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MAXIMUM LIKELIHOOD ESTIMATION
OF ORDERED MULTINOMIAL

PARAMETERS

Nicholas P. Jewell and Jack Kalbfleisch

Abstract

The pool-adjacent violator-algorithm (Ayer et al., 1955) has long been known
to give the maximum likelihood estimator of a series of ordered binomial param-
eters, based on an independent observation from each distribution (see, Barlow et
al., 1972). This result has immediate application to estimation of a survival dis-
tribution based on current survival status at a set of monitoring times. This paper
considers an extended problem of maximum likelihood estimation of a series of
‘ordered’ multinomial parameters pi = (p1i, p2i, . . . , pmi) for 1 < = I < = k,
where ordered means that pj1 < = pj2 < = .. . < = pjk for each j with 1 < = j
< = m-1. The data consist of k independent observations X1, . . . ,Xk where
Xi has a multinomial distribution with probability parameter pi and known index
ni > = 1. By making use of variants of the pool adjacent violator algorithm, we
obtain a simple algorithm to compute the maximum likelihood estimator of p1, . .
. , pk, and demonstrate its convergence. The results are applied to nonparametric
maximum likelihood estimation of the sub-distribution functions associated with
a survival time random variable with competing risks when only current status
data are available. (Jewell et al., 2003)
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SUMMARY

The pool-adjacent violator-algorithm (Ayer et al., 1955) has long been known to give the
maximum likelihood estimator of a series of ordered binomial parameters, based on an
independent observation from each distribution (see, Barlow et al., 1972). This result has
immediate application to estimation of a survival distribution based on current survival sta-
tus at a set of monitoring times. This paper considers an extended problem of maximum
likelihood estimation of a series of ‘ordered’ multinomial parameters pi = (p1i, p2i, . . . , pmi)
for 1 ≤ i ≤ k, where ordered means that pj1 ≤ pj2 ≤ · · · ≤ pjk for each j with 1 ≤ j ≤ m−1.
The data consist of k independent observations X1, . . . ,Xk where Xi has a multinomial
distribution with probability parameter pi and known index ni ≥ 1. By making use of
variants of the pool adjacent violator algorithm, we obtain a simple algorithm to compute
the maximum likelihood estimator of p1, . . . ,pk, and demonstrate its convergence. The re-
sults are applied to nonparametric maximum likelihood estimation of the sub-distribution
functions associated with a survival time random variable with competing risks when only
current status data are available. (Jewell et al., 2003).

Some key words: Competing risks; Current status data; Isotonic regression; Nonparametric
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Hosted by The Berkeley Electronic Press



1 Introduction

Suppose that X1, ..., Xk are independent random variables where, for 1 ≤ i ≤ k, Xi has a
binomial distribution with known index ni and probability pi, where 0 ≤ p1 ≤ p2 ≤ · · · ≤
pk ≤ 1, and consider estimation of p1, ..., pk. This problem has a rich history with many
applications. Least squares and maximum likelihood yield the same estimator (Barlow et
al., 1972), and the well-known pool adjacent violators (PAV) algorithm (Ayer et al., 1955)
provides a fast and straightforward method for computing it. Variations on this algorithm
have been considered by several authors such as the Kruskal (1964) “up-and-down-blocks”
algorithm; see also Wu (1982). Current status observations of a survival random variable,
T , at an ordered sequence of independent monitoring times, C1 < . . . < Ck, provides
a specific example of this data structure. Nonparametric maximum likelihood estima-
tion of the distribution function F of T corresponds to maximum likelihood estimation of
pi = F (Ci), i = 1, ..., k as above if, at each Ci, we observe the number Xi out of ni inde-
pendent individuals who have failed by time Ci. These methods have been widely applied
to estimation problems in such divergent fields as carcinogenicity testing, demography,
economics, and epidemiology (Jewell and van der Laan, 2003).

We consider a more general problem in which, for each i, Xi = (X1i, ..., Xmi) is an inde-
pendent multinomial variable with known index ni and probability pi = (p1i, p2i, . . . , pmi),∑m

j=1 pji = 1, where the pis are known to satisfy the constraints:

0 ≤ pj1 ≤ pj2 ≤ · · · ≤ pjk ≤ 1, 1 ≤ j ≤ m − 1. (1)

The log likelihood function is

` =

k∑

i=1

[X1i log(p1i) + · · · + Xmi log(pmi)] , (2)

and the proposed maximum likelihood estimator (MLE) maximizes (2) subject to the con-
straints (1) and

∑m
j=1 pji = 1 for each i. The problem of maximum likelihood estimation

of a sequence of k ordered binomial parameters is the special case m = 2.

A key motivating application is provided by the need to estimate the properties of a
survival random variable, T , in the presence of m− 1 competing risks. This is described in
Section 2, and illustrated by a simple example on characteristics of age at menopause, due
to either operative or natural causes; the MLE for a data set for this situation is illustrated
in Section 6.

For a given j, the PAV yields a ‘naive MLE’ of the parameters pj1, ..., pjk by maximizing
the product binomial likelihood for pj1, . . . , pjk subject to the constraint 0 ≤ pj1 ≤ pj2 ≤
· · · ≤ pjk ≤ 1. By the theory of isotonic regression, this estimator is consistent, but it is not
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generally the full MLE of pi : 1 ≤ i ≤ k from the log likelihood (2). (For example, there
is no guarantee that these naive estimators satisfy

∑m−1
j=1 p̂ji ≤ 1 for all i, 1 ≤ i ≤ k.) In

this article, we derive a simple algorithm to compute the full MLE. In Section 7, we make
some further comparison of the full MLE to the naive univariate isotonic MLEs.

Section 3 describes an iterative algorithm that, subject to the constraints, maximizes
(2) over pj1, pj2, . . . , pjk, for each j = 1, ..., m − 1 in turn, when the other parameters
pl1, pl2, . . . , plk for l 6= j, m are fixed. It is shown that this algorithm, with a slight modifi-
cation, converges to the full MLE from (2). Section 4 develops a modified PAV algorithm
to implement each of the univariate isotonic maximizations used in Section 3. Section 5
presents simple ’toy’ examples; we encourage the reader to glance at this section first, and
have the examples at hand as an aid to following the description of the MLE algorithm in
Sections 3 and 4. A small simulation study is reported in Section 7. Convergence proofs
are given in the Appendices.

