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Detecting Pulsatile Hormone Secretion
Events: A Bayesian Approach

Tim Johnson

Abstract

Many challenges arise in the analysis of pulsatile, or episodic, hormone concen-
tration time series data. Among these challenges is the determination of the num-
ber and location of pulsatile events and the discrimination of events from noise.
Analyses of these data are typically performed in two stages. In the first stage,
the number and approximate location of the pulses are determined. In the second
stage, a model (typically a deconvolution model) is fit to the data conditional on
the number of pulses. Any error made in the first stage is carried over to the sec-
ond stage. Furthermore, current methods, except two, assume that the underlying
basal concentration is constant. We present a fully Bayesian deconvolution model
that simultaneously estimates the number of secretion episodes, as well as their
locations, and a non-constant basal concentration. This model obviates the need
to determine the number of events a priori. Furthermore, we estimate probabilities
for all “candidate” event locations. We demonstrate our method on a real data set.
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1 Introduction

Hormones are the main vehicle used in distant cell-to-cell communication throughout the

human body. For example, gonadotropic hormones, produced and secreted into the circu-

latory system by the pituitary gland, signal distant target cells in the gonads. These, in

turn, produce sex hormones that are responsible for the changes seen during puberty and

for the monthly menstrual cycles in healthy, young, mature women. The timing and amount

of hormone secreted into the circulatory system is thus vital to normal functioning of many

physiological processes and many diseases are associated with a disruption of the normal

patterns of hormone release.

For example, 26 clinically depressed women and 26 matched controls were enrolled in a

study at the University of Michigan. Women were admitted to the General Clinical Research

Center for a twenty-four hour period of observation, commencing at nine in the morning,

during which time blood was drawn at ten minute intervals. The serum was subsequently

assayed for cortisol, a stress related hormone. One question of interest was whether the

secretion pattern was disrupted in depressed women (Young, Carlson, and Brown, 2001).

The secretion of hormones into the circulatory system can be broadly classified into two

categories: oscillatory and pulsatile. An example of oscillatory hormone secretion is the

diurnal pattern of Dopamine. Other hormones, including cortisol, a stress related hormone

produced by the adrenal glands, are released in a pulsatile fashion (Berne and Levy, 1993), as

can be seen from the concentration profile in the upper left panel of Figure 1. Furthermore,

there is evidence that cortisol has an underlying oscillatory component, on top of which, the

pulsatile release of hormone is superimposed (Veldhuis et al., 1989).

Many methods for pulse identification have been proposed and subsequently classified into

criterion-based and model-based methods (Mauger and Brown, 1995). Criterion-based mod-

els (see, e.g., Veldhuis and Johnson, 1986; Merriam and Wachter, 1982; Oerter, Guardabasso,

and Rodbard, 1986; Van Cauter et al., 1981) are typically used to determine the location

of pulses. Model-based methods assume some model for the data (see, e.g., O’Sullivan and
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O’Sullivan, 1988; Diggle and Zeger, 1989; Kushler and Brown, 1991; Veldhuis and Johnson,

1992; Komaki, 1993; Guo, Wang, and Brown, 1999; Johnson, 2003; Yang, Liu, and Wang,

In Press). In an extensive simulation study Mauger and Brown (1995) showed that model-

based methods are preferred over criterion-based methods on the grounds of false positive

and false negative error rates.

Many model-based methods use criterion-based methods to identify initial pulses or to

select several competing models (three exceptions are Diggle and Zeger (1989) Guo, Wang,

and Brown (1999) and Johnson (2003)). Thus, an error in the initial identification of a

pulse is carried over to the model-based methods that rely on them. Further, only two

previous methods have incorporated a changing basal concentration along with pulse iden-

tification/parameter estimation (Guo, Wang, and Brown, 1999; Yang, Liu, and Wang, In

Press). All other methods assume a zero basal concentration or, at most, a constant basal

concentration. Thus, if information such as the amount of hormone secreted per pulse is of

interest, then not accounting for the changing basal secretion will tend to over estimate this

quantity. Lastly, a recent study (Keenan and Veldhuis, 2003) suggests that pulse size and

shape vary throughout the day. Only two models have allowed for this biologic variation in

pulse shape and size (Johnson, 2003; Yang, Liu, and Wang, In Press).

To date, no model has been proposed that 1) does not rely on the initial identification of

pulses; 2) accounts for both pulsatile and oscillatory components of hormone release; and 3)

models variation in pulse shape and size. In this paper, we present a fully Bayesian approach

that addresses these three issues. Our method extends earlier work by Johnson (2003) and

O’Sullivan and O’Sullivan (1988).

We present our model in the Section 2. Then we briefly discuss some issues related

to posterior simulation in Section 3. We analyze an example cortisol data set from the

aforementioned study in Section 4. In Section 5, we discuss posterior estimation of event

probabilities and compare results from our model with the nonlinear mixed effects partial

spline model (NMPSM) developed by Yang, Liu, and Wang (In Press). We consider several
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different error structures in Section 6 and conclude with a discussion in Section 7.

