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Resampling methods for estimating functions
with U-statistic structure

Wenyu Jiang and Jack Kalbfleisch

Abstract

Suppose that inference about parameters of interest is to be based on an unbi-
ased estimating function that is U-statistic of degree 1 or 2. We define suitable
studentized versions of such estimating functions and consider asymptotic ap-
proximations as well as an estimating function bootstrap (EFB) method based on
resampling the estimated terms in the estimating functions. These methods are
justified asymptotically and lead to confidence intervals produced directly from
the studentized estimating functions. Particular examples in this class of esti-
mating functions arise in La estimation as well as Wilcoxon rank regression and
other related estimation problems. The proposed methods are evaluated in ex-
amples and simulations and compared with a recent suggestion for inference in
such problems which relies on resampling an underlying objective functions with
U-statistic structure.
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Summary

Suppose that inference about parameters of interest is to be based on an unbiased estimat-

ing function that is U-statistic of degree 1 or 2. We define suitable studentized versions of

such estimating functions and consider asymptotic approximations as well as an estimating

function bootstrap (EFB) method based on resampling the estimated terms in the estimat-

ing functions. These methods are justified asymptotically and lead to confidence intervals

produced directly from the studentized estimating functions. Particular examples in this

class of estimating functions arise in La estimation as well as Wilcoxon rank regression and

other related estimation problems. The proposed methods are evaluated in examples and

simulations and compared with a recent suggestion for inference in such problems which

relies on resampling an underlying objective functions with U-statistic structure.

Key words: Bootstrap; Estimating functions; La estimation; Resampling methods; U-statistics;

Studentization;
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1 Introduction

Let Z1, . . . , Zn be independent and identically distributed random vectors. Let θ ∈ Rp be a

vector of parameters and suppose that estimation of θ is based on an unbiased estimating

function

Sn(θ) =

(

n

K

)−1
∑

1≤i1<i2<...<iK≤n

h(Zi1, . . . , ZiK ; θ) (1)

which has the structure of a U-statistic of degree K. Thus, E{h(Z1, . . . , Zk; θ)} = 0 where

0 is a vector of zeros in Rp and h is symmetric in its arguments Z1, . . . , Zk. Often such an

estimating function arises from optimizing an underlying objective function,

Un(θ) =

(

n

K

)−1
∑

1≤i1<i2<...<iK≤n

H(Zi1, . . . , ZiK ; θ), (2)

which also has U-statistic structure. In this, h = ∂H/∂θ. The methods in this paper make

inference about θ by resampling the estimating function (1) and are closely related and

compared to a recent proposal of Jin, Ying and Wei (2001) which focuses on resampling the

objective function (2).

We propose an estimating function bootstrap (EFB) method for resampling Sn(θ) with

the purpose of constructing confidence regions for θ or components of θ. This is an exten-

sion of the work of Hu and Kalbfleisch (2000) who propose an estimating function based

bootstrap method (EF-t) for inference based on linear estimating functions which are, in

effect, U-statistics of degree K = 1. Their EF-t method provides an approximation to the

distribution of a studentized version of the estimating function by bootstrap resampling of its

estimated terms; the proposed EFB method is a natural generalization of the EF-t method

to the estimating function (1). We consider primarily the case K ≤ 2 since this class sub-

sumes the majority of applications of U-statistics in the literature. The case of general K is
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briefly discussed. In the EFB method, estimated terms in the studentized estimating func-

tion of Sn(θ) are weighted using a symmetric product of random variables generated from

some selected distribution. When applied to linear estimating equations, this provides a use-

ful generalization of the standard EF-t method as discussed in Hu and Kalbfleisch (2000).

Though the resampling scheme of the EFB method for estimating function (1) treats the

terms as the original sample, it links naturally to the classical bootstrap in which the re-

sampling focuses on the original data. Hu and Kalbfleisch (2000) point out that their EF-t

method is invariant under reparameterization and comment on the advantages that follow.

This invariance property carries over to the EFB in U-statistic context as well.

Studentized estimating functions from Sn(θ) can be defined by utilizing known results

for variance estimation of U-statistics. Hoeffding (1948) establishes the foundations of U-

statistics, derives the theoretical form of the variance, and proves the asymptotic normality

under quite mild conditions on h. Sen (1960) gives an estimator of the variance by utilizing

a decomposition of Sn into identically distributed and asymptotically uncorrelated terms,

and Arvesen (1969) derives a variance estimator by using jackknife techniques. These two

variance estimations turn out to be essentially equivalent for U-statistics of any degree K.

The asymptotic normality and order of the normal approximation are established by Callaert

and Veraverbeke (1981) for the studentized U-statistics of degree two.

The classical bootstrap in the U-statistic framework has received much attention since

bootstrap method was introduced in Efron (1979). The work of Bickel and Freedman (1981)

indicates that a bootstrapped U-statistic has the same asymptotic distribution as the orig-

inal U-statistic. Athreya et al. (1984) reveals the consistency of the bootstrapped variance

estimator of a U-statistic and the asymptotic normality of the bootstrapped version of the

4
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studentized U-statistic. Helmers (1991) investigates the asymptotic improvements in ac-

curacy obtained by approximating studentized U-statistics of degree two with Edgeworth

expansions or by Efron’s bootstrap techniques.

In most discussions, a U-statistic is scalar-valued and arises from estimating an unknown

quantity such as a moment, a quantile, a correlation, or a regression coefficient. In this

paper, however, we consider multidimensional U-statistics arising from estimating functions

(1) where Sn : Rn → Rp. Therefore, to studentize the estimating function Sn(θ) we develop

multivariate variance estimators by extension of the work of Sen (1960) and Arvesen (1969).

In section 2, we generalize some results for U-statistics to p-dimensional estimating func-

tions and propose the estimating function bootstrap (EFB) method. The procedure to

define confidence intervals through studentized estimating functions is recalled and an it-

erative reweighted algorithm is suggested to address some computational issues. Section 3

presents a number of examples in which simulation studies suggest that the EFB method is

very accurate and has substantial advantage over the resampling method of Jin et al. (2001).

We conclude with some discussion in section 4.

2 U-statistics from Estimating Functions and the Boot-

strap

Let Zi ∈ Rq, i = 1, . . . , n be independent random vectors from a distribution F . Let θ ∈ Rp

be a vector of unknown parameters. Suppose that inferences on θ are to be based on an

estimating function of the form

Sn(θ) =

(

n

2

)−1
∑

1≤i1<i2≤n

h(Zi1, Zi2 ; θ), (3)

5
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where the kernel h(Z1, Z2; θ) takes value on Rp, is symmetric in Z1, Z2 and has expectation

0 . Our goal is to construct confidence regions for the parameter θ using the U-statistic

feature of the underlying estimating function.

