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Equivalent Kernels of Smoothing Splines in
Nonparametric Regression for
Clustered/Longitudinal Data

Xihong Lin, Naisyin Wang, Alan H. Welsh, and Raymond J. Carroll

Abstract

We compare spline and kernel methods for clustered/longitudinal data. For in-
dependent data, it is well known that kernel methods and spline methods are es-
sentially asymptotically equivalent (Silverman, 1984). However, the recent work
of Welsh, et al. (2002) shows that the same is not true for clustered/longitudinal
data. First, conventional kernel methods fail to account for the within- cluster cor-
relation, while spline methods are able to account for this correlation. Second, ker-
nel methods and spline methods were found to have different local behavior, with
conventional kernels being local and splines being non-local. To resolve these dif-
ferences, we show that a smoothing spline estimator is asymptotically equivalent
to a recently proposed seemingly unrelated kernel estimator of Wang (2003) for
any working covariance matrix. To gain insight into this asymptotic equivalence,
we show that both the seemingly unrelated kernel estimator and the smoothing
spline estimator using any working covariance matrix can be obtained iteratively
by applying conventional kernel or spline smoothing to pseudo-observations. This
result allows us to study the asymptotic properties of the smoothing spline estima-
tor by deriving its asymptotic bias and variance. We show that smoothing splines
are asymptotically consistent for an arbitrary working covariance and have the
smallest variance when assuming the true covariance. We further show that both
the seemingly unrelated kernel estimator and the smoothing spline estimator are
nonlocal (unless working independence is assumed) but have asymptotically neg-
ligible bias. Their finite sample performance is compared through simulations.
Our results justify the use of efficient, non-local estimators such as smoothing
splines for clustered/longitudinal data.
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SUMMARY

We compare spline and kernel methods for clustered/longitudinal data. For independent data, it
is well known that kernel methods and spline methods are essentially asymptotically equivalent
(Silverman, 1984). However, the recent work of Welsh, et al. (2002) shows that the same is not true
for clustered/longitudinal data. First, conventional kernel methods fail to account for the within-
cluster correlation, while spline methods are able to account for this correlation. Second, kernel
methods and spline methods were found to have different local behavior, with conventional kernels
being local and splines being non-local. To resolve these differences, we show that a smoothing
spline estimator is asymptotically equivalent to a recently proposed seemingly unrelated kernel
estimator of Wang (2003) for any working covariance matrix. To gain insight into this asymptotic
equivalence, we show that both the seemingly unrelated kernel estimator and the smoothing spline
estimator using any working covariance matrix can be obtained iteratively by applying conventional
kernel or spline smoothing to pseudo-observations. This result allows us to study the asymptotic
properties of the smoothing spline estimator by deriving its asymptotic bias and variance. We
show that smoothing splines are asymptotically consistent for an arbitrary working covariance
and have the smallest variance when assuming the true covariance. We further show that both
the seemingly unrelated kernel estimator and the smoothing spline estimator are nonlocal (unless
working independence is assumed) but have asymptotically negligible bias. Their finite sample
performance is compared through simulations. Our results justify the use of efficient, non-local
estimators such as smoothing splines for clustered/longitudinal data.

Some key words: Asymptotic bias and variance; Asymptotic equivalent kernels; Consistency;
Kernel regression; Longitudinal data; Non-locality; Nonparametric regression; Smoothing splines.

Short title: Equivalence of Splines and Kernels For Clustered/Longitudinal Data
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1 INTRODUCTION

Nonparametric regression for clustered/longitudinal data has attracted considerable recent interest.
Kernel methods have been considered by Zeger & Diggle (1994), Hoover, et al. (1998), Fan &
Zhang (2000), Lin & Ying (2001), all of whom ignored the within-cluster correlation, and Severini
& Staniswalis (1994) and Ruckstuhl, et al. (2000), who incorporated the within-cluster correlation
into their kernel estimator. Lin & Carroll (2000) showed that the most efficient conventional
kernel estimator is obtained by ignoring the correlation. Spline methods for clustered/longitudinal
data have been investigated by Brumback & Rice (1998), Wang (1998), Zhang, et al. (1998), Lin
& Zhang (1999), Verbyla, et al., (1999), among others. Most of these authors incorporated the
within-cluster correlation into the construction of their spline estimators. These authors further
demonstrated that an attractive feature of spline smoothing in clustered/longitudinal data is that
it can be obtained by fitting mixed effects models.

For independent data, it is well known (Silverman, 1984) that kernel and spline estimators
are asymptotically equivalent and are local in the sense that the estimator at a point gives non-
zero weights only to observations whose covariate is in a shrinking neighborhood of that point.
However, the relationship between kernel and spline estimators is not as well understood for clus-
tered/longitudinal data. Welsh, et al. (2002) recently found that conventional kernel and spline
estimators behave completely differently for clustered/longitudinal data. While the most efficient
conventional kernel estimator requires completely ignoring the within-cluster correlation, the spline
estimator with the smallest variance for a fixed smoothing parameter is obtained by incorporating
the within-cluster correlation. Further, conventional kernel estimators are local asymptotically but
spline estimators are not.

These results suggest that Silverman’s results about the asymptotic equivalence of spline and
kernel estimators for independent data do not hold for clustered/longitudinal data. This raises
challenging questions. (1) For clustered/longitudinal data, what is the relationship between spline
and kernel methods? In particular, is there a kernel estimator outside the conventional local
kernel paradigm that is asymptotically equivalent to a spline estimator? (2) It is widely believed
in the nonparametric literature that consistency of a nonparametric estimator requires locality.
Since spline estimators are not local for clustered data, can they still be consistent? (3) What
are the asymptotic properties, e.g., the asymptotic bias and variance, of a spline estimator for

clustered /longitudinal data?
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We will investigate these issues in this paper. We first show that for any working covariance
matrix, the spline estimator is asymptotically equivalent to a recently proposed seemingly unrelated
kernel estimator (Wang, 2003), which is constructed iteratively in a non-traditional way and is
shown to be more efficient for clustered/longitudinal data than the best conventional local kernel
estimator. Here the asymptotic equivalence is in a similar sense to Silverman (1984), namely
that the weights of the smoothing spline estimator asymptotically converge to the weights of the
seemingly unrelated kernel estimator using Silverman’s kernel function. To gain insight into this
asymptotic equivalence and to study the asymptotic properties of a smoothing spline, we show
that for any working covariance matrix, both the smoothing spline estimator and the seemingly
unrelated kernel estimator can be obtained iteratively by applying conventional kernel or spline
smoothing to pseudo-observations. This result allows us to derive the asymptotic bias and variance
of a smoothing spline estimator. It is shown that a smoothing spline is consistent for any arbitrary
working covariance matrix and has the smallest variance when assuming the true covariance.

The outline of this paper is as follows. §2 describes the spline and kernel methods. §3 shows
that the smoothing spline estimator is asymptotically equivalent to the seemingly unrelated kernel
estimator for clustered/longitudinal data in the sense that their weights are asymptotically equiv-
alent. §4 shows that both the spline estimator and the seemingly unrelated kernel estimator can
be obtained iteratively using pseudo-observations. §5 derives the asymptotic bias and variance of
the spline estimator. §6 shows that both the seemingly unrelated kernel estimator and the spline
estimator are non-local and explains how non-—local estimators can be consistent. §7 contains
simulation results illustrating the equivalence we have shown in finite samples, and §8 contains

concluding remarks.

