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Longitudinal Image Analysis of Tumor/Brain
Change in Contrast Uptake Induced by

Radiation

Xiaoxi Zhang, Tim Johnson, Rod Little, and Yue Cao

Abstract

This work is motivated by a quantitative Magnetic Resonance Imaging study of
the differential tumor/healthy tissue change in contrast uptake induced by radia-
tion. The goal is to determine the time in which there is maximal contrast uptake,
a surrogate for permeability, in the tumor relative to healthy tissue. A notable fea-
ture of the data is its spatial heterogeneity. Zhang, Johnson, Little, and Cao (2008a
and 2008b) discuss two parallel approaches to “denoise” a single image of change
in contrast uptake from baseline to a single follow-up visit of interest. In this work
we explore the longitudinal profile of the tumor/healthy tissue change in contrast
uptake. In addition to the spatial correlation, we account for temporal correlation
by jointly modeling multiple images on the individual subjects over time. We fit
a two-stage model. First, we propose a longitudinal image model for each sub-
ject. This model simultaneously accounts for the spatial and temporal correlation
and denoises the observed images by borrowing strength both across neighboring
pixels and over time. We propose to use the area under the receiver operating
characteristics (ROC) curve (AUC) to summarize the differential contrast uptake
between tumor and healthy tissue. In the second stage, we fit a population model
on the AUC values and estimate when it achieves the maximum.
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Summary: This work is motivated by a quantitative Magnetic Resonance Imaging study of the

differential tumor/healthy tissue change in contrast uptake induced by radiation. The goal is to

determine the time in which there is maximal contrast uptake, a surrogate for permeability, in the

tumor relative to healthy tissue. A notable feature of the data is its spatial heterogeneity. Zhang,

Johnson, Little, and Cao (2008a and 2008b) discuss two parallel approaches to “denoise” a single

image of change in contrast uptake from baseline to a single follow-up visit of interest. In this work

we explore the longitudinal profile of the tumor/healthy tissue change in contrast uptake. In addition

to the spatial correlation, we account for temporal correlation by jointly modeling multiple images on

the individual subjects over time. We fit a two-stage model. First, we propose a longitudinal image

model for each subject. This model simultaneously accounts for the spatial and temporal correlation

and denoises the observed images by borrowing strength both across neighboring pixels and over

time. We propose to use the area under the receiver operating characteristics (ROC) curve (AUC) to

summarize the differential contrast uptake between tumor and healthy tissue. In the second stage,

we fit a population model on the AUC values and estimate when it achieves the maximum.
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Longitudinal Image Analysis of Tumor/Brain Response to Radiation 1

1. Introduction

This work is motivated by a pilot imaging study investigating the effects of radiation therapy

on the vascular permeability of high-grade gliomas, a particularly virulent type of brain

cancer. Despite advances in both radiotherapy and chemotherapy, the overall survival time

of a glioma patient has not significantly increased from its one year median survival since

diagnosis (Curran et al. 1993).

Researchers hypothesize that tumor vasculature damage due to radiation would disrupt

the blood tumor barrier (BTB), at least transiently, allowing larger molecules to cross the

BTB. If true, this suggests that chemotherapy should commence during the time when

the BTB damage is at its peak. For instance, if the BTB damage peaks early during

radiotherapy, greater tumor control could be achieved by starting chemotherapy during this

time, in contrast to current practice of sequentially administering radiotherapy followed by

chemotherapy.

Eleven subjects, diagnosed with high-grade gliomas, volunteered to take part in this study

conducted at the University of Michigan School of Medicine in the Department of Radiation

Oncology. The subjects underwent, standard-of-care radiation therapy over a course of

four to six weeks. Six imaging sessions were scheduled for each subject. The first image

was obtained approximately one week prior to the onset of radiotherapy. The other five

images were acquired at weeks one and three during therapy, and at one, three and six

months post therapy. Two T1-weighted magnetic resonance images (MRI), one with and one

without contrast enhancement agent—Gadolinium diethylenetriaminepentaacetic acid (Gd-

DTPA)—were obtained at each exam. All images were registered to the baseline computed

tomography (CT) image used for treatment planning. The molecular weight of Gd-DTPA is

approximately that of many chemotherapeutic molecules. Therefore, the contrast uptake (the

volume of Gd-DTPA that crosses the BTB) is a good surrogate of vascular permeability. It
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is representative of the volume of chemotherapeutic drug that crosses the BTB. The contrast

uptake is quantified as the log ratio of the contrast enhanced T1-weighted MRI image to the

non-contrast enhanced T1-weighted MRI image (e.g. Figure 1). The resulting contrast uptake

image is an example of quantitative MRI (qMRI). It quantitates a physiological process (in

this case vascular permeability). This is in contrast to an anatomical MRI exams that only

allow visualization of anatomical structures and abnormalities and whose values have no

absolute, quantitative interpretation, only relative meaning.