For the rest of the paper, we restrict attention to the case where m = 3 for simplicity.
It is straightforward to extend the algorithm and ideas to larger values of m.

2 Motivating Example—Current Status Observation

of a Survival Variable with Competing Risks

Consider a survival random variable, T , where ’failure’ can occur due to one of m − 1
competing risks. If J is the random variable that measures cause of failure, the sub-
distribution functions of interest are defined by

Fj(t) = pr(T ≤ t, J = j),

for j = 1, . . . , m − 1, with the overall survival function given by

S(t) = 1 −
m−1∑

j=1

Fj(t).

Suppose, for each individual under study, only current status information on survival status
is available at a single monitoring time C, where it is assumed that, if an individual is known
to have failed by the observation time, the cause of failure is also observed. Thus, the data
from a single observation is simply (I(T ≤ C), ∆), where I(·) is the indicator function, and
∆ = j if T ≤ C and J = j (j = 1, . . . , m − 1), and ∆ = m if T > C. Assuming that
monitoring times are independent of T and are uninformative, it is easy to see that the log
likelihood of n independent observations of this kind, conditional on the observed Cs, is

3
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Table 1: Data on menopausal current status from McMahon and Worcester (1966). Ci =
age, ni= # respondents, xi=# operative menopause, yi=# natural menopause, zi=# non
menopausal

Ci ni xi yi zi Ci ni xi yi zi

27.5 380 4 0 376 46.5 76 16 11 49
32.5 359 21 0 338 47.5 75 18 16 41
35.5 89 7 0 82 48.5 80 19 18 43
36.5 87 5 0 82 49.5 66 20 19 27
37.5 61 5 1 55 50.5 72 18 32 22
38.5 83 11 2 70 51.5 66 10 38 18
39.5 99 11 2 86 52.5 54 16 30 8
40.5 78 8 1 69 53.5 67 18 40 9
41.5 66 7 1 58 54.5 50 18 28 4
42.5 80 16 4 60 55.5 45 19 25 1
43.5 74 11 5 58 56.5 50 13 36 1
44.5 67 10 3 54 57.5 54 13 40 1
45.5 99 20 12 67 58.5 46 13 33 0

-

given by (2). In particular, we assume that there are k distinct ordered monitoring times,
C1 < . . . < Ck and Xji is the number of observations monitored at time Ci for whom ∆ = j;
then equivalence of the likelihoods is obtained by setting pji = Fj(Ci) for j = 1, . . . , m − 1
and pmi = S(Ci).

A particularly simple version of this data structure arises from the National Center for
Health Statistics’ Health Examination Survey, discussed by Krailo and Pike (1983) and orig-
inally analyzed by McMahon and Worcester (1966). These papers focus on the menopausal
history of 3,581 female respondents from 1960-1962 who provided cross-sectional informa-
tion on their age and their menopausal status. For those who had experienced menopause,
McMahon and Worcester deemed further retrospective information on the age of onset
unreliable. Thus, Krailo and Pike (1983) concentrated on data on current menopausal
status along with supplementary information on whether or not menopause was the result
of surgery. The time variable, T , is age and the competing risks, J = 1, 2, are natural
menopause and operative menopause. The summarized data are in Table 1. Previous
analyses examined parametric estimates of the sub-distribution functions Fj. In Section 6
we provide the nonparametric maximum likelihood estimates.

Two implicit assumptions are required to apply the general structure to this particular
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example and others with similar characteristics. First, selective mortality effects are being
ignored. That is, the proposed analysis is, in fact, estimating age-specific probabilities
related to menopause assuming survival to that particular age. In particular, we need here
that the risk of death at a given age is no different after menopause than before. While
this may be appropriate for natural menopause, it should be treated with caution for
operative menopause. Second, since the data for all different ages was collected at a single
calendar time, it is assumed that the distributions of age at menopause are stationary
in calendar time. From another point of view, if date of birth is a predictor of age at
menopause, this covariate (along with others for that matter) is being ignored in this
marginal analysis. Krailo and Pike (1983) argue that both differential mortality or secular
changes are unlikely to change estimates of incidence probabilities for natural or operative
menopause in practice.

Similar examples arise from other applications where current status data occurs with
more than one ‘competing’ outcome. An application from epidemiology occurs in studies
of the time to HIV infection when two or more distinct HIV-1 subtypes are prevalent and
when only current status information on infection status is available at a single monitoring
time for each study participant; see Hudgens et al. (2001).

3 Iterative Maximization over Components of p

To avoid unnecessary use of subscripts, it is convenient to introduce a slightly different
notation for the case m = 3. Let (Xi, Yi, Zi) be a trinomial variate with index ni and
probabilities pi, qi, 1− pi − qi, independently for i = 1, ..., k. We wish to maximize the log
likelihood function

`(p,q) =

k∑

i=1

{xi log pi + yi log qi + zi log[1 − pi − qi]}, (3)

where p = (p1, ..., pk) and q = (q1, ..., qk). The parameter space,

Θ = {(p,q) : 0 ≤ p1 ≤ ... ≤ pk; 0 ≤ q1 ≤ ... ≤ qk; 1− p − q ≥ 0},

is a compact convex set in R2k.

A few general remarks follow easily at this stage.

R1 If for each i, 1 ≤ i ≤ k, xi < ni and yi < ni, then ` is a strictly concave function of
(p,q). As a consequence, there exists a unique MLE (p̂, q̂) of (p,q) in Θ.

5

Hosted by The Berkeley Electronic Press



R2 If xi = ni for some i, then the corresponding qi does not enter the likelihood and
the MLE of qi will not be uniquely determined in general. It is possible however, to
reduce the problem by considering (3) as a likelihood only in the remaining elements
of (p,q). With respect to these variables, the likelihood is again strictly concave and
there is a unique MLE. We adopt a convention that, when qi is missing from the
likelihood, we take its estimate to be the same as that for qi−1 where we interpret
q0 = 0. There is a unique such MLE. A similar issue arises when yi = ni for some i
where now pi disappears from the likelihood. This is accommodated in an identical
fashion.

R3 In general, (p̂, q̂) is an MLE if and only if the directional derivative from (p̂, q̂) toward
any other point in Θ is non-positive. That is, if and only if

D`[(p̂, q̂); (p,q)] = lim
ε→0+

`[(1 − ε)(p̂, q̂) + ε(p,q)] − `[p,q]

ε
≤ 0,

for all (p,q) ∈ Θ.

