
vector ~zs. For each ~a ∈ A≤m,d, it sends

anss,~a = ∂
~a ◦ F (~zs)︸ ︷︷ ︸

precomputed during preproc

back to the client.

• Recons:

1. Define univariate polynomial f(λ) = F (~u+ λ~v), clearly ~zs = ~u+ λs~v. Given the responses of all
servers, the client computes ∂

(k)
f(λs) for all s ∈ {0, 1, . . . , S − 1} and 0 ≤ k ≤ m by:

∂
(k)
f(λs) =

∑
~a∈Ak,d

∂
~a ◦ F (~zs) · ~v~a

=
∑

~a∈Ak,d

anss,~a · ~v~a

2. Reconstruct f by its Hasse derivatives. Since F has individual degree d = q − 1, f has degree
≤ m · (q − 1). For each s ∈ {0, 1, . . . , S − 1}, the client has already known its k-th order Hasse
derivatives at point λs for any 0 ≤ k ≤ m, thus in total it has (m + 1)S∗(n) = (m + 1)(q − 1) >
deg(f) information about f . So the client can use Hermite interpolation (Lemma 5.4) to reconstruct
the coefficients, and output f(0) = F (~u) = DB[i] as the answer.

7.3 Proof of Correctness

The correctness of PIR scheme immediately follows from the correctness of chain rule (Lemma 5.3) and
Hermite interpolation (Lemma 5.4).

7.4 Proof of Security

Each server s ∈ {0, 1, . . . , S∗(n) − 1} receives ~zs = ~u + λs~v, the privacy follows the fact ~zs is randomly
distributed in Fmq when λs 6= 0 and ~v is randomly sampled.
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7.5 Efficiency

We now analyze the efficiency of our construction.

• Bandwidth: The bandwidth will be dominated by the download bandwidth. Each server should return
|A≤m,d| elements in Fq, and we have

|A≤m,d| ≤
(

2m

m

)
≤ 22m = 4m = O(n2/ log q),

Thus the total per-server bandwidth is bounded by |A≤m,d| log q = O(n2/ log q log q).

• Server computation: Each server simply sends back |A≤m,d| = O(n2/ log q) stored values, so the total
computation is same as bandwidth, that is, O(n2/ log q log q).

• Client computation: The client computation is bounded by the total bandwidth, i.e. O(S∗(n)·|A≤m,d| log q).
Recall that S∗(n) ≤ S(n) and |A≤m,d| = O(n2/ log q), so client computation is O(n2/ log q ·S(n) log q).

• Server space: Each server should do the preprocessing algorithm in Lemma 5.6 to |A≤m,d| = O(n2/ log q)
polynomials. For each polynomial, it needs to store qm elements in Fq, thus in total it takes space

|A≤m,d| ·O(qm log q)

=O(n2/ log q) ·O(n log2 q)

=O(n1+2/ log q log2 q).

where the first equation is due to the fact qm ≤ nq.

• Preprocessing time: Each server should preprocess |A≤m,d| = O(n2/ log q) polynomials. It follows
from Lemma 5.6, that this takes preprocessing time

|A≤m,d| ·O(qm ·m · poly log q)

=O(n2/ log q) ·O(n · poly(m, log q))

=n1+2/ log q · poly log n.

Notice that our parameterization guarantees q > S(n)/2 and 2/ log q ≤ 2/(logS(n)− 1), therefore we
have:

Theorem 7.1. For any S, there exists an S-server PIR scheme which achieves O(n2/(logS−1) logS) per-
server bandwidth, O(n2/(logS−1) logS) per-server computation and O(n2/(logS−1)S logS) client compu-
tation per query, with n1+2/(logS−1) · poly log n preprocessing time and server storage.

For constant number servers setting, our construction shows nontrivial results about tradeoff between
preprocessing time and bandwidth. In comparison to Corollary 6.2, here we significantly save preprocessing
time and server storage while require larger bandwidth and computation per query.