Despite a large body of literature on medical image analysis, especially functional MRI,

proper statistical analysis of qMRI data is limited. Two important features of qMRI data

are spatial correlation and heterogeneity. Although they seem to be discordant features,

examination of Figure 1 reveals that contrast uptake in healthy tissue is rather homogeneous

and one would expect that there is high spatial correlation (at least locally). The tumor,

visible in the upper left quadrant, is much more heterogeneous with respect to its contrast

uptake. This heterogeneity can, more or less, be divided into two relatively homogeneous

regions: the core of the tumor and its periphery, or annulus. The core of a tumor is typically

hypoxic (low oxygen content due to a lack of blood supply) and appears dark in Figure

1, for example, indicating low contrast uptake. Whereas, the annulus is typically rich in

neovasculature (newly formed blood vessels that are typically disorganized and leaky) and

appears light in shades indicating high contrast uptake (see Figure 1 for example). It is known

that hypoxia is protective against damage due to radiation and chemotherapy. Therefore,

the core is usually a source of tumor regrowth after therapy. The focus of this imaging study

is on demonstrating that radiation therapy can transiently increase vascular permeability in

the tumor core.

In many imaging studies, spatial information is ignored (e.g. Cao et al. 2005; Moffat et al.

2005; Hamstra et al. 2005). Zhang, Johnson, Little, and Cao (2008a and 2008b) develop an
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appropriate statistical model (a Gaussian hidden Markov random field model) for qMRI data

that smoothes the data while respecting the heterogeneity not only within the tumor but

also between the tumor and healthy tissue. They propose both a maximum likelihood and

a Bayesian estimation method for image smoothing with edge preservation. However, their

work focuses on a single contrast change—the change in contrast uptake from the baseline

image to the three-week image, and thus ignores the temporal aspects in the data. In this

manuscript we extend their Bayesian approach to account for the temporal profile of the

change in contrast uptake in addition to the spatial correlation of the data. In doing so, we

can answer the main question of interest: at what time, if any, does the differential contrast

uptake achieve a maximum.

In this article we first extend the Bayesian hierarchical model proposed in Zhang et al.

2008b by building a spatial-temporal model, accounting for temporal, as well as spatial,

correlation. The model smoothes the observed images, while preserving edges, by borrowing

strength across pixels and over time. We then summarize the differential tumor/healthy

tissue “true” contrast uptake for each subject using the area under the receiver operating

characteristics (ROC) curve (AUC, Pepe, 2003). The AUC is a robust measure of the

difference in the distributions of the “true” contrast uptake of diseased and healthy tissue

(Pepe, 2003). We then combine information across subjects in several population models

treating the AUC as a response variable and investigate the population level temporal profile

of the tumor/healthy tissue contrast uptake. The best population model is chosen based on

the predictive distribution criterion proposed by Gelfand, Dey, and Chang (1992).

In the next section we describe the details of the proposed model. In Section 3 we outline

the model implementation. Results from simulation studies and the motivating study are

presented in Section 4. A small sensitivity analysis is also conducted in that section. We

conclude the paper with a discussion of the model and ideas for future research.

http://biostats.bepress.com/umichbiostat/paper78
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[Figure 1 about here.]

2. Model Specification

In this section, we first describe a longitudinal image model at the subject level that bor-

rows strength both across pixels and over time. It smoothes the observed contrast uptake

while preserving edges between homogeneous regions. Later, we summarize the differential

tumor/healthy tissue response to radiation using AUCs, and then build a population model

treating AUCs as the outcome of interest.

2.1 Longitudinal Image Model

We build a longitudinal image model for each subject using the following notation. Let j

(j = 1, 2, · · · , J) index the visits. Since we assume the images are registered over time for

each subject, we use a common index i (i = 1, 2, · · · , N) to denote pixels regardless of

visits (pixel i at visit j and pixel i at visit j′ are the same pixel). We denote the observed

contrast uptake of pixel i at visit j by yij, and write the image at visit j in vector form as

yj = (y1j, · · · , yNj)
T and all J images as y = (yT

1 , · · · ,y
T
J )T.