Consider now the one dimensional problem of maximizing the likelihood with respect
to p for given q. This log likelihood can be written

`†(p;q) =
k∑

i=1

{xi log pi + zi log[1 − pi − qi]}

with qi fixed. This is a one dimensional isotonic problem, and we obtain the order restricted
estimate p̃(q) by a variation of the pool adjacent violators algorithm as described in Section
4. Similarly the isotonic estimate of q given p is q̃(p). With a view to maximizing the
joint likelihood (3), consider the following:

CYCLICAL ALGORITHM:

1. Let q(0) be an initial estimate that satisfies the restriction q
(0)
1 ≤ ... ≤ q

(0)
k . Set j = 0.

2. Find p(j+1) = p̃(q(j)); find q(j+1) = q̃(p(j+1)).

3. Check for convergence. If not, then set j = j + 1 and go to 2.

Theorem 1: If zk > 0, the cyclical algorithm converges to (p̂, q̂), the unique M¿E of (p,q).

The proof of this theorem is given in appendix A. When zk = 0, the situation is more
complicated since the successive iterated values of qk and pk do not change. If zk = 0 and
zk−1 > 0, Lemma 2 of Appendix A establishes that the algorithm converges to a constrained
MLE—the constraint being that qk is fixed at its starting value. To find the overall MLE,
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one simply computes the constrained maxima for each choice of starting value for qk over
the interval [0, 1]. A tabulation of the maximized constrained likelihood (3) then identifies
the global maximum. An alternative approach is to place a small mass ∆ in place of zk = 0
in the likelihood and apply the algorithm to the revised likelihood. As ∆ → 0, the resulting
estimates should converge to the MLEs in the original problem with zk = 0. The algorithm
tends to become slow, however, when ∆ is small. A numerical one-dimensional Newton
algorithm in qk provides a further alternative.

Finally, if zk−r−1 > 0 and zi = 0 for k − r ≤ i ≤ k with r ≥ 1, the situation is similar.

With starting value q(0) the algorithm converges to an estimator that has q̄i = q
(0)
k , k−r ≤

i ≤ k, fixed. These values in fact are fixed throughout the iteration. The overall MLE can
again be found by exploration in one dimension.

4 The Univariate Isotonic Problem

In order to fully implement the algorithm described in Section 3, we now need to develop
an algorithm for the univariate maximizations needed in Step 2 of the cyclical algorithm
of Section 3. Consider maximization of the function of p given by

φ(p) =

k∑

i=1

[xi log pi + zi log(1 − pi − qi)] ≡ [xi log pi + zi log(ci − pi)] , (4)

subject to the constraints 0 ≤ pi ≤ ci, where c1 = 1 − q1, . . . , ck = 1 − qk are constants
satisfying 1 ≥ c1 ≥ c2 ≥ · · · ≥ ck > 0, and the isotonic condition p1 ≤ p2 ≤ · · · ≤ pk. Note
that the combination of these two sets of inequalities implies that pj ≤ ck for 1 ≤ j ≤ k.
An identical situation arises when maximizing ` in q, holding p fixed.

As in the overall maximization, we must be careful at the boundary of the parameter
space. First, we assume that xi + zi > 0; this corresponds to yi < ni as discussed in the
second remark in Section 2. If xi + zi = 0, then the corresponding pi does not appear in φ
and so cannot be identified, in general. We reiterate the convention of Section 2: in such
circumstances we take p̂i to equal p̂i−1 (or 0 if i = 1). Second, we restrict attention to the
case where x1 > 0; for, if x1 = x2 = · · · = xj = 0, then p̂1 = p̂2 = · · · = p̂j = 0 maximizes
the first j terms in (6) without additional constraints on the remaining k − j terms.

A similar, but more complicated, situation occurs when zk = 0. If zk > 0, then p̂k < ck

and all other estimates p̂j < ck for j = 1, ..., k − 1. This situation is at the core of our
analysis in Theorem 2 below. If zk = 0, then clearly p̂k = ck. But, because of the boundary
ck, we cannot simply ignore this kth term and proceed with maximization over p1, ..., pk−1

since, even if zk−1 > 0, it is possible that p̂k−1 = ck, and so on. When zk = 0, we first peel
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off the “upper” estimates for which p̂u+1, ..., p̂k = ck for some u ≤ k − 1. Having done this,
we can proceed with maximization over p1, ..., pr “away” from the boundary constraint.

Let S(p) = (S1(p), . . . , Sk(p)) where

Si(p) =
∂

∂pi

φ(p) =
xi

pi

− zi

ci − pi

, i = 1, ..., k.

The following theorem, proved in Appendix B, characterizes the solution to maximization
of φ(p) in terms of these score functions:

Theorem 2: Let φ(p) be given by (4) with x1 > 0 and zk > 0. There is a unique value of p
that maximizes φ subject to the constraints 0 ≤ pi ≤ ci and p1 ≤ p2 ≤ · · · ≤ pk. The value
p is determined by the properties

k∑

i=1

piSi(p) = 0,

and
k∑

i≥j

Si(p) ≤ 0, for 1 ≤ j ≤ k.

Before we return to the boundary problem, we describe a modified pool adjacent vi-
olators algorithm for implementation of the maximization in Theorem 2. For s ≤ t ∈
{1, 2, . . . , k}, let p(s,t) maximize the log likelihood φ(s,t) =

∑t
l=s [xl log p + zl log(cl − p)].

Let pmin
(s,i) = min

t≥i
p(s,t) for s ≤ i and define

{
i : p

(i,i)
min = max

s≤i
p

(s,i)
min

}
≡ {k∗

1, . . . , k
∗
r} ,

say, where k∗
1 < · · · < k∗

r . Note that k∗
1 = 1, and let k∗

r+1 = k + 1. The specific indices
k∗

1, . . . , k
∗
r define blocks of indices i for which the maximum likelihood estimator p̂i is con-

stant In particular, the value of p that maximizes φ, as characterized in Theorem 2, is
p̂ = (p̂1, . . . , p̂k)

T where

p̂i = θ̂j, k∗
j ≤ i < k∗

j+1, j = 1, . . . , r, (5)

and θ̂j maximizes φ(k∗
j ,k∗

j+1−1), 1 ≤ i ≤ k; 1 ≤ j ≤ r.