One example of an estimating function in the class (3) arises from minimizing the fol-

lowing objective function with respect to the regression parameter β, β ∈ Rp,

Un(β) =

(

n

2

)−1
∑

1≤i1<i2≤n

|Yi1 − Yi2 − (Xi1 − Xi2)
Tβ|a

where 1 ≤ a ≤ 2, Yi = γ + XT
i β + ei for a constant γ and independent and identically

distributed errors ei, i = 1, . . . , n, with E(ei) = 0. The regression estimator β̂ is the solution

to the estimating equation Sn(β) = 0 where

Sn(β) =

(

n

2

)−1
∑

1≤i1<i2≤n

sign{Yi1−Yi2−(Xi1−Xi2)
Tβ}(Xi1−Xi2)|Yi1−Yi2−(Xi1−Xi2)

Tβ|a−1.

(4)

For the case with a = 1, the estimating function (4) gives rise to the Wilcoxon rank regression

estimator (Hettmansperger, 1984). For a = 2, the above estimating function leads to an

approach of least squares. In general, the derivatives of Sn(β) are not well behaved for

1 ≤ a < 2. For example, if p = 1 and 1 ≤ a < 2, the derivative of Sn(β) is undefined whenever

β coincides with a value of (Yi1 − Yi2)/(Xi1 −Xi2) for 1 ≤ i1 < i2 ≤ n. Estimating functions

with badly behaved derivatives also appear in ordinary La regression when 1 ≤ a < 2.

It then becomes difficult to apply traditional inference procedures involving the sandwich

variance estimator and Wald-type statistic based on β̂. To circumvent this problem, we base

inferences on the studentized estimating function.

6
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2.1 Some Results for U-statistics

The variance of Sn of degree K = 2 can be found following derivations of Hoeffding (1948)

or Serfling(1980) for scalar valued U-statistics. Let {a1, a2} and {b1, b2} be sets of distinct

integers from {1, . . . , n} with exactly c integers in common, and define

ζc = E{h(Za1
, Za2

; θ)h(Zb1 , Zb2; θ)
T}

for c = 1, 2. It can then be seen that

var{Sn} =

(

n

2

)−1

{2(n − 2)ζ1 + ζ2}

=
4ζ1

n
+ Op(n

−2).

In general, the variance of Sn of degree K has the form var{Sn} = n−1K2ζ1 + Op(n
−2)

where ζ1 = E{h(Za1
, . . . , ZaK

; θ)h(Zb1 , . . . , ZbK
; θ)} and {a1, . . . , aK}, {b1, . . . , bK} are sets

of distinct integers from {1, . . . , n} with exactly one elements in common. An alternative

expression of the variance follows from writing the U-statistic as a sum of its projection and

orthogonal complement (Serfling (1980), Callaert and Veraverbeke (1981)).

The asymptotic normality for Sn of degree K = 2 is a direct consequence of Theorem 7.1

of Hoeffding (1948). In fact, the asymptotic normality for an Rp-valued U-statistic of any

degree K can be established in the same way.

Theorem 2.1. Let Sn be an unbiased estimating function of the form (1) for θ ∈ Rp.

If E{hi(Z1, . . . , ZK ; θ)}2 < ∞ for all components i = 1, . . . , p of the vector h and the

determinant |ζ1| > 0, then as n → ∞,

n1/2Sn → Np(0 , 4ζ1) in distribution.

7
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Since the variance of Sn is unknown in general, inference is based upon a studentized

version of Sn. We consider two ways of studentizing Sn, both of which adapt established

variance estimators in the literature to Sn.

The first variance estimator of Sn follows from Sen (1960). For a U-statistic of degree

K = 2, define

qi(θ) =
1

n − 1

∑

j:j 6=i

h(Zi, Zj; θ)

for i = 1, . . . , n. The qi’s are identically distributed and Sn(θ) = n−1∑n
i=1 qi(θ). Let s2

q be

the sample covariance matrix of q1, . . . , qn. For scalar-valued U-statistics, Sen (1960) shows

that the qi’s are asymptotically uncorrelated and s2
q → ζ1 in probability as n → ∞. In the

vector case, the corresponding variance estimator for Sn is

VS(θ) = 4n−1s2
q

=
4

n(n − 1)

n
∑

i=1

{qi(θ) − Sn}⊗2

=
4

n2(n − 1)

∑

1≤i<j≤n

{qi(θ) − qj(θ)}⊗2. (5)

where a⊗2 = aaT for a column vector a.

In the same way, Sen (1960) defines, for U-statistic of degree K,

qi(θ) =

(

n − 1

K − 1

)−1
∑

Ci

h(Zi, Zl1, . . . , ZlK−1
; θ)

where Ci = {(l1, . . . , lK−1) : 1 ≤ l1 < . . . < lK−1 ≤ n, and l1, . . . , lK−1 6= i}. As above

Sn(θ) = n−1∑n
i=1 qi(θ), and the resulting variance estimator of Sn(θ) is

VS(θ) = K2n−1s2
q

=
K2

n2(n − 1)

∑

1≤i<j≤n

{qi(θ) − qj(θ)}⊗2. (6)
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For any K = 1, 2, . . ., the corresponding studentized U-statistic is

StS(θ) = {VS(θ)}−1/2Sn(θ). (7)

The second variance estimator of Sn of degree K follows from Arvesen (1969), and arises

from an argument utilizing the jackknife. The resulting studentized U-statistic has received

much theoretical consideration in Callaert and Veraverbeke (1981), Athreya et al. (1984)

and Helmers (1991). Let

µ̂i = nSn − (n − 1)Si
n−1,

where Si
n−1 is the U-statistic based upon Z1, . . . , Zi−1, Zi+1, . . . , Zn. Let s2

µ̂ be the sample

covariance matrix of µ̂1, . . . , µ̂n. Then VJ(θ) = s2
µ̂/n is a jackknife estimator of the variance

of Sn and it is easy to see that

VJ(θ) =
K2(n − 1)

n2(n − K)2

∑

1≤i<j≤n

{qi(θ) − qj(θ)}⊗2.

The corresponding studentized U-statistic is

StJ (θ) = {VJ(θ)}−1/2Sn(θ).

The two variance estimators are asymptotically equivalent and their ratio is exactly (n −

K)2(n − 1)−2. Consequently, the statistics StS and StJ are also asymptotically equivalent.