2.1.1 Distribution of the Data. We decompose the observed contrast uptake, y, into the

“true” contrast uptake and observational noise. We specify the observed contrast uptake as

an unobserved “true” value plus a measurement error, i.e. yij = νij+eij where eij ∼ N(0, σ2
e),

or [yij | νij, σ
2
e] ∼ N(νij, σ

2
e), for all i, j. The νij is the unobserved “true” contrast uptake at

pixel i, visit j, the temporal and spatial structure of which will be specified in the following

section. We write in vector form νj = (ν1j, · · · , νNj)
T and ν = (νT

1 , · · · , νT
J )T.

2.1.2 Prior Distributions.

(1) We specify flat (improper) prior distribution for the standard deviation of the measure-

ment error, i.e. P (σ2
e) ∝ 1.
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(2) The decomposition of the observed contrast uptake into the “truth” and conditionally

independent noises in the above section is similar to Zhang et al. (2008a and 2008b).

They impose a spatial structure (a Markov Random Fields prior, MRF, Besag 1974)

directly on the “true” change in contrast uptake. Their model is sufficient when analyzing

one single change image, i.e. subtracting the baseline observed contrast uptake image

from the observed image at three-week. However, we need additional modeling of the

longitudinal perspective when we analyze multiple qMRI images taken over time.

Considering that the “true” contrast uptake evolves over time during and after radio-

therapy, this motivates us to conceptualize the “true” contrast uptake at current visit

as the “true” contrast uptake from the last visit plus a change in contrast uptake and

an evolution error.

For j > 1, this is formalized as νij = νi,j−1 + δij + εij, εij ∼ N(0, τ 2
ij), where δij

is the structural “change” in contrast uptake and εij is the evolution error of pixel

i at visit j, respectively. To keep the notation consistent, we define νi0 ≡ 0. Hence,

[νij | νi,j−1, δij, τ
2
ij] ∼ N(νi,j−1 + δij, τ

2
ij) for i = 1, 2, · · · , N and j = 1, 2, · · · , J . We

write in vector form δj = (δ1j, · · · , δNj)
T, δ = (δT

1 , · · · , δ
T
J )T, τ 2

j = (τ 2
1j, · · ·, τ

2
Nj)

T, and

τ 2 = (τ 2
1
T
, · · · , τ 2

J

T
)T. The above prior distribution of ν implies E(νj | νj−1, δj, τ

2
j) =

νj−1 + δj. Therefore, δ1 is interpreted as the expectation of the true contrast uptake at

the first visit (i.e. E(ν1 | ν0, δ1, τ
2
j) = δ1), and the interpretation of δj (j > 1) is the

structural change in contrast uptake from visit (j − 1) to visit j. Henceforth, we refer

to δj (j = 1, · · · , J) as the true “change” in contrast uptake with change in quotes for

simplicity.

(3) Since the radiation is administered in a gradient fashion, i.e. the dose is intensified in

the tumor area and tapered off in healthy tissue, it is reasonable to assume its impact

(“change” in contrast uptake) is spatially correlated. In the meanwhile, there exists
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spatial heterogeneity within and surrounding the tumor. This motivates us to model the

“change” in contrast uptake with a MRF prior for each visit, which only only accounts

for the spatial correlation in the “change” but also respects the distinct boundaries

between tumor and healthy tissue. Zhang et al. (2008a and 2008b) have successfully

applied MRF in modeling the observed change in contrast uptake images (yij − yij′),

which can be considered as the “prototype” of the proposed model if we force εij ≡ 0.

Specifically, let δij (i = 1, 2, · · · , Nj) assume one of Mj possible values, (µ1j, · · · , µMjj
)

for each visit j. We write in vector form µj = (µ1j, · · · , µMjj
)T and µ = (µT

1 , · · · ,µ
T
J )T.

We specify the prior distributions of the Mj possible values as µkj ∼ Uniform(µmin, µmax)

for all 1 6 k 6 Mj, where µmin and µmax are the minimum and maximum of the observed

“change” in contrast uptake.

(4) Similar to (3), for each visit j, let τ 2
ij (i = 1, 2, · · · , Nj) assume one of Mj possible

values denoted by (σ2
1j, · · · , σ

2
Mjj

). We assume, a priori, σ2
kj ∼ Inv-Gamma(ασ, βσ) for all

1 6 k 6 Mj. We write in vector form σ2
j =(σ2

1j, · · ·, σ
2
Mjj

)T, and σ2 = (σ2
1
T
, · · · ,σ2

J

T
)T.