Moreover, if we choose S(n) = ω(1) to be any super-constant function (e.g. S(n) = log∗(n)), then we
have 2/ log q = 2/ log Ω(S(n)) = o(1), thus |A≤m,d| is bounded by no(1). Moreover, the polylogarithm
factor can be absorbed by no(1). In conclusion, we have:

Corollary 7.2. For any S(n) = ω(1), there exists an S(n)-server PIR scheme such that, it can achieve no(1)

per-server communication, S(n) ·no(1) per-server computation and no(1) client computation per query, with
n1+o(1) preprocessing time and server storage. Specifically, when S(n) = no(1), the client computation is
also bounded by no(1).
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A Removing the Natural Assumptions for Our Balancing Technique

The generic balancing technique earlier requires some natural assumptions on the underlying PIR scheme.
In this section, we show that these natural assumptions can be removed. First, in Appendix A.1, we show
how to transform any PIR scheme to one that satisfies the natural assumptions with an S factor blowup.
Next, in Appendix A.2, we show that we can save the S-factor blowup by not going through the “arbitrary
to natural” transformation of Appendix A.1. In fact, we can improve our balancing technique of Section 4
to directly work on top of an arbitrary PIR scheme.

Throughout the section, we assume that the underlying PIR scheme has a deterministic server-side algo-
rithm. This assumption is for free as long as the PIR scheme is perfectly correct, since the server can always
just fix the random coins.

A.1 Compiling Any PIR to a Natural One with S Factor Blowup

Here we present a construction in which given any S-server PIR scheme (where the server-side algorithm is
deterministic), we can transform it into one that additionally satisfies Assumption 4.1, with S factor blowup.

A.1.1 Construction

Parameters and notations. For server number S, We will choose the following parameters.

• Let PIR = (PIR.Preprocs,PIR.Query,PIR.Answers,PIR.Recons) be a S-server PIR scheme
with global preprocessing.

Compiler. We will use a simple circular parallel repetition strategy, that is, let each server simulates the
behaviors of all servers in PIR with different queries for each.

• Preproc: The same holds for each server s ∈ {0, 1, . . . , S − 1}: for each s′ ∈ {0, 1, . . . , S − 1},
invoke D̃Bs′ = PIR.Preprocs′(DB) and stores the preproccesing result {D̃Bs′}s′∈{0,1,...,S−1}.

• Query: Given query index i, the client independently generates S queries Que0,Que1, . . . ,QueS−1about
i. The j-th query Quej is of the form

stj , Qj,0, . . . , Qj,S−1 ← PIR.Query(n, i)

The client then sends (Q(s′−s) mod S,s′)s′∈{0,1,...,S−1} to server s and stores private state st0,
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• Answer: The s-th server parses the message received from the client as (Q′0,s, . . . , Q
′
S−1,s). The for

each s′ ∈ {0, 1, . . . , S − 1}, it simulates the behavior of s′-th server of the underlying PIR scheme PIR
taking message Q′s′,s as input.

Formally, for all s′ ∈ {0, 1, . . . , S − 1} it computes and sends back

anss′,s = PIR.Answers′(D̃Bs′ , Q
′
s′,s)

• Recons: The client retrieves all servers’ responses, then it only uses a diagonal part to reconstruct
DB[i]:

DB[i] = PIR.Recons(st0, ans0,0, ans1,1, . . . , ansS−1,S−1)

A.1.2 Proof of Correctness

Notice that Q′s,s = Q0,s and indeed anss,s = PIR.Answers(D̃Bs, Q0,s), therefore the correctness simply
follows from correctness of underlying PIR scheme PIR.

A.1.3 Proof of Security

We first prove the sematical security of our PIR scheme: each server s ∈ {0, 1, . . . , S − 1} receives a series
of messages Q′0,s, . . . , Q

′
S−1,s, and we claim these messages don’t reveal nontrivial information of query

index i:

{Q′0,s, . . . , Q′S−1,s}
≡{Qu,s : stu, Qu,0, . . . , Qu,S−1 ← PIR.Query(n, i)}s′∈{0,1,...,S−1},u=(s′−s) mod S

≡{Qs′ : st,Q0, . . . , QS−1 ← PIR.Query(n, i)}s′∈{0,1,...,S−1}
≡{Qs′ : st,Q0, . . . , QS−1 ← PIR.Query(n, 0)}s′∈{0,1,...,S−1}

where the last equation is due to the security of underlying PIR scheme PIR.
Observe that above argument also shows that the query message distributions of any two servers are

identical, moreover clearly each pair of servers share same preprocessing and response algorithms, so the
new scheme satisfies Assumption 4.1.

A.1.4 Efficiency

The new scheme can be viewed as parallel runs S independent instances of PIR, hence we have:

Lemma A.1. Suppose there exists an S-server PIR scheme (with deterministic server-side algorithm), then
there also exists an S-server PIR scheme satisfying Assumption 4.1 with S factor blowup of bandwidth,
efficiency and server storage.