When a scalar-valued U-statistic is studentized by these variance estimators, Sen (1960),

Arvesen (1969), Callaert and Veraverbeke (1981) and Helmers (1991) have shown that the

resulting studentized U-statistic is asymptotically normally distributed.

From these results and through considering asymptotic results for linear combinations of

the components of Sn, the following multivariate central limit theorem can be established.

It is shown in the Appendix that the conclusion holds for U-statistics of any degree K.

9
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Theorem 2.2. Let VS(θ) and StS(θ) be defined as in (6) and (7). Under the same conditions

as Theorem 2.1,

n

K2
VS(θ) → ζ1 in probability, (8)

and

StS(θ) → Np(0 , 1) in distribution (9)

as n → ∞, where 1 is a p × p identity matrix.

Asymptotic approximations can be used to obtain confidence regions for θ and one can

estimate component-wise confidence intervals using the procedures described in section 2.3.

Alternatively, we can use resampling methods to approximate the distribution of St.

2.2 Resampling the Estimating Function

To resample the estimating function (3), we propose the following generalization to the EF-t

method of Hu and Kalbfleisch (2000). We proceed by replacing θ with θ̂ in the terms of the

estimating function (3) and estimating the distribution of Sn or its studentized version StS

by resampling the estimated terms.

Specifically, we define the EFB method for StS and K = 2 as follows:

i. Generate (V1, . . . , Vn) from Multinomial(n, 1
n
, . . . , 1

n
).

ii. Let S∗
n = n−1∑n

i=1 Viq̃
∗
i where

q̃∗i =
1

n − 1

∑

l:l 6=i

Vlh(Zi, Zl; θ̂).

Following (5), the variance estimator of S∗
n is

V ∗
S =

4

n2(n − 1)

∑

1≤i<j≤n

ViVj

(

q̃∗i − q̃∗j
)⊗2

(10)
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iii. Finally we set

S∗
tS

= V ∗
S
−1/2S∗

n. (11)

We proceed by repeating the above steps a large number B times and the empirical distri-

bution of S∗
tS

provides an approximation to that of StS .

The next theorem states that the resampled statistic S∗
tS

has the same asymptotic dis-

tribution as StS , and its proof is given in the Appendix.

Theorem 2.3. Let Sn be an estimating function of the form (3). Suppose that Assumptions

1–5 in the Appendix hold. If the kernel function of Sn has the property that h(z, z; θ) = 0

for any z, then under the EFB procedure,

n

4
V ∗

S → ζ1 in probability, (12)

and

S∗
tS

→ Np(0 , 1) in distribution (13)

as n → ∞, where V ∗
S and S∗

tS
are given by (10) and (11).

Some remarks:

1. Since the variance estimators are proportional, the EFB method based on StJ gives

identical results to that based on StS .

2. The multinomial weights (V1, . . . , Vn) give rise to a nonparametric bootstrap sam-

ple (Z∗
1 , . . . , Z

∗
n) from the observations (Z1, . . . , Zn). If the kernel function h satisfies

h(z, z; θ) = 0 for any z, then S∗
tS

is identical to the bootstrap version of StS obtained

by replacing Z1, . . . , Zn and θ by (Z∗
1 , . . . , Z

∗
n) and θ̂.

11
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3. Other choices of the weights are possible. For example, one might choose V1, . . . , Vn

to be independent and identically distributed Poisson(1) variates, or indeed as inde-

pendent and identically distributed variates from any distribution with unit mean and

unit variance.

The bootstrap approach that we have described above for the U-statistic of degree K = 2

generalizes easily to the case where Sn(θ) is a U-statistic of degree K for any K ≥ 1. We

can restate the EFB method for StS and K ≥ 1 as follows:

i. Generate (V1, . . . , Vn) from Multinomial(n, 1
n
, . . . , 1

n
).

ii. Let S∗
n = n−1∑n

i=1 Viq̃
∗
i where

q̃∗i =

(

n − 1

K − 1

)−1
∑

Ci

Vl1Vl2 · · ·VlK−1
h(Zi, Zl1, . . . , ZlK−1

; θ̂),

and let

V ∗
S =

K2

n2(n − 1)

∑

1≤i<j≤n

ViVj

(

q̃∗i − q̃∗j
)⊗2

iii. Set S∗
tS

= V ∗
S
−1/2S∗

n.

When K = 1, the above procedure coincides with the EF-t method for linear estimat-

ing functions proposed by Hu and Kalbfleisch (2000). For K=2, it reduces to the method

described earlier.

2.3 Confidence Regions via Studentized Estimating Functions

Denote the studentized estimating function of Sn(θ) by St(θ) where St = StS or St = StJ . If

θ is a scalar, we define a one-sided 100(1 − α)% confidence interval for θ by the collection

12
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{θ : St(θ) > Ŝtα}, where Ŝtα stands for an estimate of the αth quantile of St. We can

either take Ŝtα = Zα according to the normal approximation to St, or take Ŝtα = S∗
tα , where

S∗
tα is the empirical αth quantile from the replications of the EFB procedure. If St(θ) is

monotone non-increasing in θ, an aproximate one-sided 100(1 − α)% confidence interval is

given by (−∞, θ̂1−α] where θ̂1−α is simply the solution to St(θ) = Ŝtα . In this case, the

EFB procedure that approximates the distribution of St(θ) results in significant reduction in

computation of confidence intervals. It requires solving the St(θ) only at the terminals of the

interval, and not for each resampling run as would be required for the classical bootstrap.

If θ is a vector, an approximate one-sided 100(1−α)% component-wise confidence interval

for θ is (−∞, θ∗i,1−α] for i = 1, . . . , p. The confidence limit θ∗i,1−α is defined as the empirical

(1−α) quantile of the set {θ∗(b)i : St(θ
∗(b)) = u(b), b = 1, . . . , B} for a large replication number

B. When the normal approximation to St is used, we can implement this by repeatedly

generating the p components of u as independent standard normal variates a large number

B times. In the EFB procedure, we take u = S∗
t where S∗

t is the resampled value. Such

confidence procedures involve solving equations St(θ) = u(b) repeatedly. Note that the left

side of the equation is always the same. Such problems are often easier to handle and are

numerically more stable than methods based on the classical bootstrap where resampling

would result in a new estimating function each time.