We set ασ = 2.5 and βσ = 5 as constants, such that the prior mode of σ2
kj is 0.3. Later

in Section 4.1, we investigate the sensitivity of the results to other choices of ασ.

(5) We introduce hidden MRF labels Zij on the state space Sj = {1, · · · ,Mj}. Let Zij index

the value of δij and τ 2
ij out of the Mj choices, i.e. δij = µkj and τ 2

ij = σ2
kj when Zij = k.

The MRF prior on the hidden labels takes the form

P(Zj = zj | βj,Mj) = g−1(βj,Mj)exp
{

βj
∑

i∼i′

I[zij = zi′j]
}

,

where I[·] is the indicator function, i ∼ i′ denote pixel i and i′ are neighbors (i.e. imme-

diately adjacent), and g−1(βj,Mj) =
∑

Zj
exp

{

βj
∑

i∼i′I[zij = zi′j]
}

is the normalizing

constant to be estimated via thermal integration (Ogata, 1989; Gelman and Meng, 1998).

This model is also known as the Potts model in statistical physics (Potts, 1952). The

collection of hidden labels, zj = (Z1j = z1j, · · · , ZNj = zNj)
T, is called a configuration.
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We also write z = (zT
1 , · · · , z

T
J )T. The spatial regularization parameter βj controls

the strength of the spatial correlation of the labels, e.g. large βj encourages smoother

configurations.

(6) We assume Mj ∼ Uniform(Mmin,Mmax), where Mmin = 2 and Mmax = 20, such that the

number of components is allowed to vary on a reasonable range. We write in vector form

M = (M1, · · · ,MJ)
T.

(7) Let βj ∼ Uniform(0, βmax), where βmax = 3. Similarly, we write in vector form β =

(β1, · · · , βJ)
T.

Note that we compute the normalizing constant g(βj,Mj) off-line on the grid values of

βj = 0, 0.1, · · · , 3.0 and M = 2, 3, · · · , 20 (Zhang et al. 2008b). Its value on non-grid points

will be computed via interpolation.

2.1.3 Joint Distribution and Conditional Posterior Distributions. The joint distribution

is

P(σ2
e)

J
∏

j=1

[

P(Mj)P(βj)P(Zj | βj,Mj)×

Mj
∏

k=1

[

P(µkj)P(σ2
kj)

×
∏

i∈Dkj

{

P(νij | νi,j−1, µkj, σ
2
kj)P(yij | νij, σ

2
e)
}

]

]

,

where Dkj = {i : Zij = k} is the collection of pixels with the same label k at visit j, i.e. a

component. By Bayes Theorem the conditional posterior distributions of µkj, σ
2
kj, νij, and

σ2
e have closed form. The conditional posterior distributions of Zj and βj satisfy

P(Zj | ·) ∝ g−1(βj,Mj)exp
{

∑

i∼i′

βjI[zij = zi′j]
}

×

Mj
∏

k=1

∏

i∈Dkj

σ−1
kj exp

{

− .5σ−2
kj (νij − νi,j−1 − µkj)

2
}

,

P(βj | ·) ∝ g−1(βj,Mj)exp
{

∑

i∼i′

βjI[zij = zi′j]
}

,

for j = 1, · · · , J .

http://biostats.bepress.com/umichbiostat/paper78
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2.1.4 Marginal Posterior Mean of Contrast Uptake. Following Zhang et al. (2008b), we

characterize the contrast uptake by its posterior mean, i.e. νij = νi,j−1 +
∑Mj

k=1 µkjP(Zij =

k | y). It can be estimated via Markov chain Monte Carlo (MCMC) draws, δ
(t)
ij and ν

(t)
i,j−1,

at iteration t (1 6 t 6 T ): ν̂ij = T−1
∑T

t=1

[

ν
(t)
i,j−1 + δ

(t)
ij

]

, where δ
(t)
ij = µ

(t)
kj when z

(t)
ij = k.

Similarly, we summarize the standard deviation of pixel intensity with its posterior mean,

φi. The corresponding Monte Carlo estimate is φ̂ij = T−1
∑T

t=1 τ
(t)
ij , where τ

(t)
ij = σ

(t)
kj when

z
(t)
ij = k.

2.2 Summarizing Differential Tumor/Healthy Tissue Response Using AUC

Although the longitudinal image model detailed in Section 2.1 estimates the “true” contrast

uptake by smoothing the images, it does not directly answer the question of interest: When

is there is maximal contrast uptake in the tumor relative to healthy tissue? We propose using

the AUC as a nonparametric and robust measure of the differences in the distributions of

the “true” contrast uptake of diseased and healthy pixels (Pepe, 2003).