In the simple binomial isotonic situation, the analogues of the estimated values (θ1, ..., θr)
are simply grouped proportions over the relevant blocks. Here, it is still straightforward to
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obtain the estimates but now, θj is the solution to a polynomial equation of order t if the
block corresponding to θj contains t indices.

We now put the boundary estimate and the MLE in Theorem 2 together by defining
u = max{j : p̂j < ck}. Then, p̂i = ck for i = u + 1, ..., k and, for i ≤ u, p̂i is determined
via Theorem 2 (note that, necessarily zu > 0). It is, in fact, not necessary to consecutively
search for the value of u and then the estimates p̂i for i ≤ u. We can identify the entire
maximum likelihood estimate using the modified PAV algorithm implemented, for example,
by passing through the data from right to left. At each stage in the algorithm, there is
a group of blocks denoted α0, α1, ..., αs, each block comprising sequential indices. Denote
the entries of an arbitrary set of blocks by αj = {i : kj ≤ i < kj+1}, j = 0, ..., r where
1 ≤ k0 < k1 < ... < kr+1 = k + 1. For each i ∈ αj, pi is estimated by the common value
θi ∈ [0, ck] which maximizes

φkj ,kj+1−1 =
∑

i∈αj

{xi log p + zi log(ci − p)}.

With this background, we define:

THE MODIFIED PAV ALGORITHM

P1. Define initial blocks α0 = {k − 1}, α1 = {k} with corresponding estimates θ0, θ1.
Note that k0 = k − 1, k1 = k, s = 1.

P2. For current blocks α0, α1, ..., αs, is θ0 ≤ θ1? If so, then go to P4. If not, then go to
P3.

P3. There is a violation. Pool α0 and α1, label as α0 and determine the new θ0. Relabel
α2, ..., αs as α1, ..., αs−1. Set s = s − 1. If s = 1 go to P4; if s > 1, go to P2.

P4. There is no violation. Is k0 = 1? If so, then END. If not, then relabel α0, ..., αs as
α1, ..., αs+1, set α0 = {k0 − 1}, and go to P2.

At the conclusion of the algorithm, the blocks α0, ...αs and probabilities θ0, ..., θs define
the isotonic maximum likelihood estimate.

5 Simple Examples

In the next section, we apply the algorithm to a set of data on the onset of menopause.
First, however, we consider two simple examples that serve to illustrate some properties of
the algorithm and the estimates. Let m = 3 and k = 2 and use the notation of Section
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3. In the first example, the data are (X1, Y1, Z1) = (1, 0, 1) and (X2, Y2, Z2) = (0, 2, 0),
whereas in the second (X1, Y1, Z1) = (1, 0, 1) and (X2, Y2, Z2) = (0, 1, 1).

In the first case, p2 does not appear in the likelihood and, since z2 = 0, the algorithm
leaves the initial values (p2, q2) (with p2 = 1 − q2) unchanged. For the moment take q2

to be fixed; later, to find the MLE, we carry out a one-dimensional search over such fixed
starting values for q2 as discussed at the end of Section 3. With q2 fixed, we start the
iteration at any value p1

(0), then we see from φ(q), defined as for φ(p) in (4), that q1
(0) = 0

and we proceed to find p
(1)
1 . If q2 > 0.5, then p1

(1) = 1 − q2, and, if q2 ≤ 0.5, p1
(1) = 0.5.

In either case, the algorithm converges in one step. The maximum log likelihood can be
computed for all q2, and it immediately follows that the MLE is (p̂1, q̂1) = (0.25, 0) and
(p̂2, q̂2) = (0.25, 0.75). In this case, note that p̂2 is uniquely identified by the inequalities
imposed by p̂1 and q̂2.

In the second case, z2 > 0, and so the algorithm determines q̂2 directly. Suppose we
begin with (p1

(0), p2
(0)) = (0.25, 0.25), the naive estimator of Section 1. We find that

(q1
(0), q2

(0)) = (0, 0.5) and (p1
(1), p2

(1)) = (p, p) where p ≤ .5 is a root of 6p2 − 6p + 1 = 0.

Thus p
(1)
1 = p

(1)
2 ≈ 0.21. The algorithm has converged and the MLE is thus given by

(p̂1, q̂1) = (0.21, 0) and (p̂2, q̂2) = (0.21, 0.5)

6 Example—Current Status Data on Competing Risks

Consider estimation of the sub-distribution functions F1 and F2, defined at the beginning
of Section 2 by Fj(t) = Pr(T < t, J = j) for j = 1, 2, where the random variables T and
J measure age at onset of menopause, and cause of onset (operative (J = 1) and natural
(J = 2)), respectively. Note that m = 3, k = 26 and, in the notation of Sections 3 and 4,
pi = F1(Ci) and qi = F2(Ci) where (C1, ..., C26) = (27.5, 32.5, 35.5, 36.5, ...58.5).

Note that max(xi, yi) < n for all i, so that all pis and qis appear in the likelihood.
On the other hand, z26 = 0 so that q26 = 1 − p26 remains fixed throughout the algorithm.
Subsequently, q̂26 is obtained by a search. Figure 1 gives a plot of the constrained maximized
likelihood as a function of q26, and we find q̂26 = 0.690 and hence p̂26 = 0.310. A likelihood
interval estimate could be obtained from this as, for example, {q26 : lmax(q26)− lmax(q̂26) >
−1.92} = [.618, .742]. With usual regularity conditions, this would be an approximate 95%
confidence interval, though appropriate asymptotic results for this approach remain to be
established.