2 The Kernel and Spline Methods for Nonparametric Regression
in Clustered/Longitudinal Data

Consider data from n clusters with m,; observations consisting of an outcome variable and a single
covariate. Clustered data have different types. For example, for longitudinal data, a cluster refers
to a subject and observations within each cluster refer to the repeated measures over time; for
familial data, a cluster refers to a family and observations from different family members within
the same family are obtained. For simplicity, we assume the number of observations per cluster m;
is the same as m in all clusters. The results are applicable when cluster sizes vary between clusters.

Suppose that Y;; and T;; are the outcome and the covariate of the jth observation in the ith cluster
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(¢=1,---,m;5=1,---,m), and Y;; depends on T;; through
Yij = 0(Tij) + €, (1)

where (t) is an unknown smooth function, the errors €; = (€1, - -, €;m)” are independent with mean
zero and true covariance matrix X. The covariate Tj; varies within each cluster. For longitudinal
data, T;; is a time-varying covariate or time. We assume in our asymptotic study that the cluster
size m is finite (m < oo) while the number of clusters n goes to infinity. For practical applications
of model (1), see Zeger & Diggle (1994) and Zhang, et al. (1998).

Estimation of the nonparametric function 6(¢) can proceed using kernel methods or spline
methods. It is of interest to construct nonparametric estimators of 6(¢) that account for the
within-cluster correlation. Two methods which incorporate the within-cluster correlation will be
described in this section: the seemingly unrelated kernel method (Wang, 2003) and the smoothing
spline method (Wang, 1998; Zhang, et al., 1998).

2.1 The Seemingly Unrelated Kernel Estimator

In view of the findings that the conventional local kernel generalized estimating equation method
fails to account for the within-cluster correlation (Lin & Carroll, 2000), Wang (2003) recently
proposed a seemingly unrelated kernel estimator that we now describe. Define Y; = (Y1, -+, Yi)7,
0(T;) = {0(Ts),---,0(Tim)}T, Y = (Y1,---,Y,)T, and T;, T, and 6(T) similarly. Denote Kj(s) =
h~'K(s/h), where K(-) is a mean zero kernel function, and A is a bandwidth. For an arbitrary
matrix A, denote by a’* the (4, k)th element of A~!. Let V be a working covariance matrix (Liang
& Zeger, 1986). Consider a gth order polynomial kernel estimator. If 6(¢) is estimated at the [th
iteration by 5&? (t), the updated estimator of 8(t) at the (I 4+ 1)th iteration is 5(}(“) (t) = @p, where
a = (ap, a1, ,a,)! solves

n m

D> Kn(Ty; — t)Bij ()T VHY; — pigy(8)} =0, (2)

i=1j=1
where B;;(t) is an m x (g+ 1) matrix of zeros except that the jth row is [1, (T3 — ), -, (Ti; —t)9]7,

q T
iy (&) = [0D(T), -, 00(Ti5-1), 3 (Tij — 005,00 (T 1), -+, 0L (Tirm)
k=0

The final kernel estimator at convergence is called the seemingly unrelated (SUR) kernel estimator

of O(t) and is denoted by g (t).
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Wang (2003) gave the asymptotic bias and variance of Ok (t) as n — 0o, h — 0 and nh — 0o

for the linear kernel estimator (¢ = 1) as

E{0x(t)} — 0(t) ~ h’¢bk(t); (3)
vrlfe(t) ~ 7;((%, (4)

where ¢ = [ $*K (s)ds, v = [ K*(s)ds, n(t) = 7, 0% f;(t), 7(t) = X7y ¢j5£;(t) with ¢;; being
the (j,j)th element of C = V™ISV =L f;(¢) is the marginal density of T}, and bx (t) solves

i i R E{by (T} N =t} fi(t) {ZUJJJ!‘ }9(2)(15).
j=1k=1

Equivalently, bx (t) satisfies the Fredholm integral equation of the second kind:
+/bK utdu——9<2>() (5)

where ¢(u, ) = YTy Sy 09 fir(u,t) / {Z;-”:l vii fj(t)} and f;(u,t) is the bivariate joint density
of (T35, Tix); see eq (17) of Lin & Carroll (2001). Wang (2003) showed that Ok (t) with the smallest
variance for fixed bandwidth is obtained by accounting for the within-cluster correlation by setting

V =%, and it is more efficient than the best local kernel estimator of Lin & Carroll (2000).
2.2 The Generalized Least Squares Smoothing Spline Estimator

An alternative method for estimating 6(¢) nonparametrically is to use smoothing splines. Assuming

a working covariance matrix V', the pth order smoothing spline estimator minimizes

LS - BTV - om) ) [ 169 o)
=1

where ) is a smoothing parameter controlling for the trade off between the goodness of fit and the

smoothness of the curve. The resulting pth order smoothing spline estimator of 6(t) is
0s(T) = (V™! + na0)~1V -y, (6)

where U is the smoothing matrix (Green & Silverman, 1994) and V = diag(V,---,V). For p =1,
we have the linear smoothing spline and for p = 2, we have the cubic smoothing spline. We call
05(t) the generalized least square (GLS) smoothing spline estimator.

The GLS smoothing spline has attracted considerable recent attention because of its close
connection with mixed effects models (Zhang, et al., 1998; Wang, 1998; Brumback and Rice, 1998;

Verbyla, et al., 1999). In particular, it has been shown that an attractive feature of the GLS
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smoothing spline is that it can be easily fit using mixed effect models by writing the smoothing
spline estimator b (T') as a linear combination of fixed effects and random effects and can be easily
calculated using the best linear unbiased predictors (BLUPSs) from mixed models. However, despite
its computational appeal, the theoretical properties of the GLS smoothing spline are not known.

We will investigate them in this paper.

3 Asymptotic Equivalence of the Spline and the Seemingly Unre-
lated Kernel Estimators in the Sense of Silverman

In this section, we show that the spline estimator as(t) and the seemingly unrelated kernel estimator
gK(t) are asymptotically equivalent in the sense of Silverman (1984), i.e., the weight functions used
to calculate them are asymptotically equivalent when Silverman’s (1984) kernel function is used for
the SUR kernel estimator.

It is difficult to relate O(t) and g (t) by comparing (6) and (2) directly. Our strategy is to
obtain a closed form expression for the seemingly unrelated kernel estimator §K(t) We then use
this expression to relate §s(t) and §K(t). The closed form expression for the seemingly unrelated
kernel estimator gK(t) is given in Proposition 1 and its proof is given in Appendix A. For simplicity,
we state in Proposition 1 the results for average kernels (¢ = 0). Results for a general gth order

polynomial kernel are similar and are briefly stated after Proposition 1.

Proposition 1 (1) For any working covariance matriz, the seemingly unrelated average kernel

estimator at convergence §K(t) has a closed form expression,
Oic(t) = Kpp (D41 + (V7! = VK, } VY, (7)

where Kyp(t) = {Z?:l Y1 Kn(Tij — t)fujj}_1 {Kp(T11 — 1), Kp(Tpm — t)}T denotes a nm x 1
vector, Ky = {Kyn(T11), -+ Konh(Tum)}! is an nm X nm matriz, Ve = diag(Ve,--- V%) and
Ve = diag(VY).