2 The Bayesian Deconvolution Model

We now present the Bayesian deconvolution model (BDM). The biophysical model presented

below follows that in Yang, Liu, and Wang (In Press). We begin with the likelihood.

2.1 The likelihood

Let Yj denote the observed concentration at time tj. Our estimation procedure does not

require that the observed times series be equally spaced in time. Let εt denote the error

at time t, let C(tj) denote the true concentration at time tj. Then Yj is related to the

concentration C(tj) by

ln(Yj) = ln[C(tj)] + εj (1)

εj
iid∼ N(0, σ2), j = 1, . . . , n

where n is the number of observations in the time series. We model the log of the concen-

tration for several reasons. First, the true concentration is always non-negative as is the

observed concentration from assay. Second, it has been argued (Rodbard, Rayford, and

Ross, 1970) that since the error in concentration is a combination of several different sources

of error, including assay, biological and dilution errors, a symmetric error structure is inap-

propriate. (1) implies that the observed concentration has a lognormal distribution, which

is non-negative. Third, assay error is commonly a function of the level of the hormone. It is

common to assume that the εt ∼ N(0, σ2), independently of one another. However, we will

allow for more general error structures in Section 6. In particular, let ε = (ε1, . . . , εn)T; then

ε ∼ Nn(0, σ2Λ). When Λ is the n× n identity matrix then we are back to the case of inde-

pendent and identically distributed random errors. More generally, Λ will be parametrized

by a vector θ: Λ(θ).

Now, let Θ denote the set of all model parameters except σ2. The concentration will be
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model as a parametric function of Θ. Thus the likelihood portion of our model is

ln(Yj) | Θ ∼ N [C(tj), σ
2]. (2)

(Note that we refer to the true concentration as C(t) and our model, presented below, of

the true concentration also as C(t). Although the model depends on Θ, we do not explicitly

show this dependence.)

2.2 The concentration, C(·)

We assume a convolution model for hormone concentration. A goal then is to deconvolve

the concentration into a secretion function and a clearance function. The first order, linear

differential equation (with initial condition)

dC(t)

dt
= kC(t) + S(t); C(0) = C0, k > 0 (3)

is the starting point for deconvolution methods. The equation states that the change in

hormone serum concentration at time t is proportional to both the concentration and the

amount of hormone secreted, S(t), at time t. This equation is easily solved by introducing

the integrating factor exp(
∫ t

0
k dx) = exp(kt). The solution to (3) is

C(t) = C0 exp(−kt) +

∫ t

0

S(x) exp[k(x− t)]dx (4)

for k > 0 where the integral on the right hand side (rhs) is the convolution integral of the

hormone secretion with exponential decay (the clearance function).

Denote the secretion rate by S(t), which can be written as the sum of the basal secretion

(the underlying oscillatory component), B(t), and the pulsatile secretion, P (t): S(t) =

B(t) +P (t). Furthermore, there may exist microscopic biologic fluctuation in secretion that

we represent by G(t). (4) can be extended to include this variation (Keenan, Veldhuis, and
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Yang, 1998):

C(t) = C0 exp(−kt) +

∫ t

0

[G(x) +B(x) + P (x)] exp[k(x− t)]dx

= C0 exp(−kt) +

∫ t

0

[G(x) +B(x)] exp[k(x− t)]dx︸ ︷︷ ︸
F (t)

+

∫ t

0

P (x) exp[k(x− t)]dx

= F (t) +

∫ t

0

P (x) exp[k(x− t)]dx.

C(·) will be completely specified after we define F (·) and P (·). Often, the main interest lies

in the number of pulsatile secretion events and the amount of hormone secreted during each

event. Thus we consider F (·) a nuisance.

2.2.1 The nuisance function, F (·)

F (·) is the summation of the initial concentration times exponential decay, the microscopic

biologic variation in concentration and the convolution of the basal secretion with the ex-

ponential decay. We believe that F (·) should vary smoothly over time and put no further

restrictions on it. We model it with a b-spline (de Boor, 1978) function with an unknown

number of knots with unspecified locations. We estimate the number and locations of the

knots as well as the spline coefficients. Johnson (2003) considers a similar model for the

concentration, however he only considers a constant function F (t) ≡ c. Here, we consider a

more general form for F (·) by modeling it with a cubic b-spline. In particular, let NK denote

the number of interior knots at locations {ξi}NK
i=1 (throughout this manuscript, we drop the

indices on sets after their initial definition). We consider both NK and {ξi} to be unknown

quantities that are to be estimated. Further, conditional on NK let {βi}(NK+4)
i=1 denote the

set of b-spine coefficients and X({ξi}) a design matrix whose rows are the basis functions for

the b-spline represention of the function F (·). Note that X depends on both the number and

location of the knots. For notational clarity, we ignore the dependence of X on the number

and location of the knots. The dimension of X is N × (NK + 4) where N is the number

of observations. Note that 8 additional knots (in addition to the interior knots) must be

specified for a cubic b-spline. We place the first four knots at 0, the beginning of the data,
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and the last four knots at T , the end of the data collection period. We take time t = 0 to

denote the beginning of the data collection period. Then F (·) can be approximated at the

observation times tj by

F (tj) = 〈XT
j,· , βNK

〉

where XT
j,· is the jth row of X and βNK

= (β1, . . . , βNK+4)
T and 〈x, y〉 is the inner product

of the vectors x and y. Next, we define the pulsatile secretion function.