The MLEs F1(Ci) = p̂i and F̂2(Ci) = q̂i are given in Figure 2. As before, we adopt the

natural convention that F̂j(t) = F̂j(Ci−1) for t ∈ [Cj−1, Cj), j = 1, ..., k, where C0 = 0.
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Figure 1: Maximized log likelihood (standardized to have maximum value 0) as a function
of q26 in the current menopausal status data in Table 1. Note that q̂26 = 0.690.
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Figure 2: Bivariate isotonic estimates of the sub-distribution function Fj(t), j = 1, 2 for the
current menopausal status data in Table 1 where j = 1 corresponds to operative menopause
and j = 2 to natural menopause.
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Krailo and Pike (1983) carry out a parametric analysis of the data in Table 1. Note
that the overall survival function S(t) = Pr(T ≥ t) = 1 − F1(t) − F2(t). Alternatively,

F1(t) =
∫ t

0
λ1(u)S(u)du where λ1 is the cause-specific hazard function associated with op-

erative menopause, defined by λ1(t) = limh→∞ h−1 Pr[t ≤ T < t + h, J = 1|T ≥ t]; a
similar expression exists relating F2 to λ2, the cause-specific hazard for natural menopause
(Kalbfleisch and Prentice, 2002, Chapter 8.2.2). Consideration of the data (for example, by
examining the nonparametric estimates given in Figure 2) suggested the use of cause-specific
hazards of (i) a piecewise linear form, λ1(t) = c(t − 22) for t ≥ 22, and zero otherwise,
for operative menopause, and (ii) a logistic form, λ2 = b exp(a + bt)/[1 + exp(a + bt)], for
natural menopause. The maximum likelihood estimates of the parameters, based on the
data in Table 1, are â = −20.7, b̂ = 0.414 and ĉ = 0.000841. These estimates, in turn,
provide estimates of F1 and F2 ( given as Figure 1 in Krailo and Pike, 1983) which can
be compared with the nonparametric estimates of Figure 2. This comparison shows that
this chosen parametric model fits well, supplementing a formal goodness-of-fit test of ob-
served and expected frequencies, computed in Krailo and Pike (1983). In a similar vein, the
overall probability of operative menopause (limt→∞ F1(t)) is estimated to be 0.282 in the
parametric model, as against the nonparametric estimate of 0.310 as discussed above; note
that the parametric estimate is well within the nonparametric likelihood ‘confidence inter-
val’ of (.258, .382) previously computed. These analyses all lend support to this particular
parametric model for the data of Table 1.

7 Simulations

In this section, we report on a small simulation study with m = 3 undertaken to investigate
some aspects of the estimates reported here. We considered total sample sizes of 100
and 400 with values of k of 10, 20 and 50. Working in the competing risk context of
Section 5, the distribution of failure time was taken to be exponential with rate 1 in all
simulations with the two types of failures occurring with equal rates. Thus, the sub-
distribution functions were Fj(t) = .5{1 − exp(−t)}, j = 1, 2. The observation times were
taken at Cj = 2jk−1, j = 1, ..., k. The estimates were examined at times .2, .4, . . . , 2.0.

We denote by F̂j(t), j = 1, 2 the MLEs of the sub-distribution functions and let F̂ (t) =

F̂1(t)+ F̂2(t). We denote by F̂
(N)
1 , F̂

(N)
2 and F̂ (N) the naive estimators obtained by applying

the simple PAV algorithm to the type 1, type 2 and combined failures respectively. Table
2 compares the mean squared errors, based on 10, 000 simulations and n = 100 for the
estimators F̂ (t) and F̂ (N) for the overall cumulative distribution function. Not surprisingly,
we see almost no difference between the two estimation procedures. It should be noted that,
if only combined data were available, we could define data with m = 3 simply by assigning
each failure to type 1 or type 2 with probability .5 independently. It is intuitively clear
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Table 2: Estimated mean squared errors of ‘naive’ MLEs (F̂ (N)) and MLEs (F̂ (t)) for the CDF F (t) of
survival time: n = total sample size; observation times are Cj = 2jk−1, j = 1, ...k with n/k observations
at each time; m = 3 and F1(t) = F2(t) = .5{1− exp(−t)}. Estimates are based on 10, 000 simulations.

Observation Times
n/k t=.2 t=.4 t=.6 t=.8 t=1.0 t=1.2 t=1.4 t=1.6 t=1.8 t=2.0

100/10 F̂ (N) .0115 .0135 .0130 .0115 .0097 .0080 .0068 .0059 .0056 .0067

F̂ .0104 .0121 .0115 .0101 .0088 .0074 .0065 .0057 .0054 .0066

100/20 F̂ (N) .0140 .0148 .0138 .0119 .0102 .0083 .0068 .0060 .0065 .0105

F̂ .0133 .0139 .0123 .0108 .0096 .0081 .0070 .0065 .0068 .0102

100/50 F̂ (N) .0161 .0158 .0134 .0111 .0095 .0080 .0067 .0060 .0064 .0101

F̂ .0149 .0155 .0130 .0105 .0085 .0073 .0063 .0057 .0059 .0112

Table 3: Estimated mean squared errors of ‘naive’ MLEs (F̂ (N)
1 ) and MLEs (F̂1(t)) for sub distribution

function F1(t): n = total sample size; observation times are Cj = 2jk−1, j = 1, ...k with n/k observations
at each time; m = 3 and F1(t) = F2(t) = .5{1− exp(−t)}. Estimates are based on 10, 000 simulations.

Observation Times
n/k t=.2 t=.4 t=.6 t=.8 t=1.0 t=1.2 t=1.4 t=1.6 t=1.8 t=2.0

100/10 F̂
(N)
1 .0052 .0065 .0067 .0064 .0061 .0058 .0059 .0063 .0081 .0163

F̂1 .0053 .0066 .0067 .0062 .0058 .0053 .0053 .0056 .0067 .0093

100/20 F̂
(N)
1 .0062 .0073 .0069 .0067 .0064 .0062 .0063 .0069 .0099 .0326

F̂1 .0064 .0075 .0072 .0068 .0065 .0065 .0069 .0082 .0114 .0206

100/50 F̂
(N)
1 .0062 .0081 .0075 .0068 .0064 .0064 .0063 .0071 .0103 .0753

F̂1 .0064 .0083 .0075 .0065 .0058 .0055 .0053 .0056 .0065 .0104

400/10 F̂
(N)
1 .0017 .0023 .0024 .0024 .0022 .0021 .0020 .0020 .0023 .0042

F̂1 .0018 .0024 .0024 .0023 .0021 .0019 .0018 .0017 .0018 .0024

400/20 F̂
(N)
1 .0021 .0025 .0026 .0024 .0023 .0022 .0021 .0021 .0027 .0081

F̂1 .0021 .0025 .0025 .0024 .0022 .0020 .0018 .0018 .0020 .0032

400/50 F̂
(N)
1 .0023 .0025 .0026 .0025 .0023 .0022 .0020 .0022 .0029 .0187

F̂1 .0023 .0025 .0026 .0024 .0022 .0020 .0018 .0018 .0020 .0042
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Table 4: Estimated means of ‘naive’ MLEs (F̂ (N)
1 ) and MLEs (F̂1(t)) for sub distribution function F1(t):

n = total sample size; observation times are Cj = 2jk−1, j = 1, ...k with n/k observations at each time;
m = 3 and F1(t) = F2(t) = .5{1− exp(−t)}. Estimates are based on 10, 000 simulations.