In this derivation of component-wise intervals, St(θ) is being used as a multivariate

pivotal and, in essence, θ∗(b) is defining a distribution for θ that is reminiscent of Fisher’s

fiducial distribution. Jin et al. (2001) carry out similar calculations in their approach of

minimizing the objective function and use the term “fiducial intervals”. It should be noted

that even if St(θ) is exactly pivotal with known distribution, the resulting intervals from the

13
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marginalization procedure defined above or in Jin et al. (2001) would not be exact confidence

intervals. Nonetheless, the intervals for θi are asymptotic confidence intervals as n → ∞.

Solving St(θ) = u can be somewhat more complicated than solving Sn(θ) = u′. We have

found that numerical problems are typically easily handled through the following iteratively

reweighted method. Begin with an initial estimate θ(0). At the kth step, solve θ(k) from

Sn(θ(k)) = V (θ(k−1))1/2u, k = 1, 2, . . . . (14)

A convenient choice of initial value is often θ(0) = θ̂.

3 Examples

In this section, we implement the EFB method in estimating functions which are U-statistics

of degree K = 1 and K = 2 with examples arising from L1 regression and those taking the

form (4) with a = 1 and a = 1.5. For comparison, the resampling method of Jin et al. (2001)

and the normal approximations to St(θ) are also examined.

3.1 Description of Methods and Simulation Study

Since the derivatives of these estimating functions are poorly behaved, traditional approaches

involving Wald-type statistics using sandwich variance estimators are infeasible and/or be-

have badly. Inference procedures that focus on the estimating function or on the objective

function are more appealing.

Jin et al. (2001), henceforth JYW, consider inference methods based on an objective

function of the form (2) in order to obtain an estimate of the standard error of θ̂. Their

resampling method, the JYW method, involves perturbing or weighting the terms of the

14
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objective function Un(θ) with symmetric sums of independent and identically distributed

weights. For each replication of the resampled objective function, the minimizer θ∗ is found.

The purpose of their approach is to assess the variation of θ̂ − θ from the resampling distri-

bution of θ∗ − θ̃, where θ̃ indicates the observed value of θ̂. A direct application of this idea

yields pr{(θ̂ − θ)i ≥ (θ∗ − θ̃)i,α} ≈ 1− α where (θ∗ − θ̃)i,α stands for the αth quantile of the

ith component of (θ∗ − θ̃), i = 1, . . . , p.

For the JYW method, we use (−∞, θ̂ − (θ∗ − θ̃)i,α] as a 100(1− α)% confidence interval

of θi. We assign the resampling weights as indpendent Gamma(1, 1) in Example 1 and

Gamma(.25, .5) in Examples 2 and 3 which are in conformity with recommendations of

JYW. In addition to the JYW and EFB methods, we also consider NORM-S and NORM-J

which refer to normal approximations to StS and StJ respectively.

Example 1. L1 regression.

In a regression problem, suppose that β is to be estimated by minimizing the objective

function Un(β) = n−1∑n
i=1 |Yi − XT

i β| and the estimating function is

Sn(β) =
1

n

n
∑

i=1

sign(Yi − XT
i β)Xi.

We suppose that the data arises from the following two models:

1. homoscedastic errors: Yi = βxi+ei, i = 1, . . . , n, where n = 20, the ei’s are independent

and identically distributed from N(0, 0.25), xi = −2,−1.9, . . . ,−1.1, 1.1, . . . , 2 and β =

1.

2. heteroscedastic errors: Yi = βxi + x2
i ei, i = 1, . . . , n with n, xi, β and ei defined as

above.

15
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An example for La regression with a = 1.5 is investigated by Hu and Kalbfleisch (2000) with

the same distributional inputs.

Table 1 (homoscedastic errors) and Table 2 (heteroscedastic errors) present coverage

percentages, average end points and standard errors of the end points for one-sided confidence

intervals at six nominal levels. In this case, the EF-t approach of Hu and Kalbfleisch (2000)

coincides with our EFB method and the NORM method refers to the normal approximation

to StS(θ) = StJ (θ) = St(θ). Each simulation study consists of N = 10, 000 replications of

B = 1, 000 resampling runs.

Insert Table 1 and Table 2 about here

Example 2. Wilcoxon rank regression.

Let Yi = γ+xT
i β+ei where ei are independent and identically distributed with E(ei) = 0,

i = 1, . . . , n. The slope β is estimated from the Wilcoxon rank regression:

Sn(β) =

(

n

2

)−1
∑

1≤i1<i2≤n

sign{Yi1 − Yi2 − (Xi1 − Xi2)
Tβ}(Xi1 − Xi2).

We consider homoscedastic errors ei ∼ N(0, .25) for i = 1, . . . , 20. Table 3 presents

the simulation results based on 10,000 replications of 1,000 resampling runs for a single

parameter example where γ = 0, β = 1 and x1, . . . , x10 = 1, x11, . . . , x20 = 0. Table 4

presents the results of a two-dimensional parameter example where γ = 0, β1 = 1, β2 =

0.5, (x1,1, . . . , x20,1) = (−2,−1.9, . . . ,−1.1, 1.1, . . . , 2), x1,2, . . . , x5,2 = 0, x6,2, . . . , x10,2 =

1, x11,2, . . . , x15,2 = 2, x16,2, . . . , x20,2 = 3 and each simulation consists of 5, 000 replications of

1, 000 resampling runs.

Insert Table 3 and Table 4 about here

Example 3. La (1 < a < 2) regression on paired differences.
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Let Yi = γ+xT
i β+ei where ei are independent and identically distributed with E(ei) = 0,

i = 1, . . . , n. The estimating function of β is given by:

Sn(β) =

(

n

2

)−1
∑

1≤i1<i2≤n

sign{Yi1−Yi2−(Xi1−Xi2)
Tβ}(Xi1−Xi2)|Yi1−Yi2−(Xi1−Xi2)

Tβ|a−1.

In Table 5, we report a simulation with independent and identically distributed errors

ei ∼ N(0, .25) where i = 1, . . . , 20, a = 1.5, γ = 0, β = 1, p = 1 and x1, . . . , x8 = 1,

x9, . . . , x20 = 0. Each method is investigated in 10,000 simulation replications of 1,000

resampling runs.

Insert Table 5 about here

The JYW method appears less accurate in terms of coverage and gives less stable confi-

dence limits than the NORM and EFB methods. Generally speaking, the normal approxi-

mation to the estimating function yields confidence intervals with good coverage properties,

although the EFB method provides some further improvement. In the simulations, we found

that all of these methods work well even when the errors are heteroscedastic; for simplicty

of presentation, results for the heteroscedastic case are reported in the first example only

(Table 2).