As a descriptive device, the ROC curve is most commonly used for evaluating diagnostic

tests, providing false positive and true positive rates over a range of thresholds. We use

it to provide a distribution-free description of the separation between two distributions.

Let YD and YD̄ denote the distribution of diseased and healthy populations (e.g. the “true”

contrast uptake of tumor and healthy pixels). The ROC curve plots the false positive fraction

(FPF(c) = P(YD̄ > c)) against the true positive fraction (TPF(c) = P(YD > c)) for a range

of threshold values c (assuming large values indicate disease). The AUC is a non-parametric

and robust measure of the separation of YD and YD̄. It can be interpreted as the probability

that a randomly drawn value from YD is greater than a random draw from YD̄ (Bamber,

1975; Hanley and McNeil, 1982). When the distributions are discrete, the AUC based on

linear interpolation is AUC = P(YD > YD̄) + .5P(YD = YD̄). Large values of AUC suggest

Hosted by The Berkeley Electronic Press



Longitudinal Image Analysis of Tumor/Brain Response to Radiation 9

good separation of the two distributions. In the ideal case, when the two distributions of YD

and YD̄ are perfectly separated, AUC reaches its maximum value, 1.

One benefit of using the AUC as a summary statistic of the differential tumor/healthy

tissue response is that the healthy tissue of the same subject is serving as the control for

the tumor region. As we have observed in some situations, the contrast uptake images from

one visit can be overall brighter/darker than another visit due to MRI machine receiver gain

(e.g. y4 in Figure 1 is brighter than the rest of the visits). Although in such situations the

image intensities of all pixels are shifted, the AUC values are invariant, i.e. P(YD > YD̄) =

P(YD + d > YD̄ + d) for an arbitrary shift in images intensities d.

As we stated in the introduction, the contrast uptake profile of tumor core and annulus are

pathologically different and need to be examined separately. We divide the tumor into core

and annulus by applying the edge preserving smoothing discussed in Zhang et al. (2008b)

to the baseline contrast uptake image and taking the 95% percentile of the posterior mean

image as the threshold between core and annulus. We use superscripts to denote tumor core

and annulus respectively, i.e. Ac for core and Aa for annulus. The next section discusses

building population model on the AUCs (Ac and Aa). Since the model for Ac and Aa will be

considered separately and the superscript will be omitted for simplicity thereafter.

2.3 Population Model of the AUC

In building the population model, we introduce a subject index h (1 6 h 6 H). We denote the

posterior mean of AUCs for subject h at visit j (1 6 j 6 Jh) by Ahj (gray profiles in Figures

5a and 5c). Since the AUC is bounded between 0 and 1, we apply a logit transformation to

Ahj before fitting the population model, i.e. logit(Ahj) = logAhj − log(1− Ahj).

The subject AUC profiles in Figures 5a and 5c indicate the need for separate models for

tumor core and annulus. Considering the limited number of visits for each individual, we

opt for a linear function of time (days since the initiation of radiation, thj) with a variable
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change point as the population mean model. The change point location (τ) is treated as a

model parameter. As considerable inter-subject variability is seen in the profiles, we introduce

individual random effects to capture the inter-subject variability in the patient population,

e.g. random intercept, random slope for the second linear segment, or both. We define [t]+ =

max(0, t). Explicitly, the models we consider are

M1 : logit(Ahj) = α+ β1thj + β2[thj − τ ]+ + b0h + ehj.

M2 : logit(Ahj) = α+ β1thj + (β2 + b1h)[thj − τ ]+ + ehj.

M3 : logit(Ahj) = α+ β1thj + (β2 + b1h)[thj − τ ]+ + b0h + ehj.

where b0h ∼ N(0, φ2) and b1h ∼ N(0, ψ2) are the individual-specific random intercept and

slope, respectively, and ehj ∼ N(0, σ2) is the error term. We specify the following prior

distributions for model parameters, φ2 ∼ Inv-Gamma(aφ, bφ), ψ
2 ∼ Inv-Gamma(aψ, bψ),

σ2 ∼ Inv-Gamma(aσ, bσ), τ ∼ Uniform(0, 183) and an improper flat prior density for θ =

(α, β1, β2)
T, i.e. P(θ) ∝ 1. These result in a proper joint posterior distribution. We set

aφ = aψ = aσ = 1, bφ = bψ = 0.1, and bσ = 0.5 such that φ2, ψ2, and σ2 are on reasonable

scales, a priori.