Combining it with Lemma 4.2, we obtain:

Corollary A.2. Suppose there exists an S-server PIR scheme with deterministic server-side algorithm
in which achieves Cup(n) per-server upload bandwidth, Cdown(n) download bandwidth, Tanswer(n) per-
server computation, Tquery(n) Query operation complexity per query and Trecons(n) Recons operation
complexity per query, with M(n) server storage and Tpreproc(n) preprocessing time. Then for any 0 <
µ ≤ 1, there exists an S-server PIR scheme satisfying Assumption 4.1, it can achieve O((n1−µCup(nµ) +
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Cdown(nµ))S) per-server bandwidth,O(n1−µTanswer(n
µ)S) per-server computation,O((n1−µTquery(nµ)+

Trecons(n
µ))S) client computation per query, withO(n1−µM(nµ)S) server storage andO(n1−µTpreproc(n

µ)S)
preprocessing time.

A.2 Balancing Technique for an Arbitrary PIR Scheme

In last section, we describe a method that transforms arbitrary PIR scheme to a “natural” version with S
factor blowup, in the sense of making only blackbox calls it is optimal. However, we may find there still has
some asymmetry in the construction: client only uses a diagonal part of response messages to reconstruct
DB[i], since the choice of client is public and deterministic, it means that bulk of the responses are wasted.

Recall our goal is to apply balancing technique from arbitrary PIR scheme (with deterministic server-
side algorithm), we may expect a careful construction will give better asymptotic complexity. In this section,
we will describe a construction achieving constant overhead (that is, asymptotically best):

A.2.1 Construction

Parameters and notations. We will choose the following parameters.

• Let PIR = (PIR.Preprocs,PIR.Query,PIR.Answer,PIR.Recons) be a PIR scheme with deter-
ministic server-side algorithm.

• Suppose that the n-bit database is partitioned into B := n1−µ blocks each with nµ bits, we use the
notation DBj to represent the j-th block of database. Without loss of generality, we assume that B :=
n1−µ is an integer.

• We partition the S servers into bS/2c groups consisting of consecutive servers: all groups contains 2
consecutive servers except that the last group is constituted by the last 2 or 3 servers depending on parity
of S.

Balancing technique. We construct a new PIR scheme that makes blackbox calls to the underlying PIR.
Intuitively, this new scheme unifies ideas from Section 4 and Appendix A.1: for each small group with 2 or
3 members, client generates parallel repetition messages for each server inside this group, then it suffices to
reconstruct the desired messages (on diagonal) by applying balancing techniques to this group. Since each
group has only constant number of servers, the parallel repetition strategy will only incur a constant blowup.

• Preprocs: For each server s, it itemize each block j and each server s′ where s′ shares same group
with it, and performs D̃Bj,s′ ← PIR.Preprocs′(DBj) to obtain an encoded database of the block j and
stores it.

• Query: Let i ∈ {0, 1, . . . , n− 1} be the queried index, and r = bi/nµc be the block where i resides.

For block j = r, client indepently generates 3 queries of actual query index i. Formally, for each
k ∈ {0, 1, 2}, client generates

stkj , Q
k
j,0, Q

k
j,1, . . . , Q

k
j,S−1 ← PIR.Query(nµ, i mod nµ)

For other blocks j 6= r and each k ∈ {0, 1, 2}, client generates a dummy query of index 0:

stkj , Q
k
j,0, Q

k
j,1, . . . , Q

k
j,S−1 ← PIR.Query(nµ, 0)

Then, the client randomly picks b0, b1, . . . , bB−1 ∈ {0, 1} and prepares the query messages:
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For each server s resides in some group {2k, 2k + 1}, if s = 2k the client sets

~mj,s = (Q0
j,2k, Q

1
j,2k+1, bj)

And for the other server s = 2k + 1, the client sets

~mj,s =

{
(Q0

j,2k, Q
1
j,2k+1, bj) if j 6= r

(Q1
j,2k, Q

0
j,2k+1, 1− bj) if j = r

Suppose the last group contains 3 members {n − 3, n − 2, n − 1}, the client will slightly change the
query messages: for server s = n− 3, it sets

~mj,s = (Q0
j,n−3, Q

1
j,n−2, Qj,n−1, bj)

And for server s = n− 2 (the case of server n− 1 is symmetric, we omit it), client will set

~mj,s =

{
(Q0

j,n−3, Q
1
j,n−2, Q

2
j,n−1, bj) if j 6= r

(Q2
j,n−3, Q

0
j,n−2, Q

1
j,n−1, 1− bj) if j = r

The client then sends (~m0,s, . . . , ~mB−1,s) to each server s ∈ {0, . . . , S − 1} and stores private state
st = (st0r , br).