2.2.2 The pulsatile secretion function, P (·)

Parallel to the development in O’Sullivan and O’Sullivan (1988), we assume that the signaling

of the release of hormone can be modeled by a point process {τi}i≥1 and its associated

counting function N((a, b]) =
∑

i≥1 I(a,b](τi). We generalize their development by attaching

marks, {γi}i≥1, to the process {τi} in a measurable marking space (M,F) with probability

measure µ. We will further assume that µ is absolutely continuous with associated density

f(γ | t). Then, {τi,γi}i≥1 is, in its own right, a point process with associated counting

function: N((a, b]× A) =
∑

i≥1 I(a,b]×A(τi,γi) where A ∈ F . Let λ(t) denote the (marginal)

rate function of {τi}. Then the rate function of {τi,γi} is λ(t)f(γ | t). Further, let p(t; γ)

represent a family of non-negative functions parametrized by γ. The pulsatile component,

P (·), of the secretion function is given by the convolution of p(t,γ) and N((a, b]× A):

P (t) =

∫
(ν, y)∈(0,t]×A

p(t− ν; γ − y)dN((ν, y))

def
=

∑
i≥1

p(t− τi; γi)I(0,t]×A(τi, γi)

=

N(t)∑
i=1

p(t− τi; γi) (5)

where t ∈ (0, T ] is the observation interval of the experiment.

The pulse functions, p(t; γ), are taken to be Gaussian shaped in this manuscript:

p(t; γ) = α exp(−0.5t2/ν2)/
√

2πν2.

where γ = (α, ν2), α represents the amount of hormone secreted by a gland due to the signal
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at time τi and ν2 controls the width of the function p(t; γ). Thus M = R+×R+ and F are

the Lebesque measurable rectangles in M.

Remark 1: We are taking a bit of notational liberty here. The process {τi} represents

both the signaling mechanism arrival times and the arrival times of the centers of

the Gaussian-shaped pulse functions p(t − τi; ,γi); implying that the gland releases

αi/2 hormone prior to the signal. Technically, the signal should precede any hormone

secretion. This would be the case if p(t; γ) ∝ αtγ−1 exp(−βt) with γ = (α, β, γ)

for t ≥ 0. In fact, within the Bayesian framework, the pulse function family can

be virtually any non-negative family of functions. Henceforth, the process {τi} will

represent the arrival times of (the centers of) the pulse functions p(t − τi; γi) with

the understanding the the signaling mechanism precedes any (significant amount of)

hormone release:
∫ si

−∞ p(t− τi; γ) ≈ 0, where si(≤ τi) is the ith signaling event.

Remark 2: Marking the process allows for biological variation in the amount of hormone

released during each pulse event. This biological variation may be due to several factors

including the strength of the signaling mechanism and the amount of hormone in the

gland available for secretion among other factors such as known or unknown positive

and negative feedback mechanisms.

Remark 3: Allowing the process to have a nonhomogeneous rate function gives flex-

ibility in modeling the shape and size of a pulsatile secretion event (loosely defined

as a large quantity of hormone released in a relatively short period of time). It also

allows for alternating active and quiescent periods of hormone release throughout the

day. Thus, a pulsatile secretion event may consist of a single pulse function pulse

p(t − τi; γi) or of the superposition of several pulse functions derived from a rapid

succession of signals.

The last piece needed to complete the specification of C(·) is the elimination function.
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2.2.3 The elimination function

There are several mechanisms for the elimination of hormone from the circulatory system

including specific target cite binding, enzymatic cleavage and glomerular filtration. Typically

these mechanisms cannot be modeled individually and a single elimination function is used

to model the overall clearance rate. This elimination function that describes the removal of

hormone from the circulatory system, is typically chosen to be exponential or bi-exponential

decay unless experimentation suggests some other form. In this manuscript we will assume

that clearance is exponential: exp(−kt). We model the half-life of the clearance function:

t1/2 = ln(2)/k, instead of the decay rate, k, which helps with convergence properties of the

MCMC simulation.