(2) Denote by éK(T) the seemingly unrelated average kernel estimator at convergence §K(t)
evaluated at the vector of all the design points T , i.e., Ox(T) = {0k (T11), -, 0k (Tpm)YT. Then

Ok (T) has the closed form expression
O (T) = {I + K,(V 1 =V} 1K,V Y. (8)

For the gth order polynomial SUR kernel estimator, one modifies K, (t) in (7) as Kyp(t)T =
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T {T(t)Tth(t)f/df(t)}_1 T(4)T K (t), where &1 = (1,0,---,0)7, T(t) is a nm x (¢ + 1) matrix

with the {(n—1)i-+j}th row {1, (T —1), -, (T ~1)1}, Kan(t) = diag{Kp(T1 ~1), - K (Tum —1)}-
Now consider the smoothing spline estimator §S(T). For any working covariance matrix V,
simple calculations show that we can rewrite the spline estimator fs(T) in (6) as

~

Os(T) = {I+ (V! +nx®)~ (V! - f/d)}_l (V4 4 nAT) 171y, (9)

A comparison of (8) and (9) suggests that to show the weight function of the spline estimator
B5(t) is asymptotically equivalent to that of the seemingly unrelated kernel estimator x (t), we need
to show K, ~ (I~/d +nA¥)~L. Noticing that Viis a diagonal matrix, we just need to show that
under working independence, a weighted smoothing spline estimator is asymptotically equivalent
to a conventional (weighted) kernel estimator in the sense of Silverman (1984). This can be done
by modifying the results in §6 of Silverman (1984). Proposition 2 formally states the asymptotic
equivalence of the weight function of the smoothing spline estimator b5 (t) and that of the seemingly
unrelated kernel estimator Ox (t). It also provides the specific kernel function, and the asymptotic
relationship between the smoothing parameter A and the kernel bandwidth A. Its proof is given in

Appendix B.

Proposition 2 For any working covariance matriz V, denote the smoothing spline estimator by
bs(t) = nt im1 21 Wsij(t,T)Y;; and the seemingly unrelated kernel estimator by Ok (t) =
nTIYr >oie1 Wk ij(t,T)Y;j. Then the smoothing spline estimator Os(t) with the smoothing pa-
rameter X\ is asymptotically equivalent to the seemingly unrelated kernel estimator gK(t) with the

kernel function K (t) solving the differential equation (Silverman, 1984)
(—DPEPP () + K (t) = At) (10)

. 1/2
where A(t) is the Dirac delta function and the effective bandwidth h(t) = {/\/ >ie v“fj(t)} / p,

in the sense that their weight functions Wg(t,T) and Wik (t,T) are asymptotically equivalent.

Remarks:

1. The asymptotic equivalence here is in the sense of Silverman (1984). The kernel function
K(t) in (10) is identical to that given by Silverman (1984). For clustered data, a smoothing
spline is thus effectively a seemingly unrelated kernel estimator with a varying bandwidth
that depends not only on the marginal densities of the T; but also on the working covariance

matrix V.
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2. The kernel function K (t) in (10) has Fourier transform (1 + t??)~! (Silverman, 1984) and
satisfies [ K (t)dt = 1, [t1K(t)dt =0 (0 < ¢ < 2p) and [t K (t)dt = (—1)P7!, i.e., K(t) is a
2pth order kernel. For p = 1 (a linear spline), K (¢) is the Laplace density 1/2exp(—|t|) and

is the traditional second order kernel. For p = 2 (a cubic spline),
K(t) = 1/2exp(—|t|/v/2)sin(|t|/V2 + 7 /4), (11)
which is a 4th order kernel.

4 Understanding the Relationship Between the Spline and Seem-
ingly Unrelated Kernel Estimators

Although the results in Section 3 provide a direct formula-based relationship between the spline
estimator and the seemingly unrelated kernel estimator, they do not give us a good insight into why
this equivalence holds. In this section, we provide a transparent relationship between the spline
estimator and the seemingly unrelated kernel estimator, which provides us with clear insight into
why they are asymptotically equivalent. This relationship also allows us to derive the asymptotic
bias and variance of the spline estimator later in Section 5.

We now derive a transparent relationship between the spline estimator and the seemingly un-
related kernel estimator. Specifically, we show that both estimators can be obtained in the same
iterative fashion using pseudo-observations. They differ only in that standard (weighted) kernel
smoothing is used at each iteration for the seemingly unrelated kernel estimator, while standard
(weighted) spline smoothing is used at each iteration for the smoothing spline estimator.

We start with the seemingly unrelated kernel estimator §K(t) For simplicity, consider the
average kernel (p = 0). Using equation (2), for any working covariance matrix V', simple calculations

show that the seemingly unrelated kernel estimator at the (I + 1)th iteration can be rewritten as

n-1 n —t ij.(.H—l)
n 12 12 1””Kh(Tij_t)
where
YD = ¥y 4 (039) 3 o Y — 00 (1)} (13)
k#j

denotes the pseudo-observation at the (I+1)th iteration. Equation (12) shows that at each iteration,
conventional (weighted) Nadaraya-Watson kernel smoothing is applied to the pseudo-observations

Yig-lﬂ) with the weights {v/7}.
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We next consider the generalized least squares smoothing spline estimator g (t) given in (6). We
show that 55 (t) can also be obtained iteratively by applying conventional weighted spline smoothing

(1+1)

to the pseudo-observations Y;; "~ with the weights {v37} at each iteration. Consider calculating a
smoothing spline estimator 6%(t) in the following fashion. Set the initial estimator 65 (£) of 6(t) to
be the standard pth order smoothing spline estimator obtained by assuming independence among
all observations. If the smoothing spline estimator at the /th iteration is denoted by 5(50 (t), the
updated estimator of 6(t) at the (I 4+ 1)th iteration is obtained by minimizing with respect to 6(-)

_ZZ i {Y(l+1 (Tij)}2+)‘/{0(p)(t)} dt

’Lljl

where the YZ-S-HI) are the pseudo-observations defined in (13) except é{I? (t) is replaced by 9\(51) (t). It
follows that the resulting estimator at the (/4 1)th iteration is the conventional weighted pth order

smoothing spline estimator
OI(T) = (V4 naT) 1 7dy (1), (14)

where Y1) = {y{#7 L v EDT i v = v+

’ ,---,YZ.%“)}T. This means at the

(I4+1)th iteration, we update 6(t) by applying the conventional weighted pth order spline smoothing
to the pseudo-observations Y( ™) with the weights v77. Following Silverman (1984) and Nychka
(1995), one can easily further show that for any ¢, the estimator at the (I 4+ 1)th iteration can be

written asymptotically as

-1
§(l+1) _ (nzvm> ZZG” (t,ﬂj)vjjyz,glﬂ) + 0,(1), (15)

i=1j=1
where G«(t,s) is the Green’s function defined in (A.10) with A\* = A/{37",; v/} and f(t) =
{2574 v fi(t)}/ {X5a1 v/7}. Denote by gfq(t) the iterative weighted smoothing spline estimator at
convergence. Proposition 3 shows that §§(t) equals the generalized least squares smoothing spline

estimator fg(t) in (6). The proof is given in Appendix C.

Proposition 3 The iterative weighted smoothing spline estimator at convergence é\fq(t) has a closed

form expression and equals the GLS smoothing spline estimator §S(t) in (6).