• Answers: For simplicity, we only discuss the case s belongs to some group {2k, 2k+1} of size 2. The
s-th server parses the message received from the client as

(Q′0,2k,s, Q
′
0,2k+1,s, b

′
0,s, . . . , Q

′
B−1,2k,s, Q

′
B−1,2k+1,s, b

′
B−1,s)

For each block j, it computes

ansj,s = (PIR.Answer2k(D̃Bj,2k, Q
′
j,2k,s),PIR.Answer2k+1(D̃Bj,2k+1, Q

′
j,2k+1,s))

Then, for every block j, depending on the control bit b′j,s, the server accumulates the response messages
for block j into one of two slots, denoted sums,0 and sums,1, respectively:

sums,0 =
B−1⊕
j=0

ansj,s(1− b′j,s)

and

sums,1 =

B−1⊕
j=0

ansj,sb
′
j,s

Finally, it sends back sums,0 and sums,1 to client.

• Recons: Parse st as (st0r , br). The client first extracts all S answers (of the underlying PIR) of query
Que0r similar to Section 4:

For group {2k, 2k + 1} of size 2, the client retrieves

ans′r,2k = (sum2k,br

⊕
sum2k+1,br)0

ans′r,2k+1 = (sum2k+1,1−br
⊕

sum2k,1−br)1

30



Assuming the last group has size 3, the client retrieves

ans′r,n−3 = (sumn−3,br
⊕

sumn−2,br)0

ans′r,n−2 = (sumn−2,1−br
⊕

sumn−3,1−br)1

ans′r,n−1 = (sumn−1,1−br
⊕

sumn−3,1−br)1

Then, it reconstructs DB[i] by applying the reconstruction algorithm of the underlying PIR:

DB[i] = PIR.Recons(st0r , ans′r,0, . . . , ans′r,S−1)

A.2.2 Proof of Correctness

The correctness proof is essentially same as Section 4.2, we omit here.

A.2.3 Proof of Security

Clearly b′j,s are always randomly distributed in {0, 1} for any choice of block r and server s. Notice that
the query messages of each block j are independently generated, and for any block j each server s never
receives query messages of same query twice, so the privacy of Q′ can be deduced from analogous analysis
as Section 4.3.

A.2.4 Efficiency

Comparing to scheme in Section 4, now each server needs to simulate all members of its group. Fortunately,
each group has only constant size, thus the total blowup is also constant.

In conclusion, we have:

Lemma A.3. Suppose there exists an S-server PIR scheme with deterministic server-side algorithm, in
which achieves Cup(n) per-server upload bandwidth, Cdown(n) download bandwidth, Tanswer(n) per-
server computation, Tquery(n) Query operation complexity per query and Trecons(n) Recons opera-
tion complexity per query, with M(n) server storage and Tpreproc(n) preprocessing time. Then for any
0 < µ ≤ 1, there exists an S-server PIR scheme achievingO(n1−µCup(nµ)+Cdown(nµ)) per-server band-
width, O(n1−µTanswer(n

µ)) per-server computation, O(n1−µTquery(nµ) + Trecons(n
µ)) client computation

per query, with O(n1−µM(nµ)) server storage and O(n1−µTpreproc(n
µ)) preprocessing time.

This lemma slightly improves Corollary A.2 by an S factor in complexity. Also remind that assuming the
determinacy of server-side algorithm is withou loss of generality, therefore we fully remove Assumption 4.1
from Lemma 4.2 while remains the asymptotic result.

B The Case of Polylogarithmically Many Servers

For the special case of polylogarimically many servers, we can use our unified framework to match the result
of Beimel et al. [BIM04]’s Theorem 4.9 through a different way of parametrization.
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B.1 Construction

Parameters and notation. For database size n, we choose the following parameters:

• Let ε > 0 be a constant, set m = dlog n/(ε log log n)e, d = dn1/me ≤ dlogε ne such that dm ≥ n.

• Let number of servers S = S(n) be md+ 1 = O(log1+ε n/ log log n).

• We set q to be the smallest prime such that q > S, and will work on finite field Fq. By Bertland’s
postulate, q ≤ 2S.