2.3 Parameter priors

2.3.1 Prior factorization

We factor the joint prior as

π
[
{βi}, β, ψ2, {ξi}, NK , {τj}, {ν2

j }, ν, ζ2, {αj}, α, φ2, N(T ), t1/2, σ
2
]

=

NK∏
i=1

[
π({βi} | NK , β, ψ

2)π({ξi} | NK)
]
π(Nk)π(β)π(ψ2) (6)

×


N(T )∏
j=1

[
π(τj | N(T ))π(αj | N(T ), α, φ2)π(ν2

j | N(T ), ν, ζ2)
]

π(N(T ))π(ν)π(ζ2)π(α)π(φ2)

}
(7)

× π(t1/2)π(σ2). (8)

(6) includes priors for parameters of the nuisance function, F (·), as well as hyperpriors on

these parameters; (7) are the priors (and hyperpriors) for the parameters of the pulsatile

secretion function, P (t); and (8) is the product of the prior for the half-life of the clearance

function and the model variance σ2.
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2.3.2 Priors for the parametrized function F (·)

The number of knots, NK , is assigned a Negative Binomial prior with mean 3 and variance

6: Nk ∼ Negbin(3, .5). The number of knots can be thought of as a smoothing parameter in

a b-spline representation (de Boor, 1978) with fewer knots resulting in a smoother function

F (·). Since we believe that F (·) should be a rather smooth function (fewer oscillations), we

chose to assign NK a Negative Binomial prior with a small mean. Conditional on NK , the a

knots locations {ξi} are a-priori distributed as NK independent, uniform random variables

over the time period of data collection: [0, T ]. Their conditional joint prior density is thus

p(ξ1, . . . , ξNK
| NK) = T−NK .

The last set of parameters that require a prior, for the specification of F (·), is {βi}. F (·)

is necessarily a non-negative function. Since the basis functions of the b-spline representation

are non-negative, a sufficient condition for a b-spline function to be non-negative is that each

b-spline coefficient βi, i = 1, . . . , NK be non-negative (de Boor, 1978). Therefore, we model

the natural log of the b-spline coefficients hierarchically: ln(βi) | NK , β, ψ
2 ∼ N(β, ψ2) with

β ∼ N(3, 1) and ψ2 ∼ IG(2.1, 2), the inverse gamma function.

2.3.3 Priors for the parametrized function P (·)

Next, we specify the priors necessary for the pulsatile component of the secretion P (·) in

(5). The priors are specified hierarchically. We begin with the number of pulse functions,

N(T ). We will assume a-priori that the stochastic process, {τi}, governing the arrival times

of the pulse functions is a homogeneous conditional Poisson process, given λ, with intensity

λ∗ = λ/T (any indications of a nonhomogeous process that are present in the data will be

reflected in the posterior). We reflect uncertainty in λ by placing a prior distribution on it

as well: λ | aλ, bλ ∼ G(aλ, bλ). Then N(T ) | λ∗ ∼ Pois(λ). For a homogeneous Poisson

process, {τi}, it is well known that the joint distribution of τ1, . . . , τN(T ) given N(T ) = n

is distributed as the order statistics from n independent and identically distributed uniform

random variables with support [0, T ]: π(τ1, . . . , τN(T ) | N(T ) = n) = n!/T n.
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Conditional on N(T ), the remaining parameters are (γ1, . . . ,γN(T )). Recall that γi =

(αi, ν
2
i ). We assume a-priori that these parameters are independent of the arrival times of the

events. We also assume that elements of the set {αi} are a-priori conditionally independent

and the elements of the set {ν2
i } are a-priori conditionally independent and that αi iand ν2

j

are independent for all i and j. We specify prior of ν2
i hierarchically on the log scale:

ln(ν2
i ) | ν, ζ

iid∼ N(ln(ν), ζ2), i = 1, . . . , N(T )

ln(ν) ∼ N(mν , v
2
ν)

ζ2 ∼ IG(aζ , bζ).

The amount of hormone secreted from pulse function i, namely αi is also strictly positive.

We specify its prior hierarchically:

ln(αi) | α, φ
iid∼ N(ln(α), φ2), i = 1, . . . , N(T )

ln(α) ∼ N(mα, v
2
α)

φ2 ∼ IG(aφ, bφ).

We believe that there may be biological variation from pulse to pulse, however, we also believe

that the pulse functions should be more or less similar. Modeling these pulse function shape

parameters hierarchically reflects this believe. Note that this hierarchical modeling also

reduces the influence of the priors on the posterior estimates.

The hyperpriors aλ, bλ, aζ , bζ , aφ, bφ, mν , v
2
ν and mα, v

2
α are all constant and depend on

the particular hormone under investigation.

2.3.4 Priors for t1/2 and σ2

The last two parameters that require prior specifications are the half-life, t1/2, and the

model variance, σ2. We choose to model the decay function in terms of the hormone half-life

instead of the decay rate, k. During MCMC simulation of the posterior, we found that

modeling hormone clearance from the system in terms of the half-life resulted in better

simulation performance. When the decay rate was used, it often happened that both it and
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the {αi} would simultaneously escape to very large numbers, numbers that are biologically

impossible, never to return. This is easy to control with a suitable prior under the half-life

parametrization because as k →∞, t1/2 → 0. Since the half-life is a strictly positive number

we assign it a log-normal prior: ln(t1/2) ∼ N(mt, vt). The prior mean and variance will

depend on the particular hormone under investigation. The model variance is given a vague,

proper prior: σ2 ∼ IG(0.001, 0.001).