Jin et al. (2001) examine the JYW method in a simulation study of L1 regression

with sample size n = 41, and found it to perform reasonably well. With larger sample

sizes like this, we found the normal approximations to be very accurate and again offered

an improvement on the JYW method. With the larger sample size, however, there was

relatively little additional benefit accrued through the EFB approach. Jin et al. (2001) have

not investigated their method in problems involving U-statistics of degree two such as the

Wilcoxon regression.
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3.2 Computational Issues

In examples 1 and 2, the estimating functions are derived through minimizing objective

functions in L1 distance. Typically, such estimating functions are not continuous in the

parameters and cannot be solved exactly. Instead we define β̂ = arg minβ ||Sn(β)|| where

||a|| = max1≤i≤p |ai| for a ∈ Rp. When the iteratively reweighted algorithm is applied as in

(14), the kth step solution β(k) has been redefined accordingly as β(k) = arg minβ ||Sn(β) −

V (β(k−1))1/2u||. In the EFB approach, we take S∗
t = V

∗− 1

2

S {S∗ − S(θ̂)} to adjust for the

discontinuity in Sn(θ). When n is small, such adjustment results in slight corrections in

coverage property of the confidence intervals. Example 3 deals with a continuous estimating

function involving La criterion with 1 < a < 2 and no adjustment is needed in the numerical

computation.

We use the algorithm of Barrodale and Roberts (1973, 1974) to solve Sn(β) = 0 in

Example 1 for the L1 regression estimator β̂. The alogorithm is also described in Bloomfield

and Steiger (1983). Example 2 can be fitted through the same algorithm as an extended L1

regression problem with n(n − 1)/2 data points, each consists of the differences in response

Yi − Yj and covariates Xi − Xj between one pair of distinct individuals. When we solve

the equations of the form Sn(β) = u′ in Example 1, we can transform it into solving an L1

regression of n + 1 data points,
∑n+1

i=1 sign(Yi − XT
i β)Xi=0, where Yn+1 takes an extremely

large number and Xn+1 = −nu′ so that Yn+1 − XT
n+1β > 0 always holds. Similarly, solving

Sn(β) = u′ in Example 2 is equivalent to solving an L1 regression of n(n − 1)/2 + 1 data

where the extra data point takes an extremely large number as response and −n(n− 1)u′/2

as convariates. Parzen et al. (1994) and Jin et al. (2001) handles similar computational

issues in a similar way.
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We can view the computation involved in Examples 1 and 2 as minimizing objective

functions of the form (2) with K = 1 or K = 2 and its extended form with one extra data

point in each problem as described above. An alternative algorithm is also used in simulation

to minimize such objective functions on account of their continuity and convexity properties

with respect to β ∈ Rp. Denote the objective function by f(β). There always exists a non

empty set B such that f(β) is minimized when β ∈ B. Let β(0) be an initial value of the

algorithm, β(0) ∈ Rp. Let s > 0 be the current choice of step length. Denote the value of

the kth iteration by β(k), we define

β(k+1) = β(k) − s × f ′(β(k))

1 + ||f ′(β(k))||

where f ′(·) is the derivative with respect to β. Since β(k+1) moves from β(k) along the negative

direction of f ′(β(k)), we can always adjust step length s such that f(β(k+1)) is smaller than

f(β(k)). This iteration can be repeated until |f(β(k+1)) − f(β(k))| falls below some given

tolerance level. This algorithm turns out to be a useful alternative to the algorithm of

Barrodale and Roberts (1973, 1974) and appears quite stable even in Example 2 with two

parameters.

In Example 3, we use a bisection method to solve the estimating functions for the single

slope parameter involving La (1 < a < 2) distance. If a multiple parameter example is

considered in La (1 < a < 2) regression, a more advanced optimization procedure such as

convex programming is required.

In the one parameter examples, the EFB and the normal approximation to St(β) only

solve St(β) at the estimated percentiles and are much faster than the resampling method of

Jin et al. (2001). In the two parameter example (Table 4), all methods are comparable in
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computing time due to the requirement of solving for estimates for each resampling run, the

method of Jin et al. (2001) is often faster than the rest. When each normal approximation

or the EFB method is applied in Table 4, the function St(β) can not be solved at about .01%

of the simulated standard normal variates or .02% of the bootstrapped quantities S∗
t , while

all runs can be solved in the simulation for the method of Jin et al. (2001).

4 Discussion

The EFB method adds a powerful tool for estimation when the estimating or objective

function has U-statistic structure. These methods are particularly useful when it is difficult

to apply conventional approaches that focus on studentized Wald-tlype statistics based on

asymptotic distributions for θ̂. Such examples arise, for instance, when the objective func-

tions are related to La norm with 1 ≤ a < 2. Even in more regular type problems, however,

methods based on the score tend to have better coverage properties than those based on

the Wald type statistics. As noted by Hu and Kalbfleisch (2000), the EFB procedures are

invariant under reparametrization which is an advantage over the Wald procedures where

the choice of the parametrization can be very important.

As noted above, Jin et al. (2001) offer an alternative approach to inference based on

perturbations or resampling of the objective function. We have found that the methods

based on the estimating function improve on coverage probabilities and on the stability of

confidence intervals in all the examples considered. In the EFB methods, we have used

resampling weights that correspond to those in the usual Efron bootstrap. One could also

study other weights closer to those of Jin et al. (2001) but the weights we have chosen seem

more simply interpreted in the context of classical and familiar approaches to resampling.
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In the one parameter case, the EFB approach has considerable computational advantage

over other methods since one needs only solve the estimating function at the appropriate

quantiles of the bootstrap distribution. In considering multiparameter problems, we have

considered a method whereby the estimates are obtained following each bootstrap simulation

and quantile methods are used to determine intervals for parameters. It is of some consider-

able advantage that the left side of the studentized estimating equation is the same for each

simulation; an iteratively reweighted algorithm simplifies the computation.

For Sn of degree K ≤ 2, we have shown that the studentized estimating function St(θ) is

first order accurate. This is similar to the results of Jin et al. (2001) who established the first

order accuracy of their resampling method as well. For Sn of degree one, Hu and Kalbfleisch

(2000) show that the EFB leads to higher order approximation to the studentized estimating

function than the Normal approximation for simultaneous estimation of all parameters in

the model. Higher order approximations to studentized U-statistics of degree two have

been studied by Callaert and Veraverbeke (1981) and Helmers (1991). On account of these

studies, it is possible that the EFB method may yield higher order accuracy than the normal

approximation when the estimating function is a U-statistic of degree K = 2 and perhaps

for general K. The estimating function Sn of degree K > 2, however, seems rarely to appear

in practice, and it is not surprising that studentized U-statistics of degree higher than two

have received little attention in the literature.