Observation Times
n/k t=.2 t=.4 t=.6 t=.8 t=1.0 t=1.2 t=1.4 t=1.6 t=1.8 t=2.0

100/10 F̂
(N)
1 .0751 .1499 .2110 .2609 .3029 .3381 .3700 .4006 .4366 .4932

F̂1 .0764 .1531 .2158 .2676 .3102 .3448 .3746 .4006 .4261 .4543

100/20 F̂
(N)
1 .0638 .1439 .2083 .2597 .3035 .3408 .3747 .4069 .4483 .5413

F̂1 .0656 .1484 .2164 .2704 .3161 .3537 .3868 .4162 .4484 .4922

100/50 F̂
(N)
1 .0520 .1352 .2032 .2570 .3000 .3371 .3702 .4044 .4497 .6165

F̂1 .0542 .1403 .2101 .2652 .3077 .3424 .3716 .3983 .4264 .4780

400/10 F̂
(N)
1 .0877 .1610 .2207 .2700 .3098 .3436 .3725 .3973 .4224 .4582

F̂1 .0880 .1620 .2222 .2723 .3125 .3464 .3744 .3976 .4174 .4396

400/20 F̂
(N)
1 .0829 .1588 .2190 .2693 .3102 .3442 .3727 .3995 .4283 .4827

F̂1 .0836 .1604 .2212 .2720 .3136 .3474 .3749 .3991 .4208 .4492

400/50 F̂
(N)
1 .0802 .1561 .2179 .2682 .3098 .3434 .3723 .3986 .4290 .5212

F̂1 .0811 .1581 .2207 .2714 .3136 .3469 .3748 .3978 .4195 .4582

true F1(t) .0906 .1648 .2256 .2753 .3161 .3494 .3767 .3991 .4174 .4323
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that doing this and using the MLE based on m = 3 should not improve estimation of F (t).

Table 3 gives a similar comparison of F̂1(t) with F̂
(N)
1 . Here differences are observed

which become more substantial for larger values of t. Especially, toward the end of the
observation period, the MLE does considerably better than the naive estimate. This is
due in large part to some bias in the naive estimator of F1(t) for values of t near the end
of the observation period. The estimated means for the two estimation procedures are
summarized in Table 4. It is clear that the bias decreases with increasing sample size as it
should. The MLE has much better properties than the naive estimator for larger values of
t, at least for moderate sample sizes.

One possibility for inference is to use a bootstrap procedure. Let Ji, Ci be the data
for the ith individual where Ji = 0 if the ith failure time is censored and Ji = j if a
failure of type j occurs before time Ci. In the simplest implementation, we could consider
a bootstrap sample (J∗

i , C∗
i ), i = 1, ...n obtained by iid sampling of the observed data. The

bootstrap estimates are F ∗
1 , F ∗

2 , and F ∗ = F ∗
1 + F ∗

2 . Following Efron’s percentile method,
a 100(1 − α)% confidence interval for F1(t) at a fixed value of t is obtained as the interval
spanned by the upper and lower α/2 quantiles of the bootstrap sample F ∗

1 (t). Exploration
of the properties of such a procedure could be useful, but would most naturally be done in
the context of estimation with standard current status data.

In order to gain some preliminary information on the potential value of such a procedure,
we carried out a small and very preliminary simulation in the context of the present paper.
Specifically, we again supposed that the time to failure had a unit exponential distribution
and that failures at any time t were equally likely to be of types 1 or 2. The observation
times were selected to be an iid sample from the k point discrete uniform distribution on
2/k, 4/k, . . . , 2. To simplify the endpoint issue discussed earlier for the purpose of these
simulations, we added 0.5 to the frequency of survivors at the final observation time, 2, in
both the original sample and in all bootstrap repetitions. We report some results in Tables
5 and 6 for the cases n = 400, k = 20 and n = 1600, k = 80. The calculations are based
on 1000 replications, with 1000 (for n = 400) and 200 (for n = 1600) bootstrap samples
selected for each data point. The results of the simulation are relatively encouraging with
coverage probabilities of 80%, 90% and 95% intervals for F1(t) and F (t) being fairly accurate
at least for values of t ≤ 1.6. The results for t = 2 are very poor, especially for estimation
of F (t), but this may be due to bias induced by our convention of adding 0.5 to zk in each
sample. Also given in the tables are the average lengths of the confidence intervals, and
it can be seen that the ratio of the average length for n = 400 to n = 1600 is reasonably
well approximated by n1/3, consistent with the cube root asymptotics that apply in the
case of current status data when the distribution of the censoring and the failure time are
both continuous at time t. The applicability of the asymptotics could be examined further
through simulations of this sort, again in the context of current status data.
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Table 5: Coverage probabilities of bootstrap confidence intervals for F1 and F with n = 400
and k = 20. Calculations are based on 1000 replications and 1000 bootstrap samples.

Estimation of F1(t) Estimation of F (t)

t 80% 90% 95% 80% 90% 95%

0.4 cov. prob. 0.806 0.898 0.944 0.797 0.905 0.945
ave. length 0.119 0.152 0.180 0.161 0.206 0.245

0.8 cov. prob. 0.850 0.923 0.963 0.828 0.935 0.972
ave. length 0.118 0.151 0.178 0.150 0.191 0.227

1.2 cov. prob. 0.853 0.924 0.964 0.820 0.925 0.968
ave length 0.108 0.138 0.164 0.127 0.163 0.193

1.6 cov. prob. 0.825 0.931 0.970 0.831 0.919 0.964
ave. length 0.105 0.135 0.161 0.109 0.139 0.166

2.0 cov. prob. 0.803 0.900 0.947 0.626 0.754 0.825
ave. length 0.132 0.169 0.200 0.107 0.133 0.153

Table 6: Coverage probabilities of bootstrap confidence intervals for F1 and F with n = 1600
and k = 80. Calculations are based on 1000 replications and 200 bootstrap samples.