3 Simulating from the posterior

The full joint posterior is not analytic in form. Thus we resort to MCMC simulation of the

posterior distribution. Furthermore, the number and location of both the b-spline knots as

well as the number and location of the pulse function arrival times (and associated marks)

are unknown. Standard MCMC techniques are not equipped to handle variable-dimension

parameter space problems. Recent advances in Bayesian computation, however, have made

varaible-dimension problems feasible. We use the birth-death Markov Chain Monte Carlo

(BDMCMC) algorithm developed by Stephens (2000) to simulate the number of spline knots,

their locations and the spline function parameters. A separate BDMCMC algorithm is

used to draw the number of pulse functions N(T ), their locations and associated marks.

Both BDMCMC algorithms are imbedded within the MCMC simulation of the remaining

parameters. An alternative algorithm to the BDMCMC algorithm that could also be used

is the reversible-jump MCMC algorithm due to Green (1995)

The BDMCMC requires exchangeable priors and likelihoods (Stephens, 2000). The con-

ditional prior π(τ1, . . . , τN(T ) | N(T )) violates this requirement. Thus to implement the

BDMCMC alogirthm on the pulse function parameters, we further condition on a random

permutation of the arrival time indices (1, . . . , N(T )). Let p denote this random permutation

with conditional prior π(p | N(T )) = 1/N(T )!. We then have

π(τp(1), . . . , τp(N(T )) | N(T )) = π(τ1, . . . , τN(T ) | N(T )π(p | N(T )) = T−N(T )

and it is this joint distribution of the arrival times and a random permutation of those times
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conditional on N(T ) that is used in the BDMCMC algorithm. As for the {αi} and {ν2
i },

they are all a-priori independent. At the end of the simulation, we can easily convert back to

the ordered arrival times. As an aid to chain mixing, after the BDMCMC algorithms return

to the main MCMC chain, the parameters drawn from the BDMCMC algorithm are further

updated with standard Gibbs or Metropolis-Hastings steps as suggested by Stephens (2000).

Remark 4: This permutation of the arrival times is justified by the fact that the simplest

way to simulate the arrival times of a Poisson process with intensity λ in an interval

(a, b] conditional on N((a, b]) is to 1) draw N((a, b]) from a Poisson distribution with

mean λ(b− a); 2) draw N((a, b]) independent uniform random variables on (a, b]; and

3) order them. Conceptually, the BDMCMC algorithm executes 1) and 2).

4 Example

We now apply the BDM to a randomly selected cortisol data set from the study described

in the introduction. The time series is shown in the upper-left panel of Figure 1. The data

collection takes place over a 24 hour period. Thus T = 24. To begin we specify our priors

and hyperpriors for the pulse function parameters and the half-life: αλ = 10 and βλ = 1.

Thus, λ | αλ, βλ ∼ G(10, 1) and reflects our believe that the number of secretion events

should be about 10 in a 24 hour period and thus, a-priori we believe that each secretion

event should be made up of 1 pulse function. However, it is also variable enough to allow

fewer events and allow for the possibility that secretion events may be made up of several

component functions. For the amount of hormone released, we set mα = 3, v2
α = 1, aφ = 5

and bφ = 2. For the “width” of the pulse functions we set mν = −1, v2
ν = 1, aζ = 5 and

bζ = 2. For the half-life we have ln(t1/2) ∼ N(−1, 1). Upon exponentiating, this prior has

90% of its mass between 0.07 and 1.9. Only 1.6 × 10−4 of the mass is less than 0.01, thus

controlling the half-life from getting too small (cortisol half-lives are typically from 30-60

minutes).

We ran the MCMC simulation for 225,000 iterations with a burn-in of 25,000. The chain
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was thinned by saving every 100th sample. The simulation took 19 minutes on a 2.7 GHz

Power Mac G5. Convergence was assessed graphically on the parameters that are fixed-

dimension. Good mixing was realized for both BDMCMC algorithms with NK taking on a

different value approximately 4% of the time and N(T ) taking on a different value roughly

10% of the time.

Graphical results are given in Figure 1. The upper-right panel of Figure 1 shows the

expected value of the posterior predictive density (PPD) of the concentration (dark blue)

as well as the 95% point-wise credible bounds of the PPD (light blue). The lower-left panel

shows the posterior mean of the nuisance function F (t) | Y (dark blue) as well as the

95% point-wise credible bounds (light blue). The posterior estimated mean of the pulsatile

secretion function P (t) and 95% point-wise credible bounds are displayed in the lower-right

panel. Fits were obtained by marginalizing the posterior over NK and N(T ).