When Sn(θ) is a U-statistic of degree K ≥ 1, simultaneous confidence regions for elements

of the parameter vector can be obtained by solving St(θ)
TSt(θ) = q∗α at estimated quantiles

q∗α obtained from either the chi-squared or the bootstrap approximation. When Sn(θ) is

differentiable in θ, the approach suggested by Hu and Kalbfleisch (2000) for the case K = 1
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could be generalized to obtain confidence regions for subsets of the parameters. Essentially,

they propose use of generalized score statistics (see Boos, 1992) and develop methods for

resampling these statistics. This approach avoids the need to resolve the estimating equation

with each bootstrap simulation and so yields very simple methods which are computationally

very easy to implement.

Another approach aimed at avoiding repeated solutions of the full estimating equations

has been suggested by He and Hu (2002). In the context of M estimators in linear regression,

they propose a bootstrap procedure that solves sequentially for one component of the param-

eter vector at a time. By this approach, they produce a Markov chain to approximate the

distribution of the estimator. Further investigation is needed to see whether those methods

are applicable in the presence estimating functions with dependent terms, such as those with

U-statistic structure of degree K > 1.

5 Appendix

For a matrix M , let ||M || = maxi,j{|mij|}. It is easy to see that

Lemma A.1 A sequence of square random matrices Wn converges to W in probability if

and only if aTWna → aTWa in probability for all a ∈ Rp.

Proof of Theorem 2.2: We prove the results for U-statistic Sn in (1) of any degree

K ≥ 1. For any a ∈ Rp, let S†
n(θ) = aTSn(θ). The Sen (1960) variance estimator of S†

n(θ)

is V †
S (θ) = aTVS(θ)a where VS is defined in (6). From Sen (1960), it can be seen that

nK−2V †
S (θ) → aTζ1a in probability. From Lemma A.1, we obtain (8) and (9) follows from

Slutsky’s theorem and Theorem 2.1.
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In preparation for Theorem 2.3, let

An(θ) =
1

n3

n
∑

i=1

n
∑

j=1

∑

k:k 6=j

h(Zi, Zj; θ)h
T(Zi, Zk; θ),

Bn(θ) =
1

n3

n
∑

i=1

n
∑

j=1

∑

k:k 6=j

h(Zi, Zj; θ)h
T(Zi, Zk; θ0),

ζ̃2(θ) =
1

n2

n
∑

i=1

n
∑

j=1

h⊗2(Zi, Zj; θ), (A1)

Cn(θ) =
1

n2

n
∑

i=1

n
∑

j=1

h(Zi, Zj; θ)h
T(Zi, Zj; θ0).

The following assumptions are used to establish the results of Theorem 2.3.

Assumptions:

1. The true value of θ is θ0, an interior point of the parameter space Ω. Further,

Eθ0
{Sn(θ)} = 0 has the unique solution θ0 and θ̂→θ0 in probability.

2. ||ζ2|| < ∞ and the determinant |ζ1| > 0.

3. An(θ̂), An(θ0), Bn(θ̂), and Bn(θ0) converge in probability to ζ1.

ζ̃2(θ̂), ζ̃2(θ0), Cn(θ̂), and Cn(θ0) converge in probability to ζ2.

4. There exists a function f(Z1, Z2) with E{f(Z1, Z2)} < ∞ and a neighbourhood B(θ0)

of θ0 such that supθ∈B(θ0) ||ζ̃2(θ)|| ≤ f(Z1, Z2).

5. For almost every sequence of random vectors Z1, Z2, . . . , Zn, . . . in Rp and any ǫ > 0,

n
∑

i=1

||Tn,i||2I{||Tn,i|| > ǫ} → 0,

where Tn,i = ζ̃1(θ̂)
−1/2∑n

j=1 h(Zi, Zj; θ̂)/n and ζ̃1(θ̂) = n−2(n − 1)3VS(θ̂)/4.
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The Assumption 3 is needed to be able to substitute θ̂ into the estimating function before

bootstrapping the terms. It is of some interest to note that these results would follow from

conditions of uniform convergence. For example, if An(θ) converges to its probability limit

ζ1(θ, θ0) = Eθ0
{h(Z1, Z2; θ)h

T(Z1, Z3; θ)} uniformly in a neighbourhood of θ0 and ζ1(θ, θ0) is

continuous at θ0, then An(θ0) → ζ1 and An(θ̂) → ζ1.

Proof of Theorem 2.3: Some approaches in the following proof derive from Theorems 1

and 4 of Athreya et al. (1984) and Theorem 7.1 of Hoeffding (1948).

Let Fn be the empirical distribution function of Z1, . . . , Zn, and let Z∗
1 , . . . , Z

∗
n be a

random sample from Fn. The expressions (13) and (14) can be written as

V ∗
S (θ̂) =

4

n(n − 1)

n
∑

i=1







1

n − 1

∑

j:j 6=i

h(Z∗
i , Z∗

j ; θ̂) − S∗
n(θ̂)







⊗2

and S∗
tS

(θ̂) = V ∗
S (θ̂)

−1/2
S∗

n(θ̂) where S∗
n(θ̂) = 2n−1(n − 1)−1∑

1≤i1<i2≤n h(Z∗
i1
, Z∗

i2
; θ̂).

Let E∗(·) = E(·|Fn) and define h∗
1(z

∗
1 ; θ) = E∗{h(z∗1 , Z

∗
2 ; θ)} = n−1∑n

i=1 h(z∗1 , Zi; θ).

Given Fn, h∗
1(Z

∗
1 ; θ̂), . . . , h

∗
1(Z

∗
n; θ̂) are independent and identically distributed with mean 0

and conditional covariance matrix E∗{h∗⊗2

1 (Z∗
1 ; θ̂)} = ζ̃1(θ̂) where we define

ζ̃1(θ) =
1

n3

n
∑

i1=1







n
∑

i2=1

h(Zi1, Zi2 ; θ)







⊗2

.

Simple calculation indicates that ζ̃1(θ̂) = n−2(n − 1)3VS(θ̂)/4. By the definition of ζ̃2(θ)

in (A1), we have the repeatedly used fact that ζ̃1(θ̂)(l,l) ≤ ζ̃2(θ̂)(l,l) for any given Fn and

l = 1, . . . , p.