Now the relationship between the seemingly unrelated kernel estimator §K(t) and the general-
ized least squares smoothing spline estimator gg(t) becomes transparent, and we can see why they

are asymptotically equivalent. Both estimators can be obtained iteratively. At each iteration, the
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seemingly unrelated kernel estimator applies standard weighted kernel smoothing to the pseudo-

), while the GLS smoothing spline estimator applies standard weighted spline

)

observations Yig-H'l
smoothing to the pseudo-observations Y;g-H_l . Since standard weighted spline smoothing and stan-
dard weighted kernel smoothing are asymptotically equivalent (Silverman, 1984) at each iteration,

they should be asymptotically equivalent at convergence.

5 The Asymptotic Bias and Variance of the Generalized Least
Square Smoothing Spline Estimator

The results in Section 3 only show that the generalized least squares smoothing spline estimator
is asymptotically equivalent to the seemingly unrelated kernel estimator in the sense that their
weight functions are asymptotically equivalent. However, analogously to the independent data
case pointed out by Nychka (1995), these results are too rough to establish the asymptotic bias
and variance of the generalized least squares smoothing spline estimator gs(t). These calculations
are of substantial interest, since they provide the asymptotic properties of 55(t) and allow us to
investigate whether §s(t) is consistent. We perform such calculate in this section.

It is difficult to study the asymptotic bias and variance of the generalized least squares smoothing
spline estimator 8g(¢) using its closed form expression in equation (6). We hence need to take a
different route. The results in Proposition 3 show that 8g(¢) can be obtained iteratively with
standard weighted spline smoothing at each iteration. This connection provides a much easier way
to calculate the asymptotic bias and variance of és(t) by iteratively applying the asymptotic bias
and variance results of the smoothing spline estimator for independent data (Nychka, 1995) at each
iteration. Proposition 4 provides the asymptotic bias and variance of the generalized least squares

smoothing spline estimator 55(75). Its proof is given in Appendix D.

Proposition 4 Denote by gs(t) the pth order generalized least squares smoothing spline estimator
given in (6) using any given working covariance matriz V. Assume the marginal densities f;(t) of
the T;; have uniformly continuous derivatives. We make the same asymptotic assumptions about n
and A as Nychka (1995) and assume Nychka’s bias and variance results of the pth order spline in
his equations (1.9) and (1.10) hold for independent data and the properties of Green’s function in
(A.11) and (A.14) hold. Then we have the following.

(1) The asymptotic bias of Bs(t) is

E{0s(t)} - 0t) ~ (-1)7~
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where bg(t) satisfies

m m

YD O E{bs(Ty)|Ty = t}f5(t) {Zv“f }9<2p>(t),

j=1k=1
where ap, is a constant. Equivalently, bs(t) solves the Fredholm integral equation of the second kind,

with the right hand side of (5) replaced by 0?P)(t)/a,

(2) The asymptotic variance of ag(t) is

~ A /2 T(t
var{Hg(t)} ~ %{m} 772(—(2),
where 7y, is a constant and T(t) and n(t) are defined below equation (4). We believe that vy, =
[ K?(t)dt where K(t) satisfies (10).
(8) While holding the effective bandwidth fized as h(t) = {/\/ POy Jjjfj(t)}lﬂp, the generalized
least squares smoothing spline estimator with the smallest variance is obtained by assuming the

working covariance matriz V equals the true covariance X, i.e., V = X. Its variance is

) 3 1/2p 1
_ ) A TR
VaTmin {95( )} n { STy oI f5(t) } S adifi(t)

(4) The generalized least squares smoothing spline estimator has the asymptotic expansion

m m m

Os(t) = 0(t) = —r—z7 D D 2 G (b, T)v?* {Yig = 0(Tu)} + (—1)P~ A (8)bs (1)

i=1j=1k=1
+op [{nh(t)}—1/2 +h2(2)], (16)
where Gy« (t, s) is the Green’s function defined in (A.10) and h(t) = [)\/ {E;n:l ,Ujjfj(t)}]l/Qp de.
notes the effective bandwidth (See Proposition 2).

Remarks:

1. The bias results in part (1) of Proposition 4 show that for any working covariance matrix V,

the generalized least squares smoothing spline estimator is asymptotically consistent.

2. The expressions for the asymptotic bias and variance of the generalized least squares smooth-
ing spline estimator closely resemble the forms of the asymptotic bias and variance of the
seeming related kernel estimator given in (3) and (4). Specifically, setting the effective band-

1/2
width h(t) = [)\/ { v f(t )}] 2 (Proposition 2), the asymptotic bias and variance of
the generalized least squares smoothing spline estimator are
E{fs(t)} - 0(t) = (-1)""h*(t)bs(t) + 0, {hZ (1)},
var(Bs()} = 0(t) = {nh()} {r(O/n (1)} + o, [{nh()} ]
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The above bias and variance calculations clearly show that the pth order generalized least
squares smoothing spline estimator behaves asymptotically similar to the ¢ = (2p—1)th order
polynomial seemingly related kernel estimator with the kernel function being the (2p)th order
kernel defined in (10). Note that Wang (2003) focused on the second order SUR kernels.
Extensions of her results to higher SUR kernels are straightforward along the lines of Wand

and Jones (1995, Section 5.4).

3. The asymptotic bias of the linear generalized least squares smoothing spline estimator (p = 1)
is h%(t)bs (t), where bg(t) solves (5) with the right-hand side of the equation equal to 8 (t) /a;,
where a1 is some constant. Hence it corresponds to the second order SUR kernel. The
asymptotic bias of the cubic generalized least squares smoothing spline is —h*(¢)bg(t), where
bs(t) solves (5) with the right-hand side of the equation equal to 8(*)(t)/ay, where as is a

constant. Hence it corresponds to a higher (4th) order SUR kernel.

4. When m = 1, we have cross-sectional independent data following Y; = 6(T;) + ¢;, where the ¢;
are independent and identically distributed and follows N(0,0?). The results in Proposition

4 reduce to those given in Nychka (1995) as

E{fs(t)} - 0(t) (=1~ R ()% (¢) /ap, (17)

var{fs(t)} = {nh(t)} {50’/ f (1)}, (18)

Q

where h(t) = {Ao?/f(t)}/?" and f(t) is the density of T;.

5. For clustered/longitudinal data, the working independence smoothing spline estimator is cal-
culated by treating the data to be independent with error variances o;;. Its asymptotic

bias and variance takes the same form as (17) and (18) except that o2/f(t) is replaced by
_ 1. _ 1/2p
{Smio5 @)} in (18) and A(t) replaced by h(t) = [\ {0, ;0] -

6 Non-locality and Consistency of Generalized Least Squares
Splines and Seemingly Unrelated Kernels

The purpose of this section is to first demonstrate in Section 6.1 the non—locality of the generalized
least squares spline and the seemingly unrelated kernel. It is widely believed in the nonparametric
literature that a consistent nonparametric estimator requires locality, i.e., for any ¢, only obser-
vations whose covariate values are in the neighborhood of ¢ are used asymptotically to estimate

6(t). A non-local nonparametric estimator is often inconsistent. For clustered/longitudinal data,
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both generalized least squares spline and seemingly unrelated kernel estimators are nonlocal, but
from the results in Sections 2.1 and 4, they are consistent. It is hence of substantial interest to

understand how non-local estimators can be consistent. We investigate this issue in §6.2.
6.1 Observation-Level Non—Locality

For independent data, both kernel and spline estimators are local. For clustered/longitudinal
data, the same is true for working independence kernel and spline estimators (Welsh, et al., 2002).
Assuming the number of observations per cluster m is finite, this means only observations from
different clusters contribute to estimation of #(¢) at any ¢. Such locality is widely presumed to
be necessary to ensure consistency of a nonparametric estimator. However, Welsh, et al. (2002)
observed that the generalized least squares spline is not local. This non-locality of the spline is
supported by the asymptotic spline expansion in (16). A similar asymptotic expansion holds for
the seemingly unrelated kernel estimator by replacing G, (¢,Ti;) in (16) by K (Ti; — t) (Wang,
2003). It follows that the seemingly unrelated kernel estimator is not local either.