Overall, the model fits the data well. Figure 2 show both the Bayesian deleted residuals

(Gelfand, Dey, and Chang, 1992) and the autocorrelation function of those residuals. Overall,

the residuals show no structural pattern, indicating that the mean structure of the data

has been captured by the model. There are only one or two outliers (absolute residual

value greater than 3). Furthermore, it appears that the assumption of independent errors is

justified by the autocorrelation function of the residuals. Although time series data typically

display autocorrelation, once the mean structure has been accounted for in this example,

no correlation remains. Even if biological error is correlated, the assay error most likely

dominates it. It is reasonable to assume that assay error is independent. Further evidence

of model fit was ascertained by computing a Bayesian good-of-fit statisitic (Johnson, 2004).

The value of the statistic was 0.502. Under the null hypothesis that the model fits well, a

value of 0.5 is expected.
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5 Estimating the posterior rate function

The number and location of secretion events are often of interest to the investigator. The

posterior mean of the pulsatile secretion function, shown in the lower right panel of Figure

1, and the 95% point-wise credible bounds give a good indication of the locations of these

events and an indication of how likely it is that a secretion event occurs in a given interval

of time. However, two question often asked are:

1. What is the probability that a secretion event occurs at time t?

2. How many secretion events are there?

This figure does not go far enough in addressing these questions.

Johnson (2003) allocates pulse functions to secretion events by considering any group

of pulse functions whose superposition results in a function with a single global maximum

as a single secretion event. The resulting posterior distributions of the number of secretion

events on the data sets he considers all have a dominant mode. That mode is taken as the

number of secretion events. No estimate of the probability that something is an event was

attempted, nor was it necessary. For the cortisol data set we consider in this manuscript,

this method is unsatisfactory. A dominant secretion event mode does not exist; the mode

occurs only 18% of the time (not shown). Furthermore, we want to estimate the posterior

probability that a secretion event occurs in an arbitrary interval. Johnson (2003) did not

address this issue. Furthermore, his definition of a secretion event is rather arbitrary.

We propose a different solution that answers both questions without a formal definition

of a secretion event: The procedure consist of the follow three steps:

1. Estimate the marginal posterior rate function λ∗(t) | Y of the posterior process {τi} | Y .

2. Estimate the location of secretion event j, SEj, as the jth ordered local maximum, Mj

of λ∗(t) | Y .
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3. For a neighborhood, Mj, containing Mj: Mj ∈ Mj, estimate the probability that at

least one pulse arrival time is contained in Mj. Take this estimate as the probability

that SEj occurs in Mj.

Step 1: Define the posterior rate function, λ∗(t) | Y , implicitly by E(N(t) | Y ) =∫ t

0
λ∗(s) | Y ds for t ∈ [0, T ]. Suppose λ∗(t) | Y is bounded and continuous on [0, T ]. Then

lim
h→0

1

h
E[N(t+ h)−N(t) | Y ] = lim

h→0

1

h

∫ t+h

t

λ∗(s) | Y ds = λ∗(t) | Y.

This suggests a way to estimate λ∗(t) | Y . Partition [0, T ] into n subintervals Ai =

(ti−1, ti], i = 1, . . . , n, t0 = 0, tn = T each of length T/n. Then

λ∗(ti) | Y ≈ n

T
E[N(ti)−N(ti−1) | Y ], i = 1, . . . , n.

The expectation can be approximated from the MCMC posterior samples. Suppose we save

S of them. Then

E[N(ti)−N(ti−1) | Y ] ≈ 1

S

S∑
j=1

N(T )(j)∑
k=1

IAi
(τ

(j)
k ), i = 1, . . . , n (9)

where the superscript (j) indicates parameter values from the jth MCMC sample. The rhs

of (9) is a histogram estimate of the counts of {τp(i)} | Y . We wish to have a smooth estimate

of λ∗(t) | Y and thus seek a smooth estimate of the histogram.

Consider the marginal posterior density

π({τp(i)} | Y ) =
∞∑

k=0

π({τp(i)} | N(T ) = k, Y )π(N(T ) = k | Y ). (10)

This can be estimated by dividing the rhs of (9) by
∑S

j=1N(T )(j). Therefore, λ∗(t) | Y is

proportional to this marginal posterior density. Thus, by estimating the marginal density,

we estimate λ∗(t) | Y . We estimate this density with a mixture of normal density compo-

nents whose number is unknown. We choose a Bayesian model for density estimation using

mixtures of Dirichlet processes (MDP, Ferguson, 1973; Antoniak, 1974; MacEachern and

Müller, 1998) that was first proposed by Escobar and West (1995).
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The MDP model is as follows. The data are the marginal posterior draws of the τj.

The dependence on Y and on the permutation p is dropped only for notational convenience.

Each observation is allowed it’s own set of parameters. The parameters are assumed to be

distributed, iid, according to a distribution G, with additional uncertainty about the prior

distribution G. In particular, G is a random distribution generated by a Dirichlet process

with base measure α0N(µ, σ2) and total mass parameter α0:

τj ∼ N(µj, σ
2
j )

(µj, σ
2
j ) ∼ G

G ∼ DP [(α0, N(µ, σ2)].