We evaluate the adequacy of the population models via a cross-validation approach (Gelfand,

Dey, and Chang, 1992), which aims to validate the conditional predictive distributions when

each observation is left out. We denote the remaining data by A\hj when the jth visit of

subject h is left out and use a checking function dhj = logit(Ahj) − E[logit(Ahj) | A\hj],

where E[logit(Ahj) | A\hj] is the posterior predictive mean of logit(Ahj).

The overall fit of a candidate model is evaluated as the sum of squares of the checking

functions, i.e. D =
∑

h,j d
2
hj. The best-fitting model among the candidates, Model (M1),

(M2), and (M3), is the one with the smallest D (Gelfand, Dey, and Chang, 1992).

A straightforward approach is to fit the population model multiple times with one obser-

vation left out each time. Instead, we use the method described by Chen, Shao and Ibrahim
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(2000) to simplify the posterior predictive check. We denote the posterior distribution by

P(θ | ·) and the distribution of the data by P(Ahj | θ). It follows from P(θ | A) ∝ P(θ |

A\hj)P(Ahj | θ), where A = (Ahj,A\hj), that

dhj = logit(Ahj)−

∫ ∫

logit(Ahj)P(Ahj | θ)P(θ | A\hj)dθdAhj

= logit(Ahj)−

∫ ∫

logit(Ahj)P(Ahj | θ)P(θ | A)/P(Ahj | θ)dθdAhj
∫

P(θ | A)/P(Ahj | θ)dθ
.

The above equation only depends on P(θ | A) not P(θ | Ahj). Therefore, the population

model only needs to be fitted once with all the observations.

3. Sketch of Implementation

We implement the subject-level longitudinal image model by running separate Monte Carlo

chains for each subject. At every iteration, we update the parameters for the Jh visits

sequentially. For each visit j (1 6 j 6 Jh), the conditional posterior distribution of µj, σ2
j ,

and νj have closed form and are updated via standard Gibbs sampling steps. The spatial

regularization parameter, βj, requires a Metropolis-Hastings step. We use the Swendsen-

Wang algorithm (Swendsen and Wang, 1987; Higdon, 1998; Zhang et al. 2008b) to update

the hidden configurations. The most challenging part of the sampler is to update the number

of components for each visit via RJMCMC. The trans-dimensional proposal follows Zhang et

al. (2008b) with some modifications (see Appendix for details). We then compute the tumor

core and annulus AUCs for each visit. After all parameters indexed by visits are updated, we

finish the current iteration by drawing σ2
e via a Gibbs step and proceed to the next iteration.

In the population AUC model, the conditional posterior distribution of θ, φ2, ψ2, and σ2

have closed form by Bayes Theorem and are updated via Gibbs steps. The change point

location, τ , is updated via a Metropolis-Hastings step. The best model is chosen via cross-
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validation (Gelfand et al., 1992). The MCMC estimate of dhj is as follows

d̂hj = logit(Ahj)−
S−1

∑S

s=1 logit(A
(s)
hj )/P

(

Ahj | θ
(s)

)

S−1
∑S

s=1 1/P
(

Ahj | θ
(s)

) ,

where
(

A(s),θ(s)
)

are posterior draws at iteration s(1 6 s 6 S). We fit the candidate Models

(M1)-(M3) and select the one with the smallest D̂ =
∑

h,j d̂
2
hj.

4. Results

To evaluate the performance of the longitudinal image model, we conduct a series of simu-

lation studies. In each set, we generate multiple simulations, indexed by l = 1, 2, · · · , L. We

compute the average Mean Squared Error (aMSE) and average bias (abias) for the “true”

contrast uptake estimate for simulation l at visit j, both averaged over pixels within an

image, aMSE(ν lj) = N−1
∑N

i=1(ν̂
l
ij − νl,true

ij )2 and abias(ν lj) = N−1
∑N

i=1(ν̂
l
ij − νl,true

ij ), where

νl,true
ij is the true contrast uptake used to generate the lth simulation and ν̂lij is its estimate

(i.e. posterior mean). We also define the average aMSE and abias across the L simulations

as MSE(νj) = L−1
∑L

l=1 aMSE(ν lj) and bias(νj) = L−1
∑L

l=1 abias(ν lj). To illustrate the

benefits of modeling the temporal correlation, we compare this method with a set of cross-

sectional models on the simulated data, i.e. fitting an independent model for the observed

contrast uptake image at each visit as Zhang et al. (2008b). Essentially, the cross-sectional

model assumes yij = ηij + eij, eij ∼ N(0, ω2
ij) where the value of ηij and ω2

ij are indexed by

hidden label Zij, i.e. ηij = ξkj and ω2
ij = υ2

kj when zij = k. We further run the algorithm on

the real dataset and summarize the differential tumor/healthy tissue response with AUC,

and select the best fitting population AUC model for the tumor core and annulus separately.