To show (12), consider first the case p = 1 for which

nV ∗
S (θ̂) =

4

n − 1

n
∑

i=1

b2
i (θ̂) −

4n

n − 1
S∗2

n (θ̂) (A2)
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where bi(θ̂) = (n − 1)−1∑

j:j 6=i h(Z∗
i , Z

∗
j ; θ̂).

Given Fn, S∗
n(θ̂) is a U-statistic and from (3.17) of Athreya et al. (1984) we obtain,

E{S∗
n(θ̂)}2 = E[E∗{S∗

n(θ̂)}2] =

(

n

2

)−1

[2(n − 2)E{ζ̃1(θ̂)} + E{ζ̃2(θ̂)}] ≤
4

n
E{ζ̃2(θ̂)}. (A3)

By Assumptions 3, 4 and the dominated convergence theorem (Loève, 1977), E{S∗
n(θ̂)}2 → 0

so that S∗
n(θ̂) → 0 in probability as n → ∞. In view of (A2), it remains to show that

1

n

n
∑

i=1

{bi(θ̂)}2 → ζ1 in probablity. (A4)

Similar to (3.21) of Athreya et al. (1984), we have

n−1
n
∑

i=1

E{bi(θ̂) − h∗
1(Z

∗
i ; θ̂)}2 = E{bi(θ̂) − h∗

1(Z
∗
i ; θ̂)}2 ≤ (n − 1)−1Eζ̃2(θ̂).

Thus,

1

n

n
∑

i=1

{bi(θ̂) − h∗
1(Z

∗
i ; θ̂)}2 → 0 (A5)

in probability. According to Lemma 1 of Sen (1960) and (A5), the result (A4) follows

if n−1∑n
i=1 h∗2

1 (Z∗
i ; θ̂) → ζ1 in probability. Following arguments for (3.24) and (3.25) in

Athreya et al. (1984), it follows that n−1∑n
i=1 h∗2

1 (Z∗
i ; θ0) → ζ1 in probability, and it suffices

to show that

1

n

n
∑

i=1

{h∗
1(Z

∗
i ; θ̂) − h∗

1(Z
∗
i ; θ0)}2 → 0 in probability. (A6)

Given Fn, the left side of (A6) is an average of conditionally independent and identically

distributed terms and has characteristic function φn(t) = E{φ∗
n(t/n)}n where φ∗

n(t/n) =

E∗[exp{it(h∗
1(Z

∗
i ; θ̂)− h∗

1(Z
∗
i ; θ0))

2/n}]. To show (A6), we show that limn→∞ φn(t) → 1 and,

by the dominated convergence theorem, this follows if {φ∗
n(t/n)}n → 1 in probability. Let

rn(t/n) =
∫∞
−∞[exp{it(h∗

1(u; θ̂) − h∗
1(u; θ0))

2/n} − 1]dFn(u) so that φ∗
n(t/n) = 1 + rn(t/n). It
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now remains to show n|rn(t/n)| → 0 in probability. From the inequality for characteristic

functions,

n|rn(t/n)| ≤ |t|
∫ ∞

−∞
{h∗

1(u; θ̂) − h∗
1(u; θ0)}2dFn(u)

=
|t|
n

n
∑

i=1







1

n

n
∑

j=1

h(Zi, Zj; θ̂) −
1

n

n
∑

j=1

h(Zi, Zj; θ0)







2

(A7)

=
|t|
n
{ζ̃2(θ̂) + ζ̃2(θ0) − 2Cn(θ̂)} + |t|{An(θ̂) + An(θ0) − 2Bn(θ̂)}.

By Assumption 3, n|rn(t/n)| → 0 in probability.

This establishes (12) in the single parameter case (p = 1). To show (12) in the multiple

parameter case, we replicate the above steps for the scalar valued U-statistic aTSn(θ) and

use Lemma A.1.

To show (13), we first show that

VS(θ̂)−1/2S∗
n(θ̂) → N(0 , 1) in distribution. (A8)

Let Xn,i = ζ̃1(θ̂)
−1/2h∗

1(Z
∗
i ; θ̂). For n = 1, 2, . . . and i = 1, . . . , n, {Xn,i} is a triangular array

whose elements in the nth row are independent and identically distributed conditional on

Fn. The corresponding Lindeberg condition is that

n
∑

i=1

E∗||Xn,i||2I{||Xn,i|| > ǫ} → 0

for all ǫ > 0. This has the same form as Assumption 5 so that 1√
n

∑n
i=1 Xn,i → N(0 , 1) in

distribution.

Let Yn = (n − 1)3/2n−1S∗
n(θ̂) and Zn = 2n−1/2∑n

i=1 h∗
1(Z

∗
i ; θ̂). Now,

VS(θ̂)−
1

2 S∗
n(θ̂) − 1√

n

n
∑

i=1

Xn,i = {4ζ̃1(θ̂)}− 1

2 (Yn − Zn).
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To show (A8), we show that ζ̃1(θ̂) = (n−1)3n−2VS(θ̂)/4 → ζ1 and Yn−Zn → 0 in probability.

By Theorem 2.2, naTVS(θ0)a/4 → aTζ1a in probability. Since Sn(θ0) → 0 in probability and

naTVS(θ)a =
4

n − 1

n
∑

i=1

{ 1

n − 1

∑

j:j 6=i

aTh(Zi, Zj; θ)}2 − 4n

n − 1
{aTSn(θ)}2,

Lemma 1 of Sen (1960) and Lemma A.1 imply that ζ̃1(θ̂) → ζ1 if

n−1
n
∑

i=1







1

n

n
∑

j=1

aTh(Zi, Zj; θ̂) −
1

n

n
∑

j=1

aTh(Zi, Zj; θ0)







2

→ 0

in probability. This follows from a similar argument used to verify (A7).

Finally, Yn − Zn → 0 in probability if E(Y (l)
n − Z(l)

n )2 → 0 for each l = 1, . . . , p, where

a(l) stands for the lth component of a vector a. Given Fn, S∗
n(θ̂) is a U-statistic with mean

0 so that

E∗(Y (l)
n )2 =

4(n − 1)2(n − 2)

n3
ζ̃1(θ̂)(l,l) +

2(n − 1)2

n3
ζ̃2(θ̂)(l,l).