The non-locality can also be demonstrated for seemingly unrelated kernel estimators via (12)
and for the generalized least squares spline estimators via (15). Here we see clearly that both meth-
ods are local in the pseudo observations (13): the seemingly unrelated kernel pseudo observation
at convergence is Y3 = Yj; + (07) "L 30 0Ik Y — 0k (Ti)}, and a similar form holds for
the generalized least squares spline. Clearly this term depends on all the responses in the cluster,
not just Y;;. These discussions suggest that if any observation in a cluster has an T;; near the value
at which the function is to be fit, then all the observations in the cluster contribute to the fit, i.e.,
both methods are not local at the observation-level.

To illustrate this non-locality, we provide a numerical example. For n = 50 and m = 3,
we generated the covariate Tj; from the Uniform(—2,2) distribution and assumed Y;; followed
model (1) with #(¢) = sin(2¢) and an exchangeable covariance ¥ = 4(0.2] + 0.8J), where J is
a m X m matrix of ones, i.e. the pair-wise within-cluster correlation is 0.8. Both the seemingly
unrelated kernel estimator 6k (¢) and the smoothing spline estimator fs(t) can be written in the
form 8(t) = im1 2521 Wij(t,T)Y;;, where the expression for the weights W;;(¢,T') is given by
equation (7) for the seemingly unrelated kernel estimator O (¢) and by equation (7) of Welsh, et
al., (2002) for the smoothing spline estimator fg(t). Using these weight functions, we investigate
how the observation at t is weighted when we estimate 6(s) for a series of values of s.

Figure 1(a) plots the weights for the SUR kernel estimator O (t) at t = 0.25 with the kernel
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function (11) and bandwidth h = 0.4 for both working independence (which is identical to the
classical kernel estimate) and assuming the true covariance. A similar plot for the cubic smoothing
spline estimator és(t) with A = 0.1 is given in Figure 1(b). One can easily see that the working
independence kernel and spline estimates are local, while the seemingly unrelated kernel estimate
and the generalized least squares cubic smoothing spline estimate assuming the true covariance are
not local. Further, since the kernel function (11) is the equivalent kernel of the cubic smoothing
spline estimator, the shapes of the two weight curves are nearly identical. Figure 1 hence also sup-
ports the theoretical results in Sections 3 and 4 and provide numerical evidence that the asymptotic
equivalence of the SUR kernel and the generalized least squares spline estimators works quite well

in finite samples.
6.2 Cluster—Level Locality and Consistency

The discussions in Section 6.1 show that to estimate 6(¢) at any ¢, all observations within the same
cluster are used if any T;; in a cluster is in the neighborhood of ¢. This sharing of information among
members of the cluster is what makes the generalized least squares spline and seemingly unrelated
kernel methods more efficient than their working independence versions. In other words, an efficient
kernel/spline estimator that effectively accounts for the within-cluster correlation requires using all
observations within the same cluster and hence has to be non-local at the observation-level.

This brings a question of substantial interest, i.e., how can a non-local estimator be consistent?
Specifically, how could observations whose covariate values are outside the neighborhood of ¢ still
contribute to estimation of #(¢) without introducing asymptotic bias? This is often viewed as
impossible for independent data.

We investigate this issue by examining the pseudo-observations used at each iteration of the
seemingly unrelated kernel and generalized least squares spline estimators. Specifically, from

equations (12) and (15), conventional (weighted) kernels and splines are applied to the pseudo-

(1+1)

observations Y;; " in (13) at each iteration with 6 (t) estimated using the kernel method and the

spline method at the previous iteration respectively. Hence both methods are local in the pseudo-
Y.(-lﬂ)

observations. Each pseudo-observation Y

is a weighted average of Y;; and the residuals of
the other observations within the same cluster {Y;, — a(l)(Tik)} calculated by centering Y around
their means estimated consistently using either kernel or spline methods at the previous iteration

5(1)(Tik). This means although both methods are non-local at the observation-level, they are local

(1+1) (i+1)

at the cluster—level. Further, although Y;; uses all observations within the same cluster, Y;
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Y.(.H'l)} ~ 0(T;;). Hence by re-centering at each

is asymptotically unbiased for 6(T;;), ie., E { !

iteration, observations within the same cluster whose covariate values are not in the neighborhood
of t are used to improve the efficiency of estimation of 6(¢) without introducing bias. When these
iterative procedures are used to calculate seemingly unrelated kernel and generalized least squares
spline estimators, the re-centering is done by updating §(T,]) at each iteration. When their closed
form expressions in (7) and (6) are used, the re-centering is done implicitly for all design points

simultaneously.

7 Simulation Study

In this section, we present simulation results which compare the finite sample efficiency of the
seemingly unrelated kernel estimator and the smoothing spline estimator. We focus on using the
true covariance in estimation; under working independence, the generalized least squares smoothing
spline and seemingly unrelated kernel estimators reduce to conventional spline and kernel estima-
tors respectively, and these estimators have already been compared in Welsh, et al. (2002). We
consider the seemingly unrelated linear kernel estimator using the Epanechnikov kernel, and the
cubic smoothing spline estimator.

We assumed in our simulation that the number of clusters n = 50 or n = 100, and the cluster
size m = 3. The covariate T;; was generated independently from the uniform[-2,2] distribution. The
outcome Y;; followed model (1) with 6(t) specified by each of the following 4 functions with different
curvatures: (1) model 1: §(t) = sin(2t); (2) model 2: 8(t) = /z(1 — z)sin{2r(14+-273/5) /(24+273/%)};
(3) model 3: O(t) = /z(1 — 2)sin{2r(1 + 2-7/5) /(2 + 277/%)}; (4) model 4: O(t) = sin(8z — 4) +
2exp{—256(z—.5)?}, where z = (t+2)/4. We assumed the marginal variances of the Y;; were 1, and
considered three true covariance structures: (1) exchangeable with common correlation p = 0.6;
(2) autoregressive with correlation p = 0.6, (3) unstructured with p;9 = po3 = 0.8 and p13 = 0.5.

For each configuration, we generated 200 simulated data sets and estimated 6(¢) using the seem-
ing unrelated kernel estimator and the generalized least squares cubic smoothing spline estimator,
where the true covariance was assumed. For simplicity and for the sake of consistency when com-
paring different methods, for each simulated data set, we estimated the bandwidth parameter h for
the SUR kernel estimator and the smoothing parameter A for the smoothing spline estimator by
minimizing the MSEs of the estimators 37 ; 377", {é(t) - 0(t)}2 by using our knowledge of the

actual function.
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Table 1 compares the average mean squared error efficiencies comparing generalized least squares
smoothing splines with seemingly unrelated kernels assuming the true covariance matrix. The re-
sults show that the relative efficiencies of generalized least squares spline estimates to seemingly
unrelated kernel estimates are close to one. Hence generalized least squares spline estimates and
seemingly unrelated kernel estimates have similar behavior in finite samples. These results are con-
sistent with our theoretical findings that generalized least squares splines and seemingly unrelated

kernels are asymptotically equivalent.