4.1 Simulation Study of Random “Change” Images

We assume there are six images (J = 6) on 128 × 128 lattice. We divide the lattice into

a skeleton of regions in various shapes (Figure 2). The same skeleton is used for all visits.

For each visit, we assign the same value of true “change” to all pixels in the same region
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(δij = δi′j for all j and i ∼ i′), which is independently and randomly drawn from eight

candidate levels (Mj = 8 and µj = (−5.95,−4.25,−2.55,−0.85, 0.85, 2.55, 4.25, 5.95)T for

all j). We set the standard deviation of all evolution errors to 0.7, i.e. σkj = 0.7 for all j

and k. The standard deviation of the measurement errors is σe = 1. The top row of Figure

3 shows an example of the true “change” images. We follow the model assumptions and

generate the “true” contrast uptake images from νij = νi,j−1 + δij + εij, where ν0 = 0 and

εij ∼ N(0, τ 2
ij). The observed images are generated as yij = νij + eij, where eij ∼ N(0, σ2

e)

(Figure 3 third row). Twenty sets of images are generated in the above fashion (L = 20).

[Figure 2 about here.]

We run the proposed algorithm on each of the twenty simulated datasets. The pixel-wise

posterior means of δj and νj for the example dataset are displayed in Figure 3 second and

fourth row. The posterior mean images of the true “change” are similar to the corresponding

true values. However, we note that the errors are more likely to occur on the boundaries of

two adjacent regions when they have means that are close to one another. By modeling the

temporal correlation, the posterior mean images of the “true” contrast uptake (ν̂j) are less

noisy than the observed images (yj) while the edges between regions with different “true”

values are preserved.

We also compare the proposed longitudinal model with J independent cross-sectional

models, one for each visit. The cross-sectional model assumes that each observed image

is a hidden MRF deteriorated by Gaussian noise. At each visit j, the true pixel mean (ηij)

is the counterpart of the “true” contrast uptake (νij) in the proposed model. We compare

the average MSE of the two approaches averaged over pixels within an image. Both methods

have minimal bias. However, the proposed longitudinal approach produces uniformly smaller

average MSEs than the cross-sectional model by borrowing strength over time in addition

to across neighboring pixels. Because the noises (both evolution and measurement errors)
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add up over visits, the MSE is non-decreasing as the signal to noise ratio decreases for both

approaches. The average MSEs of the cross-sectional model increase roughly as multiples of

its baseline value while the longitudinal model only increases moderately for the follow-up

visits (j > 1) after borrowing strength across visits. By way of data generation, the “true”

contrast uptake is essentially continuous. We argue that the posterior draws of ν from the

longitudinal model are on a continuous scale for j > 1, whereas the posterior draws of η in

the cross-sectional model are discrete. This explains why the proposed method fits the data

better with smaller average MSEs.

We investigated the sensitivity of the results to alternative choices of the hyperprior βσ = 1

and 5, instead of βσ = 3. The MSE(νj) is not sensitive to the choice of λ — the change in

average MSE is less than 5%.

[Figure 3 about here.]

[Table 1 about here.]

4.2 Simulation Study of No Treatment Effect

We generate a second set of simulations assuming no treatment effect. We assume the regions

within the outer ring are the “tumor” with relatively low baseline contrast uptake, while

the rest of the regions are “healthy tissue”. At baseline (j = 1), we assign the “tumor”

regions with means randomly drawn from (−5.95,−4.25,−2.55,−0.85), and the means of

the “healthy” regions drawn from (−2.55,−0.85, 0.85, 2.55, 4.25, 5.95). The other parameters

remain the same as in Section 4.1. The regions within the outer ring have smaller means

(darker colors) than the surrounding regions, on average. The rest of the true “change”

in contrast uptake is set to zero, i.e. δj = 0 for j > 1. We then generate νj and yj. We

generate twenty sets of such datasets and run the proposed algorithm on each set (not shown).

Similarly, the average MSEs of the proposed longitudinal model are significantly smaller than
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the MSEs of the cross-sectional model (Table 1) with the comparative advantage increasing

over time.