S-server PIR. Our S-server PIR works as follows. Different from all previous schemes, this scheme
doesn’t use derivatives, it can also be viewed as a special case of our generic scheme with zero-th order
derivative.

• Preprocs: Encode database DB to m-variate polynomial F with individual degree d = q − 1. Con-
cretely, we construct E : {0, 1, . . . , n − 1} → Fmq be an injective index function, and recover F by in-
terpolating on the set {DB[i]}i∈{0,1,...,n−1} using the techniques described by Lin et al. [LMW23]. Then
each server s precomputes and stores F (~x) for all ~x ∈ Fmq with algorithm described in Lemma 5.6.

Moreover, each server s should individually picks a unique and nonzero element in Fq called λs and
publishes it (λ1, . . . , λS−1 are public for all servers and client), and computes ws = ls(0), where

ls(λ) =

S−1∏
j=0,j 6=s

λ− λs
λj − λs

is the s-th Lagrange basis polynomial.

• Query: Given query index i, the client uniformly generates ~v ∈ Fmq , and sets ~u = E(i).

For s ∈ {0, 1, . . . , S − 1}, the client sets

~zs = ~u+ λs~v.

The client sends Qs = ~zs to each server s ∈ {0, . . . , S − 1}.

• Answers: The s-th server parses the message received from the client as a vector ~zs. It then sends back

anss = F (~zs)︸ ︷︷ ︸
precomputed during preproc

·ws

to the client.

• Recons: Define univariate polynomial f(λ) = F (~u+ λ~v), clearly ~zs = ~u+ λs~v and f(0) = F (~u) =
DB[i]. Given the responses of all servers, the client computes:

f(0) =

S−1∑
s=0

f(λs)ls(0)

=

S−1∑
s=0

F (~zs)ws

=
S−1∑
s=0

anss
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B.2 Proof of Correctness

The correctness of PIR scheme just follows from a standard Lagrange interpolation.

B.3 Proof of Security

The security proof is same as Section 7.4.

B.4 Efficiency

We now analyze the efficiency of our construction.

• Bandwidth: Each server receives a vector ~zs ∈ Fmq and sends back anss ∈ Fq, thus the total bandwidth
is O(m log q) = O(log n/ε).

• Server computation: Since both F (~zs) and ws are precomputed, the server computation is bounded by
total bandwidth, that is, O(log n/ε).

• Client computation: Bandwidth is part of computation, which is O(Sm log q), and client needs to add
up S elements in Fq (each takes timeO(log q)). Therefore, the total client computation isO(Sm log q+
S log q) = O(log2+ε n/(ε2 log log n)).

• Server space: Each server should store F (~x) for all ~x ∈ Fmq . There are qm elements in Fq, thus in total
it takes space

O(qm log q)

=O(dm)m · log q

=dm ·O(m)m · log q

=n1+1/ε+O(1/(ε log logn))

where the first equation follows from the fact q ≤ 2S = O(md).

• Preprocessing time: Since computing lagrange polynomial only takes timeO(poly(S, log q)) = O(poly log n),
the bottleneck is precomputing F (~x) for all ~x ∈ Fmq . By Lemma 5.6, it takes time

O(qm ·m · poly log q)

=O(dm)m · poly log n

=dm ·O(m)m · poly log n

=n1+1/ε+O(1/(ε log logn))

Since 1/(ε log logn) goes to 0 as n goes to infinity, we have

Theorem B.1. For any ε > 0, there exists an O(log1+ε n/(ε log log n))-server PIR scheme such that, it can
achieveO(log n/ε) per-server communication,O(log n/ε) per-server computation andO(log2+ε n/(ε2 log logn))
client computation per query, with n1+1/ε+o(1) preprocessing time and server storage.
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C Proof of Lemma 5.5

We now prove Lemma 5.5. By Stirling’s approximation, we have(
m

θm

)
≥ 2H(θ)m√

2πmθ(1− θ)
(1− o(1)) ≥ 2H(θ)m−0.5 log(mθ(1−θ))−O(1)(1− o(1))

Since H(θ) ≥ θ(1 − θ) for θ ∈ [0, 1], the above is lower bounded by 2H(θ)m−0.5 log(H(θm))−O(1) ≥
2H(θ)m(1−o(1)). To satisfy

(
m
θm

)
> 0, it suffices to setm = logn

H(θ)(1+o(1)) where o(1) hidesO(log log n/ log n)
terms.
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