8 Discussion

Welsh, et al. (2002) showed that smoothing splines that incorporate the within-cluster correlation
are not asymptotically equivalent to conventional kernel generalized estimating equation estima-
tors for clustered/longitudinal data and that they have smaller variances than conventional kernel
estimators for clustered data. We have shown, however, that these smoothing spline estimators
are asymptotically equivalent to seemingly unrelated kernel estimators. Further, both seemingly
unrelated kernels and smoothing splines can be obtained iteratively by applying standard weighted
spline or kernel smoothing to pseudo-observations. This transparent connection allows us to study
the asymptotic properties (biases and variances) of smoothing splines, where direct investigation
is difficult. This result justifies the use of smoothing splines in clustered/longitudinal data. In
addition, the pseudo observation insight shows that all the observations in a cluster contribute to
the fit if any of the observations in the cluster have a value of T;; near the point at which the fit is
to be evaluated.

We have assumed in this paper that the number of observations per cluster is finite when the
number of clusters goes to infinity. This assumption holds for most common longitudinal studies and
studies involving clustered data such as familial studies and multi-center clinical trials. In some
situations, however, both the number of observations and the number of clusters go to infinity,
e.g., EEG recording is done every 30 seconds over night for patients in neurological research to
study brain activities (Malow, et al., 1996). Examination of the proof in Appendix A shows that
the asymptotic equivalence of smoothing splines and seemingly unrelated kernels in the sense of
Silverman (1984) still holds even when both the number of observations and the number of clusters
go to infinity. However, the asymptotic properties (biases and variances) of seemingly unrelated
kernel estimators and smoothing splines in this situation are not well understood and are currently

under investigation.
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APPENDIX
Appendix A Proof of Proposition 1

Consider the average kernel estimator (¢ = 0). Denote by 9\(1? (T) = {9\(1? (Th1),- - ,5(}{) (Tym) YT the

seemingly unrelated kernel estimator at the [th iteration evaluated at the vector of all the design

points T = (T11,++, Tpm)”. Using equation (2), some calculations give
O () = (TR V)™ (TR V8 (T) + 17KV {y - 00D }] (A1)

where Kgp, = diag{ K (T11 — 1), - Kp(Thm — t)}. Denote by

n m
Kuon ={D_ > Kn(Tu — )o7}y H{EKu(Toy — 1), , Kp(Tom — )}
i=1j=1
the vector of standardized kernel weights at ¢. Write §(I? (T) = KWY. We need to find the

relationship between K(¢*1) and K. Using (A.1), simple calculations give

O (0) = Kun@T (VKO + 7711 - KOy, (A.2)
It follows that
é\(ll(-l-l)(T) = K {VIK® + V-1(I — KO)}Y, (A.3)

and K+ = K, {VIK® + V1T - KO)}, where Ky = {Kyn(T11), - Kun(Tnm)} -
At convergence, K(U+tD) = K() = K. Hence K, solves K, = K, {VK, + V(I — K,)}, i.e,

K,={I+K,(V -V} 'K,V (A.4)
Substituting (A.4) into (A.2) and (A.3), some simple algebra give (7) and (8).
Appendix B Proof of Proposition 2

Using the results stated in the paragraph before Proposition 2, it suffices to show K,, = (Vd +
nA¥)~! asymptotically. Since Viisa diagonal matrix, we simply need to show that under working
independence, the weighted spline estimator is asymptotically equivalent to the conventional kernel

estimator. This can be easily shown using the results in §6 of Silverman (1984).
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Specifically, for any weights w;;, the weighted kernel estimator under working independence is
Owi(t) = {Cuw(t)} T Xy Yy wi Kp(Ty; — t)Yij, where Cy(t) = Yry Yy wij Ky (Ty; — t) and
the subscript W K denotes the weighted kernel under working independence. Denote by C
diag{Cy(T11),- -, Cw(Trnm)}. Then Ow k(t) evaluated at the vector of all design points 7' is

Ow i (T) = {Owi(Tn), -, 0wk (Tum)} = Ku,WY, (A.5)

where W = diag(wi1, - -, Wnm), Kw = Cgy' Kp, K, is a nmxnm matrix with elements K, (T;;—Ty 1)
(1, =1,---,n, j, 7' =1,---,m).

The weighted smoothing spline estimator under working independence evaluated at all the
design points 7' is

Ows(T) = (W +nA0) WY, (A.6)

where the subscript WS denotes the weighted spline estimator under working independence. The
results in §6 of Silverman (1984) show that the weights of Gy (T) and those of Gy g(T) are
asymptotically equivalent. Now let W = V¢ A comparison between (A.5) with (A.6) gives
K, = (V44 nA0)~! asymptotically with the kernel function defined in (10).

We now study how the bandwidth & is related to the smoothing parameter A. Following Silver-
man (1984), we first standardize the weights as w;; = v /n i v/J such that 3" ; Y wig =1,

and calculate the weighted cumulative distribution function and its limit as

m

ii I(Ty; <t) = F(t) = Zv“Fj(t)/fjvﬂ. (A7)
et =

Using the results in Theorem A of Silverman (1984) and replacing A by A/ 377", v/ and f(t) by
ST vi f5(t)/ T, v, the bandwidth h(t) is related to A by

A\ (Zh vﬂfj() o N
h(t):<z?:1vjf) ( ) :{E?‘:wﬂfj(t)} |

Appendix C Proof of Proposition 3
The pseudo-observations at the (I + 1)th iteration YZ-S-IH) in (13) can be written in a vector form as
y (41 — {f/d}—l [f/dé(sl)(T) s {Y _ §(Sl)(T)}] _ (A.8)
Plugging (A.8) into (14), some calculations give
6 ) = (V4 naw) (V4= 1) g0 0) + 7). (A.9)
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~ [~ o~ ~
Write 03 (7) = SOY. Then from (A.9), we have ¢+ = (V4 4 nAw)  [(V4 - V1O 4+ V1.
- A~y o~ ~
At convergence SUtD) = §O) = G, Hence S, solves S, = (Vd + n/\\IJ) [(Vd -V Hs, + V_l] .
Simple calculations give S, = (V= 4+ nA¥)~1V~L. This finishes the proof.

Appendix D Proof of Proposition 4

For independent data with m = 1, the model is Y; = 6(T;) + ¢;, where the ¢; are independent and
follow N(0,02). Denote by f(t) the density of T;, which has a uniformly continuous derivative.

Nychka (1995) stated the bias and variance of the (2p)th order smoothing spline estimator as

(=1)P~1x 9(2p) (t)

E{fs(1)} - 0(1) =~

f(t) ap
R o i —1/2p 0.—2
var{fs(t)} =~ n {f(t) } f(@)’

where a;, and vy, are some constants. He provided a rigorous proof of this result for the linear spline
(p = 1) and sketched an argument for the general pth (p > 1) order spline. We assume in our proof
that » — oo and A — 0 and A and ¢ are chosen such that the above bias and variance results hold
for independent data for any p > 1.