We also place priors on the parameters of the base measure in the Dirichlet process:

µ ∼ U(0, T ), σ2 ∼ IG(2.1, β), α0 ∼ G(1, 1)

with hyperprior β ∼ G(1, 1). The estimation of this model follows that given by Neal (2000).

We estimate the posterior of α0 by the method proposed in Escobar and West (1995). Let

λ̂∗(t) | Y denote the estimated marginal posterior rate function. It is shown by the red curve

in Figure 3. The gray region under the curve is the histogram based estimate of λ∗(t) | Y .

Step 2: The arrows at the bottom of the Figure 3 show where all local maxima, Mj, j =

1, . . . , 34, occur for the data set analyzed above (some of which are so small that they are

not visible in λ̂∗(t) | Y ). These local maxima are take to be point estimates of locations of

the secretion events SEj, j = 1, . . . , 34. These maxima are easily obtained since the mixture

density is a mixture of normal density components. We can easily estimate the expected

first and second derivatives of λ̂∗(t) | Y on a fine grid of [0, T ] during the MCMC simulation

of the MDP model and numerically estimate where the first derivative equals zero and the

second derivative is negative.

Step 3: For any given interval, I ⊂ [0, T ], it is easy to estimate the posterior expected

number of pulse arrivals in I:

E[N(I) | Y ] ≈
∫
I
(λ̂∗(t) | Y )dt. (11)
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The integral can be approximated numerically. Also the posterior probability that at least

one pulse arrival occurs in I is easily estimated:

Pr[N(I) | Y ≥ 1] ≈ 1

S

S∑
j=1

I(N(I)(j) ≥ 1) (12)

For certain intervals I that contain Mj, j = 1, . . . , J , this probability can be taken to be

the probability that SEj takes place in I. To automate this procedure, define mj as the

jth local minima of λ∗(t) | Y (also easily approximated on λ̂∗(t) | Y ). Define m0 = 0 and

mJ+1 = T . Further, let Ij = (mj−1,mj], j = 1, . . . , J . Now (11) and (12) can be estimated

for each of the intervals Ij.

The probabilities (12) for intervals Ij, j = 1, . . . , 34, are shown in the bottom half of

Figure 3 for the data set examined in Section 4. The blue lines denote the locations Mj, j =

1, . . . , J of the secretion events. The heights of the lines indicates the probabilities. The rug

at the bottom of Figure 3 denote the local minima. Further, we find that E[N(24) | Y ] ≈

14.70 while the expected number of secretion events is
∑34

j=1 Pr[N(Ij) | Y ≥ 1] ≈ 12.67.

We also compare the fit of our model with the recent model/method proposed by Yang,

Liu, and Wang (In Press). They model pulsatile hormone data with a non-linear mixed effects

partial spline model (NMPSM). Figure 4 displays fits from both models (blue—BDM, red—

NMPSM). There are several notable differences. First, around 9:00 p.m. the BDM finds

(based on thresholding the probabilities at 0.75) two “secretion events” that are not fit with

the NMPSM. There is one other “event”, around 4:30 a.m. that is found by BDM and not

by the NMPSM. The NMPSM has no chance of selecting the two around 9:00 p.m. as it

relies on an initial guess of where events occur. The heuristic procedure used to initialize

event locations did not identify these two as events. The “event” at 4:30 a.m. was identified

by the heuristic procedure as a potential event. After the NMPSM is fit to the data, one

of GCV, RIC, AIC or BIC criteria is used to select the final number of events. Yang, Liu,

and Wang (In Press) recommends BIC. We chose BIC here, which did not select this event.

The other difference with respect to events is the location of the “event” just prior to 3:00

p.m. The BDM and the NMPSM finds different locations for it. Note that the arrows at
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the bottom of this figure show point estimates of event locations. The BDM point estimates

always precede those of NMPSM. This is due to the fact the the BDM point estimate is for

the secretion event location and the NMPSM point estimate is the MLE of the center of the

pulse wave-form for the concentration (the convolution of secretion and elimination). As to

what is the truth in this data set, we do not know. This comparison demonstrates what we

said in the introduction. Models that rely on initial estimates of the number and location of

events cannot recover from missed events.

6 Comparison of Error Structures

Although no residual correlation was found in the example presented, one may still ques-

tion the assumption of independent errors for time series data. Thus to investigate this

assumption, we analyze all 52 cortisol data sets using five different error structures and two

slight model modifications. Models are compared using Bayes factors (Gelman et al., 1997;

Robert, 2001). The first model is that described in Section 2. The next three models also

assume independent errors. However, for the second model we add one to the observed

concentration prior to the log transformation. (The rationale here is that some data sets

have observed concentrations that range from near zero to about 5-10. The log-transformed

time series turns out to be ‘V’ shaped that makes it difficult to model F (t) with a spline).