Since Zn is a sum of conditional independent vectors, E∗(Z(l)
n )2 = 4ζ̃1(θ̂)(l,l). Finally,

E∗(Y (l)
n Z(l)

n ) =
4

n(n − 1)

(

n − 1

n

)

3

2
n
∑

i=1

∑

1≤i1<i2≤n

E∗{h∗
1(Z

∗
i ; θ̂)

(l)h(Z∗
i1
, Z∗

i2
; θ̂)(l)}

= 4
(

n − 1

n

)

3

2

ζ̃1(θ̂)(l,l)

where the sum contains n(n − 1) nonzero terms E∗{h∗
1(Z

∗
i ; θ̂)

(l)h(Z∗
i1
, Z∗

i2
; θ̂)(l)} = ζ̃1(θ̂)(l,l)

when i1 = i or i2 = i. It follows that

E(Y (l)
n − Z(l)

n )2 = E{E∗(Y (l)
n − Z(l)

n )2} ≤ 10

n
E{ζ̃2(θ̂)(l,l)},

and by an argument similar to that leading to (A3), E(Y (l)
n − Z(l)

n )2 → 0 which establishes

(A8).

The result (13) follows from Slutsky’s theorem.
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Table 1. Upper Confidence Intervals for Example 1 with Homoscedastic Errors. N=10,000,
B=1,000, n=20.

Nominal 2.5% 5.0% 10.0% 90.0% 95.0% 97.5%
JYW:CP(%) 9.36 12.89 18.24 81.03 86.38 90.30

Avg.CI .82 .85 .89 1.11 1.14 1.17
SE.CI .14 .13 .13 .12 .13 .14

Norm:CP(%) 3.60 6.26 11.34 89.04 94.09 96.53
Avg.CI .83 .86 .89 1.11 1.14 1.17
SE.CI .09 .09 .09 .09 .09 .09

EF-t:CP(%) 2.91 5.23 10.30 89.78 94.85 97.34
Avg.CI .82 .85 .88 1.12 1.15 1.18
SE.CI .10 .09 .09 .09 .09 .10

Table 2. Upper Confidence Intervals for Example 1 with Heteroscedastic Errors. N=10,000,
B=1,000, n=20.

Nominal 2.5% 5.0% 10.0% 90.0% 95.0% 97.5%
JYW:CP(%) 9.23 12.75 17.80 81.73 87.12 90.68

Avg.CI .56 .63 .72 1.28 1.36 1.44
SE.CI .34 .33 .31 .31 .33 .34

Norm:CP(%) 3.55 6.27 11.29 89.07 94.11 96.56
Avg.CI .58 .65 .72 1.28 1.35 1.42
SE.CI .24 .23 .23 .23 .23 .24

EF-t:CP(%) 2.94 5.25 10.42 89.54 94.74 97.12
Avg.CI .55 .62 .71 1.29 1.38 1.45
SE.CI .25 .24 .23 .23 .24 .25
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Table 3.Upper Confidence Intervals for Example 2. p=1, N=10,000, B=1,000, n=20.

Nominal 2.5% 5.0% 10.0% 90.0% 95.0% 97.5%
JYW:CP(%) 5.42 8.88 14.45 85.50 91.15 94.42

Avg.CI .57 .65 .73 1.27 1.35 1.43
SE.CI .28 .27 .26 .26 .27 .28

Norm-S:CP(%) 4.00 6.19 10.74 89.23 93.91 96.15
Avg.CI .58 .64 .71 1.29 1.36 1.42
SE.CI .24 .24 .24 .24 .24 .24

Norm-J:CP(%) 3.34 5.43 9.76 90.28 94.66 96.73
Avg.CI .56 .62 .70 1.31 1.38 1.44
SE.CI .24 .24 .24 .24 .24 .24

EFB:CP(%) 2.75 5.03 10.24 89.99 94.64 97.25
Avg.CI .53 .61 .70 1.30 1.40 1.48
SE.CI .24 .24 .24 .24 .24 .25
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Table 4.Upper Confidence Intervals for Example 2. p=2, N=5,000, B=1,000, n=20.

Nominal 2.5% 5.0% 10.0% 90.0% 95.0% 97.5%
JYW:β1-CP(%) 10.92 15.84 23.10 83.78 89.28 92.62

Avg.CI .63 .70 .77 1.27 1.35 1.43
SE.CI .31 .30 .29 .27 .28 .29

β2-CP(%) 7.40 10.74 16.46 76.80 83.84 89.22
Avg.CI -.10 .00 .12 .83 .93 1.02
SE.CI .40 .39 .38 .41 .42 .43

Norm-S:β1-CP(%) 4.44 6.98 11.24 89.38 93.74 96.32
Avg.CI .58 .65 .73 1.28 1.36 1.43
SE.CI .25 .24 .23 .23 .24 .25

β2-CP(%) 3.30 5.78 10.76 88.66 93.78 95.88
Avg.CI -.10 -.01 .10 .90 1.01 1.10
SE.CI .35 .34 .33 .33 .34 .35

Norm-J:β1-CP(%) 3.56 6.22 10.44 89.30 94.04 96.86
Avg.CI .55 .62 .71 1.29 1.38 1.45
SE.CI .25 .25 .24 .24 .25 .26

β2-CP(%) 2.98 5.40 10.34 90.04 94.34 96.48
Avg.CI -.13 -.03 .08 .93 1.04 1.14
SE.CI .35 .35 .34 .33 .34 .35

EFB:β1-CP(%) 2.68 5.08 9.70 90.38 95.06 97.54
Avg.CI .51 .60 .69 1.31 1.41 1.50
SE.CI .26 .25 .24 .24 .25 .26

β2-CP(%) 2.58 4.28 8.46 91.44 96.02 97.88
Avg.CI -.20 -.08 .05 .95 1.09 1.20
SE.CI .35 .34 .33 .34 .35 .36
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Table 5. Upper Confidence Intervals for Example 3. p=1, N=10,000, B=1,000, n=20.

Nominal 2.5% 5.0% 10.0% 90.0% 95.0% 97.5%
JYW:CP(%) 5.45 8.91 14.45 85.39 91.03 94.59

Avg.CI .60 .67 .74 1.25 1.33 1.40
SE.CI .25 .24 .24 .24 .24 .25

Norm-S:CP(%) 3.89 6.52 11.52 88.83 93.59 96.10
Avg.CI .58 .64 .72 1.28 1.36 1.42
SE.CI .24 .24 .23 .23 .24 .24

Norm-J:CP(%) 3.14 5.32 9.90 89.88 94.48 96.85
Avg.CI .55 .62 .70 1.30 1.38 1.44
SE.CI .24 .24 .23 .23 .24 .24

EFB:CP(%) 2.43 5.04 9.82 89.93 94.89 97.29
Avg.CI .52 .60 .69 1.30 1.39 1.48
SE.CI .26 .24 .25 .24 .24 .25
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