We first state a few facts about the Green’s function, which are used extensively in the proof.

The Green’s function is associated with the solution of the differential equation of a(t)

2pa
Fr T L fat) = £, (A.10)

for any functions f(t) and g(¢) and any arbitrary positive constant A*. Then the solution of this
differential equation is a(t) = [ G (¢, 7)f(7)g(7)dT, where G« (t,7) is called the Green’s function.

The Green’s function has the following properties

_1)p—1)*
[ Gt —at) = X oty /1) (a.11)
2 W [ A 1o * ~1/2
[ s = o { f(t)} ol rmy ] (Aa)
//G/\*(t,Tl)G)\*(t,Tg)T(Tl,TQ)dTldTQ = ;(;Z:))+0(1) (A13)
2 _ I N * —-1/2
[ancansmir = doFi{ it Fo[ ey (aa)

where ~, is some constant and d(7) and r(7(,72) are arbitrary functions. Equations (A.11) and
(A.12) are given in Nychka (1995), equation (A.13) can be easily shown using (A.10) and (A.11).
We believe that (A.14) holds but have not proved it.
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D.1 Asymptotic Bias and Variance of the Working Independence Estimator

Under model (1), we first derive an asymptotic expansion of the smoothing spline estimator assum-
ing working independence V = diag{vi}. Denote by fs;(t) such an estimator. We can show that
the results in Section 6 of Silverman (1984) still hold for b 7(t) and asymptotically, at any given ¢,

é\s[(t) = ﬁ { ! ZZG)\* (t sz)'U Yﬁ} + 0p(1),

7= i=1j=1

where G- (t, s) is the Green’s function associated with (A.10) with \* = A/ ( 1 U“) and f(t) =
S v f() ) iy v

We hence have

E{fsi(t)} - 0(t) ~ ﬁliivﬁay(t,nj)a(nj)_a(t) (A.15)
L
1’0” Z’U‘”/G,\* t,7)0(7)fi(r)dT — 6 /G)\* t,7)0(7)f(7)dT — 0(1).

Using (A.11) and the definitions of f(¢) and A*, the bias of fs;(t) is

E{fs1(t)} —0(t) = (-177x 6en(2) + 0 {h*P (1)}, (A.16)

vl fit) ap

where h(t) = [,\/ {Z;”Zl Ujjfj(t)}] 1/2p. Further var {551(t)} ~ Ain + Aoy, where

Ay = [n) o Z(U”) oG- (t, Ti5)
j=1 i=1j=1
i Sy (v99)° 0y84(7)
= [n) ¥ / =1 IR L G2 (¢, 1) F(T)dT + 0p(nY),
2 S iy ox BTIAT o nT)
m 4 g n m m
AQn = TLZ'U” ZZZ’U”’UMCO' kG)\* t TZJ)G)\*(t Tzlc)
= i=1j=1k#j
- X,
- Zvjj) _IZZ’U‘”’U o k/G)\* (t, 7)Gx= (, 8) fix (T, 8)dTds + 0, (n™1).
J=1 J=1j#k

Here f;i(7,s) is the bivariate density of (Tj;, Tj;). Using (A.14) and the definitions of f(¢) and \*,
one can calculate Ay, and using (A.13), A, = Oy(1/n). It follows that

1 O 09) 04 fi(t) A T L
Realeiin 7 (s, wif) n{z;-’;lmfj(t)} +op [{nh@)7] - (A7)
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Some calculations further show that fg 1(t) has the following asymptotic expansion

O51(t) = 0(8) = 55— S S G (4, T Y — O(T)} + o) + o [{nh(1)} 2 + WP (0)]
= (A.18)

where
alt) = <D il (A.19)

Y v fi(t)  ap

D.2 The Asymptotic Bias and Variance of the Generalized Least Squares
Smoothing Spline Estimator
Using the results in Proposition 3, the generalized least squares smoothing spline estimator can be
obtained equivalently by iteratively applying standard weighted spline smoothing to the pseudo-
observations. We hence study the asymptotic properties of the generalized least squares smoothing
spline estimator 55(75) through this iterative procedure by deriving the asymptotic bias and variance
of 9(5” (t) at each iteration and then those at convergence, which give the asymptotic bias and
variance of és(t). This asymptotic analysis strategy is advantageous since working independence
spline smoothing is applied at each iteration and its properties have been derived in Section D.1.
The smoothing spline estimator §(Sl+1) (t) at the (I41)th iteration is updated using (15) with the
pseudo-observations Y(Hl) =Y + (v7)7! ki vik {Y;k — 5(”( Zk)} Suppose we set the initial
estimator of 0(¢) using the working independence estimator described in Section D.1 and denote it
by 5590) (t). We first study the asymptotic properties of the one-step estimator. By setting ! = 1 and
substituting Yig-l) into (15), at the first iteration, we have 5(1) (t) = D1 + D2y, + D3y, + 0p(1), where

Dy, = ]ZZZG,\*thJ Jo* {Yig — 0(Tix,) } (A.20)
2 v 2 19 1k=1

Dy = 7 S S S R (LT {09(T) — 0(T) } - (A.22)
1=1j5=1k#j

First examine Dj3,. Using the asymptotic expansion 9:(90) (t) in (A.18), D3, can be written as
D3y, = D3p,1 + Dap,2, where

D3, = Z U“nZZZ”]kG/\* thJ lz U”’I’LZZGA* k> rs'U {Y:rs_ ( )}]

i=1j=1k#j r=1s=1

+0, [{nh(t)}—lﬂ]
L S S G (1T a(T) + 0y (K1)}

].7
1v = 1j=1k#j
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Simple calculations give

D?m,l = 9 ZZ 5 {Y;s - { ZZZU] GA* t Tz] GA*( ik rs)} (A.23)

( ;nl’l)ﬂ) r=1s=1 i=1j5=1k#j

+o, [{nh(t)}—lﬂ]
= v58 rs_ T, Uk St Ty, 7. 8)drds
(ZJ 1"’”) n’“zlszl v }lekz;ég ] //GA t,7)Gxx (Trs, 8) fji (T, 5)drd
+op [{nh(t)}~’]

Using (A.13), one can easily see that D3, ; = 0,(1). This implies that D3, ; is negligible in the
asymptotic expansion of éél) (t) and in the asymptotic bias and variance calculations of éél) (t).
The term D3, 2 can be written as
Dy — Zujk / G (t, 7)a(s) fu(r, s)drds + 0, {h?P(t)) (A.24)
ZJ 107 j= 1k¢1

1

= By szjk/GA* (t, 7)E{a(Ty,)|Tj = T} f;(T)dT + 0, {hK*P(t)}
J=L7 j=1k#j

fi7)
— —jzlkz#]mk/G» (t,7) [E{a(Tk)\T =71} T )}f('r)dT-l—op{h?p(t)}

Setting g(7) = E{a(T})|T; = 7} f;(7)/f(7) and using (A.11), we have

D3po = — Z Z vkE {a(Ty)|T; =t} f;(t / {Z UJJf] } + op{h2p(t)}. (A.25)
J=1k#j
This indicates that D3, 2 contributes to the leading bias term of §g) (t). It follows from the results
of D3, 1 and D3, 2 that D3, only contributes to the leading asymptotic bias of §§1)(t), but not to
the leading asymptotic variance of éf;) (t).
One can easily see Do, only contributes to the asymptotic bias of gg) (t). Specifically Dy, —6(t)

takes exactly the same expression as the right-hand side of equation (A.15). It follows that
Doy — 6(t) = a(t) + 0p {R” (1)}, (A.26)

where a(t) is defined in (A.19).
Since D1, has mean zero, it does not contribute to the bias. Combining equations (A.25) and