The third models the time series on the natural scale. For the fourth model, we model a

constant coefficient of variation, allowing the error variance to depend on the mean (as does

the log Normal model) and analyze the data on its natural scale. An AR1 error structure

is assumed for the last three models. These three models introduced correlation between

the error terms. The correlation between εi and εj is ρ|i−j|. We further assume that this

correlation is non-negative and place a U [0, 1] prior on it. The models are tabulated below.

Overall, the second model fits best; however only slightly better than model 4. In terms

of Bayes factors, the data support it in favor of the other models in 23 of the 52 data sets.

The second best fitting model is the constant CV model where the data favored it in 18 of
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Table 1: Comparison of various models and error structures. The forth column is the number
of data sets that each model fit best, according to the estimated Bayes factors. The last
column tabulates the average Bayes factor (over all 52 data sets) relative to model 2.

Error Structure Model Data Best 10 log10(BF )

Independent log Normal Y 6 13.84
Independent log Normal Y + 1 23 0.00
Independent Normal Y 5 63.21
Constant CV Normal Y 18 4.78
AR1 log Normal Y 0 164.89
AR1 log Normal Y + 1 0 146.43
AR1 Normal Y 0 182.42

the 52 data sets. The last column of the Table 1 tabulates the the average Bayes factor over

all 52 data sets relative to model 2. The Bayes factors are transformed to the log-base-10

scale and multiplied by 10. On this scale, a Bayes factor of 0-5 indicates that the data

slightly favor, perhaps not worth mentioning, model 2 over the competing model. A value of

5-11 indicates the data favor model 2 over the competing model. A value of 11-22 indicates

strong evidence in the data for model 2 versus the competing model and a value of > 22

indicates very strong evidence for model 2.

These results suggest that the two models, model 2 and 4, where the error variance is

a function of the mean concentration fit best. The AR1 error structure is evidently not

appropriate for these data. In fact, model 2 was used in the example given in Section 4.

7 Discussion

Our method extends earlier work by Johnson (2003) in two significant aspects. First, we allow

for a non-constant basal concentration. Second, we estimate probabilities of secretion events.

We also extend the work by O’Sullivan and O’Sullivan (1988) in that we convolve a marked

point-process with pulse functions at the secretion level (they convolve a point-process with

a function that represents the shape of a pulse at the level of hormone concentration).

This convolution is further convolved with an elimination function that results in hormone
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concentration. By marking the point-process, we allow for biological variation in the size

and shape of each pulse function. Lastly, O’Sullivan and O’Sullivan (1988) assume a zero

basal concentration; we allow the basal concentration to be an arbitrary function that is

approximated by a spline function. Our method also generalizes that of Yang, Liu, and

Wang (In Press) in that the BDM does not rely on an ad-hoc method to initialize the

number and location of events.

The BDM can easily incorporate other pulse function forms, such as a Laplacian or

Gamma, further any form of the elimination function is possible. The only technical difficulty

may be in the convolution of these two functions as it may not have an analytic solution.

The convolution of a Gaussian and exponential decay does not have an analytic solution,

but is proportional to the error function, erf, which can be efficiently computed (see Johnson

(2003)). Alternatively, one can use the Fourier transform to compute the convolution in the

frequency domain and transform the result back to the time domain.

Disadvantages of the BDM approach is that is it rather difficult to elicit prior information

and to implement the advanced MCMC simulation (code is available from the first author).

Further, because of the ill-posed nature of the deconvolution problem (Wahba, 1990), unin-

formative prior specification and an objective Bayesian approach may not be feasible. Lastly,

the Bayesian approach is computationally intensive. The MCMC simulation of the corti-

sol data set takes about 19 minutes on a dual 2.7 GHz PowerPC G5. Further the MDP

post-processing takes an additional 15 minutes.
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Figure 1: (UL) An example of cortisol concentrations from a female subject suffering from
depression over a twenty-four hour time period. Note the pulsatile nature of the concentra-
tion. Plasma concentration levels of cortisol were obtained at ten minute intervals. (UR)
Model fit to the data. (LL) Posterior mean of the nuisance function: E(F (t) | Y ). (LR) The
posterior estimate of P (t) | Y .
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Figure 2: Bayesian deleted residuals and the autocorrelation function of the deleted residuals.
No residual structure can be seen in the deleted residuals and no there is no autocorrelation
in the residuals.
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Figure 3: The top portion of this figure shows the estimated marginal posterior rate function,
λ̂∗(t) | Y , estimated from the MDP model. The blue lines in the bottom portion show
locations of all local maxima and the probabilities (12). Some maxima are so small, they
cannot be seen. The rug at the bottom shows the intervals endpoints (the local minima) on
which the probabilities were estimated.
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Figure 4: Comparison of the Bayesian deconvolution model and the NMPSM. The blue line
is from the BDM, the red from NMPSM. The solid lines are the estimated concentration.
The dashed lines are the estimated nuisance function. The arrows at the bottom show point
estimates of event locations.
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