Estimation of F1(t) Estimation of F (t)

t 80% 90% 95% 80% 90% 95%

0.4 cov. prob. 0.832 0.920 0.960 0.849 0.930 0.967
ave. length 0.076 0.098 0.116 0.103 0.132 0.158

0.8 cov. prob. 0.861 0.932 0.974 0.843 0.939 0.974
ave. length 0.076 0.097 0.115 0.096 0.123 0.147

1.2 cov. prob. 0.839 0.928 0.970 0.860 0.937 0.965
ave length 0.068 0.087 0.104 0.080 0.103 0.123

1.6 cov. prob. 0.854 0.941 0.976 0.855 0.948 0.974
ave. length 0.062 0.080 0.096 0.067 0.086 0.103

2.0 cov. prob. 0.758 0.865 0.927 0.399 0.560 0.677
ave. length 0.099 0.127 0.152 0.088 0.109 0.126
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8 Discussion

There are alternative algorithms that can be used to compute the MLE. The EM algorithm
imputes ‘complete’ data based on constructing hypothetical sub-categorization of the Xjs,
that take advantage of the isotonicity of the components of the pjs. This is most easily
visualized in the context of current status competing risks data where the frequency Xj is
distributed across intervals defined by the observation times C1, ..., Cj in the E step of the
algorithm. Disadvantages to this approach include the need to be careful with the choice
of starting values and the fact that the algorithm is usually very slow to converge. For the
one-dimensional isotonic maximization of components of p discussed in Section 3, we could
use a modified weighted pool adjacent violator algorithm, based on Jongbloed (1995), for
which the pooling involves simple averaging as compared to the polynomial root solving
required in our algorithm. The disadvantage is that iterative weights need to be computed
at each cycle. We suspect that the algorithms share similar speed of convergence properties.
It may also be possible to generalize the up-and-down-blocks algorithm of Kruskal (1964)
and Wu (1982) to obtain some savings on the right to left PAV algorithm we have used.

Other estimation criteria could also be invoked. Multivariate weighted least squares
(Sasabuchi, Inutska, and Kulatunga, 1983) is a possible alternative. In one dimension,
maximum likelihood is equivalent to ordinary least squares as noted in the Introduction.
In higher dimensions, the relationship between maximum likelihood and weighted least
squares remains unclear.

We conclude with some brief remarks regarding inference procedures associated with the
NPMLE estimates of the multinomial probabilities of Section 1, and the sub-distribution
functions of Sections 2, 6 and 7. In the simple current status problem (m = 2) with ob-
servation times arising from a distribution G that is absolutely continuous with respect to
F , it is well known that the NPMLE converges to F only at rate n−1/3, with a pointwise
limiting distribution that is not Gaussian (and depends on F and G). Thus, standard
errors are not immediately relevant even to asymptotic inference. In addition, without
uniform convergence, it is still unknown whether bootstrap confidence intervals are even
asymptotically correct. Under the same conditions, estimation of smooth functionals of
the underlying distribution functions can be estimated at the standard n−1/2 rate Groene-
boom and Wellner, 1980). Asymptotic theory is thus quite delicate even in this simpler
situation that has been studied for a considerable length of time. We anticipate that sim-
ilar asymptotic results will apply in the current competing risk scenario, although much
of this remains to be proved. Some results on smooth functionals are given in Jewell et al
(2003). For the estimates F̂1(t0) and F̂2(t0) at a given t0, we note some possible practical
approaches that at least provide some measure of variability.

First, note that we can compute the constrained MLE subject to, for example, pji = d,
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for some i and j using essentially the same algorithm. This can be achieved by replacing xi

and zi in (4) with large values, x∗
i and z∗i so that S∗

i (d) = 0 and running the algorithm as
described. This allows the computation of likelihood ratios that compare the unconstrained
and constrained maximum likelihoods, to yield a confidence interval. The coverage proba-
bility of such a likelihood ratio interval is unclear. If the distribution of observation times
is absolutely continuous with respect to subdistributions, however, the results of Banerjee
and Wellner (2001, 2003a, 2003b) suggest that the limiting distribution of the likelihood
ratio statistic will not be chi-squared, but will not depend on F1, F2, G, or t0. These results
depend on the assumed limiting form of the observational plan. In general, it is possible to
embed the observed data in many different asymptotic scenarios with potentially different
asymptotic results holding. For example, one plausible asymptotic view with relatively few
data points assumes that observation times are fixed and lets the number of observations
at each point become large. This leads to a standard likelihood with a finite number of
parameters and the usual asymptotic chi squared results. Alternatively, we could consider
various other processes whereby the number of observation points approaches infinity but
at a rate proportional to

√
n instead of n. It is not clear in this instance what asymptotic

results should apply.

Bootstrap methodology may provide the most satisfactory approach to inference. As
mentioned earlier, a more detailed assessment of the asymptotics and of the bootstrap
would be very useful in these problems, though as noted earlier, an evaluation in the usual
case of current status data with a single failure mode would seem the most appropriate
forum for initial investigation.
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APPENDICES

A Proof of Theorem 1

Lemma 1: Suppose that (p,q) ∈ Θ and pk + qk < 1. Then, for any (p∗,q∗) ∈ Θ, there
exists ε > 0 such that [(1 − ε)p + εp∗,q] ∈ Θ.

Proof: Since pk + qk < 1, there exists ε > 0 such that [(1 − ε)p + εp∗] + q < 1. This is
sufficient for the claim since the entries (1 − ε)p + εp∗ and q are isotonic.
A similar result holds with p and q interchanged. /

Theorem 1: If zk > 0, the cyclical algorithm converges to (p̂, q̂), the unique MLE of p,q.

Proof: The algorithm is monotone in the sense that `(p(j+1),q(j)) ≥ `(p(j),q(j)) and
`(p(j+1),q(j+1)) ≥ `(p(j+1),q(j)) for j = 0, 1, 2, ..... Since the likelihood is bounded above,
it follows that `(p(j),q(j)) converges to `∞, say. Also, the sequence (p(j),q(j)) has a subse-
quence (p(j′),q(j′)) that converges to (p̄, q̄), say, and `(p̄, q̄) = `∞ by continuity.