(A.26), the asymptotic bias of ) (t) is E {9151) (t)} —0(t) = bi(t) + 0, {h?P(t)}, where

bi(t) = aft Z 3 B {a(Ty)|T; = t} 1;(¢ /{Zvﬂf }] (A.27)

J=1k#j
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Now calculate var{éélﬂ) (t)} The term D;, determines the leading asymptotic variance of

é\(l

S )(t) and in fact is the leading term of the asymptotic expansion of ggl)(t). Rewrite Dy, as

1
Dy, = WZG,\* (t, T)TV=HY; — 0(T;})}, (A.28)

where Gy« (t, T;) = {Gr«(t,Tj1), - - -, Gax (t, Tia) } - Tt follows that
1 n
ar{0y) (1)) = ——— Y G D)V ISV G (1, T) + op[{nh(t)} 1]
(nzgnzl vjj) i=1
= Fip+ Fop + Op[{nh(t)}_l]’

where denoting C = V'SV =" and by cj; the (j, k)th element of C,

Fp = QZZG)\*tTZ] Cjj
(nZ] 1vﬂ) i=1j=1

n m
oy = ey ZZZG)\* (t, Ti5) Ga= (t, Ti ) ji-
(n ZJ 1 ’UN) i=1j=1k#j

First consider the term F},, which can be calculated as

1 m
Fin = 236 [ Gl +opl{nh() )
(z"il w) =
_ IW { 1_1%2 : }G%(t,f)f(f)df + opl{nh(H)} 1.
Using equality (A.14), we have
Yiticiifi(t) { A }1/210 o
o S o) 2 h . A.29
SRl bz} SR S
The term Fj, can be written as, using (A.13)
o — %ZZCM//GA* (t, 7)Gr=(t, 8) fi(T, 8)dTds + op(n™")

n(ZTzlv“) J=1k#j

3 : .\ 2 chjkfjk(t’t) +0p(n_1) = OP(n_l)
n (f(t) ;'n:l 'U]J) j=1k#j

It follows that

L= (1) x] Z;'n:lcjjfj(t) ﬁ{ A }_1/2p o [{n -1
ié (t)}_{ZT_wa’jfj(t)}Z" sEnm)  oleher] e
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The above calculations show that after the first iteration 5_(91)(15) has the asymptotic expansion

10 =00 = 573233 G Ty (Y= 0T}

i=1j=1k=1
+b1(t) + 0p[{nh(t)} 72 + K2 (1)], (A.31)

where the bias term by (¢) is defined in (A.27).

Now consider the estimator of (t) at the second iteration ég) (t). Using (A.9), we have 5(52) (t) =
D1, + Doy + D3y, + 0p(1), where Dy, and Doy, are the same as those given in equations (A.20) and
(A.21), and Dg, is the same as (A.22) except that é\g)) (Ty) is replaced by §( )( k). Similarly, using

the asymptotic expansion of 5%1) (t) in (A.31), we write D3, = D3y 1+ D3y, 2, where Dsy, 1 is slightly
different from (A.23)

i=1 #j
1 n
S 2 3> G (i o (Ve =0T

r=1s=1/¢=1

1m
D3n,1 = S 57 ZZ ’U]kG)\* i ,_Tz]
10N =1k
1

+0p [{nh()} 2]

D3np = BT ZZZU”“G,\* (t, To)br (Ti) + 0p {h?2(2) }

1’[)-7]’)1 i=175=1k#j
Similar calculations to those in (A.23) and (A.24) show that D3, 1 = 0,(1) and

m

Dynp=—3 3 v E {by(Ty)|T; =1} £;(t) / {Zv”f } +0p {h7(1)} . (A.32)

J=1k#j

Hence the asymptotic variance of gg) (t) takes exactly the same form as that given in (A.30) and

the asymptotic bias of 5592) (t) = ba(t) + 0, {K?P(t)}, where

b(t) = alt) — |3 Y B {D(TOIT; = 1} £5(1)/ {ith)}] .

J=1k#j Jj=1
It follows that the second iteration does not change the variance but only make a refinement of
the bias. The asymptotic expansion of 5592) (t) takes the same form as the right-hand side of (A.31)
except by (t) is replaced by ba(?).
Using induction, one can easily see that the expansion of agﬂ)(t) at the (I + 1)th iteration

[ > 2) is exactly the same as 0 (¢ except that bo(t) is replaced by by 1(t), which satisfies
S +

bl+1(t) Z Z kR {bl Tk)‘T = t} f] / {quﬂfj }] .

J=1k#j
Its asymptotic variance takes the same form as that in (4). In other words, further iterations only

make refinements of the bias but not the variance.
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At convergence égﬂ) (t) converges to Bg(t) (Proposition 3), and by (t) = by(t) = bg(t), where

bs(t) satisfies

m m
bs(t) = alt) — | 0 3 v {bs(T)|T; = 1} (1) / {zfuﬂfj(t)}] .
=1 kA =1
The asymptotic bias of f5(t) is bg(t). The results of part (1) of Proposition 4 follows immediately.
The asymptotic variance of ag(t) takes the same form as the right-hand side of equation (A.30).
Hence the results in part (2) of Proposition 4 follow immediately. A direct application of the
Cauchy-Schwartz inequality gives part (3). Omne can also easily see from the above calculations
that the asymptotic expansion of fg(t) given in part (4) holds. It should be noted that these

asymptotic expansion and asymptotic variance and bias do not depend on choice of the initial

counsistent estimator 5(50) (t).
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MSE Efficiency of Splines
Relative to SUR Kernels

Model Corr n =50 n = 100
1 1 1.15 1.22
1 2 1.16 1.21
1 3 0.99 1.07
2 1 0.99 1.03
2 2 0.98 1.01
2 3 0.94 0.99
3 1 0.98 1.00
3 2 0.98 1.00
3 3 0.92 0.98
4 1 1.09 1.07
4 2 1.08 1.06
4 3 1.25 1.13

Table 1: Table 1 Simulated relative efficiencies comparing smoothing splines with seemingly un-
related (SUR) kernels assuming the true covariance. The four models correspond to model 1:
6(t) = sin(2t); model 2: 6(t) = /z(1 — 2)sin{2r(1 + 273/5)/(z + 273/5)}; model 3: 6(t) =
V21 = 2)sin{27(1 4+ 277/%) /(z + 277/5)}; model 4: O(t) = sin(8z — 4) + 2exp{—256(z — .5)%}.
The three correlation structures correspond to Corr = 1: the autoregressive case with p = 0.6; Corr
= 2: the exchangeable case with p = 0.6; Corr = 3: the unstructured case with pjo = p23 = 0.8
and p13 = 0.5.
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FIGURE

Figure 1. The weights for the iterative kernel estimate and the smoothing spline estimate
when n = 50 and m = 3 in the exchangeable case with p = 0.8. The solid line assumes working
independence and dotted line assumes the true covariance: (a) the seemingly unrelated kernel

estimate; (b) the smoothing spline estimate.
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