We now want to show that (p̄, q̄) is an MLE. First, it is evident that q̄ maximizes the
likelihood `†(p̄,q) since q(j′) maximizes `†(p(j′),q), p(j′) → p̄, and q(j′) → q̄ it follows that
p̄ maximizes `†(p, q̄).

We now turn to the same issue, but with p exchanging roles with q. Unfortunately,
there is not a direct symmetry since p(j′) maximizes `†(p,q(j′−1)), not `†(p,q(j′)). So, from
the convergent subsequence, (p(j′),q(j′)) say, we take a further convergent subsequence of
(p(j′′),q(j′′)) that converges to (p̄∗, q̄), say. It follows that p̄∗ maximizes the likelihood
`†(p, q̄). We must now show that p̄∗ = p̄.

Suppose that p̄∗ 6= p̄. Since p̄∗ maximizes `(p, q̄), it follows that the directional deriva-
tive of ` from (p̄, q̄) to (p̄∗, q̄) is positive. It follows that `(p̄∗, q̄) > `∞. This contradiction
indicates that p̄∗ = p̄ and hence that p̄ maximizes the likelihood `†(p, q̄), and q̄ maximizes
the likelihood `†(p̄,q).

Since zk > 0, it follows that p̄k+q̄k < 1. Consider the directional derivative D`[(p̄, q̄); (p∗,q∗)]
of ` from (p̄, q̄) toward an arbitrary point (p∗,q∗) in Θ. Some calculation shows that

D` =
k∑

i=1

[
xi

p∗i − p̄i

p̄i

+ yi
q∗i − q̄i

q̄i

− zi
p∗i − p̄i + q∗i − q̄i

1 − p̄i − q̄i

]
. (6)

Since p̄ maximizes the likelihood `†(p, q̄), as a consequence of Lemma 1, the directional
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derivative of `† from p̄ toward p∗ is

D†
`(p̄;p∗) =

k∑

i=1

[
xi

p∗i − p̄i

p̄i
− zi

p∗i − p̄i

1 − p̄i − q̄i

]
≤ 0. (7)

A similar inequality holds for the likelihood in q given p̄. The sum of these two inequalities
establishes that D` ≤ 0, so that (p̄, q̄) = (p̂, q̂) is an MLE.

Thus, `∞ = limj→∞ `(p(j),q(j)) is the maximum of ` over Θ. Finally, since ` is strictly
concave, (p(j),q(j)) converges to (p̂, q̂), the unique MLE (see Rockafellar, 1970, Corollary
27.2.2). /

Suppose now that zk = 0 and zk−1 > 0. In this case, it can be seen that p̄k = 1 − q
(0)
k

and q̄k = q
(0)
k . As a consequence, the algorithm does not converge to the MLE in general.

Let
Θ(q

(0)
k ) = {(p,q) ∈ Θ : pk = 1 − q

(0)
k , qk = q

(0)
k }

and let
(
p̂(q

(0)
k ), q̂(q

(0)
k )

)
be the corresponding MLE in this restricted parameter space.

Lemma 2: If zk = 0, zk−1 > 0 and q(0) is the initial estimate of q, then the algorithm

converges to (p̂(q
(0)
k ), q̂(q

(0)
k )).

Proof: At each iteration, (p(j),q(j)) ∈ Θ(q
(0)
k ). The directional derivative from the limit

point (p̄, q̄) to any point (p∗,q∗) in Θ(q
(0)
k ) is exactly as in (6) except that the upper limit

of the sum is k − 1. An argument identical to that used in Theorem 1 gives the required
result. /

B Proof of Theorem 2

Proof. First, suppose p satisfies the two properties in the statement of Theorem 2. Since
φ is concave, φ(p∗)− φ(p) ≤ 〈S(p), (p∗ − p)〉 for any p∗ satisfying the same constraints as

p. (For vectors x,y, 〈x,y〉 =
∑k

i=1 xiyi). By the first property, 〈S(p),p〉 = 0. Let e1 =

(0, 0, . . . , 0, ck), e2 = (0, 0, . . . , 0, ck, ck), . . . , ek = (ck, ck, . . . , ck). With α1 =
p∗k−p∗k−1

ck
, α2 =

p∗k−1−p∗k−2

ck
, . . . , αk = p∗1

ck
, all of which are greater than or equal to zero, we have p∗ =∑k

j=1 αjej. Then, 〈S(p),p∗〉 =
∑k

i=1 αi

∑k
j≥i ckSj(p) ≤ 0, by the second property. Thus,

φ(p∗) ≤ φ(p) for all such p∗, and so p maximizes φ.

On the other hand, suppose p maximizes φ with 0 ≤ pi ≤ ci and p1 ≤ p2 ≤ · · · ≤ pk.
Since p1 > 0 and pk < ck, (1 + ε)p satisfies the same constraints as p for sufficiently small
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ε. Thus, limε→0
φ((1+ε)p)−φ(p)

ε
=

∑k
i=1 piSi(p) = 0. Also, for 0 < ε < ck−pk

ck
, p + εek−i+1

satisfies the same constraints as p for 1 ≤ i ≤ k, so that

lim
ε↘0

φ(p + εek−i+1) − φ(p)

ε
=

k∑

j≥i

ckSj(p) ≤ 0,

yielding the second property.

Finally, the uniqueness of p follows since the parameter space is convex and, subject to
our convention if ai + bi = 0 for some values of i, φ is strictly concave.

An alternative proof can be given through direct use of the Karush-Kuhn-Tucker (KKT)
conditions (see, for example, Proposition 14.2.3 of Lange, 1999). /

C Proof that (5) Describes the MLE

We show that (5) satisfies the two conditions of Theorem 2. First, from the definition of θ̂j,∑k∗
j+1−1

i=k∗
j

Si(p̂) = 0 for 1 ≤ j ≤ r. Since p̂ is constant over the same blocks, it is immediate

that
∑k

i=1 piSi(p̂) = 0. Now consider an arbitrary integer l such that k∗
j ≤ l < k∗

j+1. From

the definition of θ̂j, it follows that p(l,k∗
j+1−1) ≤ p(k∗

j ,k∗
j+1−1) = θ̂j. Thus,

k∑

i=l

Si(p̂) =

k∗
j+1−1∑

i=l

Si(p̂) ≤ 0

which establishes the second condition in Theorem 2. /
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