4.3 Simulation Study of Treatment Effect

We also simulate a third scenario assuming a treatment effect. At baseline, δ1 is generated

in the same way as Section 4.2. During the hypothetical radiotherapy period (the second

and third visits, j = 2 and 3), we assume the “diseased” regions are more responsive to

radiation than the “healthy” regions — the true “changes” of the “diseased” regions are

randomly drawn from (2.55, 4.25), while the “change” of the “healthy” regions are drawn

from (−0.85, 0.85). Hence, the center regions are brighter than the surrounding regions during

the treatment period. We assume no long-term effect after the completion of treatment, i.e.

δj = 0 for j = 4, 5, 6. We set the rest of the parameter values in the same way as Section 4.2.

Again, twenty sets of such simulations are generated (L = 20). The MSEs of the proposed

longitudinal model are once again smaller than the MSEs of the cross-sectional model (Table

1) with the difference increasing over time.

4.4 Application

With satisfactory results from the simulation studies, we fit our proposed model to the real

dataset. Taking subject 1 for example, the posterior mean of “true” contrast uptake (Figure

4) smoothes the observed images (Figure 1). Further, the posterior mean image of true

“change” in contrast uptake (Figure 4) reveals a differential pattern for the diseased and

healthy tissue.

[Figure 4 about here.]

4.4.1 Population Model of the AUC. We use the 95th percentile of baseline healthy tissue

contrast uptake to segment the tumor core from the annulus and fit separate population

models for them (see Figure 5a for core and Figure 5c for annulus). The population models
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are fitted after logit transformation of the posterior means of the AUCs, and then transferred

back to its original scale (Section 2.2).

For the tumor core, the best fitting model is Model (M3) with both a random intercept

and a random slope for the second linear segment. It profiles the steep increase in the

population AUC earlier on after the initiation of radiotherapy, and then the moderate

decrease afterwards (Table 2). The change point location is around ten days after the

initiation of radiotherapy (mode is 10 days, first and third quartiles are 9 and 14, Figure 5b).

The solid and dashed black curves in Figure 5a display the posterior mean and its point-wise

95% credible interval of the population AUC. The population mean reaches its maximum at

around three weeks after the initiation of radiation.

We notice that the AUC profile of one subject (the bottom one in Figure 5a) is notably

different from the rest of the subjects. We refit the model excluding this subject. The

parameter estimates do not change substantially (Table 2).

[Figure 5 about here.]

[Table 2 about here.]

Model (M2) is the best fitting model for the tumor annulus (Table 2). Figure 5c shows that

the population AUC first decreases and then remains rather flat. The posterior distribution

of the change point location centers around one week after the initiation of radiotherapy

(mode is 7 days, first and third quartiles are 6 and 10, Figure 5d). We also notice the AUC

of one subject fluctuates more than usual in Figure 5c and refit the model excluding this

subject, the parameter estimates are listed in Table 2. The change in the parameter values

is small.

4.4.2 Sensitivity Analysis. In the above analysis, the tumor core and annulus are seg-

mented based on the 95th percentile of baseline healthy tissue contrast uptake. We conduct
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a sensitivity analysis on other choices of threshold values of the tumor core versus annulus,

i.e. 90th and 97.5th percentile of healthy tissue contrast uptake at baseline. The parameter

estimates of the tumor core are given in Table 2. Using a higher threshold, a larger portion of

the tumor with high baseline contrast uptake compared to other core pixels is included in the

tumor core. This leads to higher AUCs, and hence a larger intercept term in the population

model αc. Since the slopes of the two linear pieces do not change much, the temporal profile

of the differential tumor/healthy tissue response to radiation is not sensitive to the threshold

in the range of threshold value investigated.

The parameters of the tumor annulus population model are more sensitive to the choice

of the core/annulus threshold (Table 2). As the threshold increases (e.g. 97.5th percentile),

a larger portion of the tumor with low baseline contrast uptake (compared to other tu-

mor annulus pixels) is excluded from the tumor annulus, which leads to larger AUCs (the

probability of randomly picking a pixel in the tumor annulus with higher baseline contrast

uptake than a healthy pixel is higher), and hence the intercept term in the population model

is larger. Furthermore, the change point location is shifted towards zero, which reflects a

steeper decline in AUCs early on after the initiation of radiotherapy.

5. Discussion

A notable feature of the longitudinal image model is that it simultaneously models spatial

and temporal correlations. In many cases, the two correlations are modeled separately or

sequentially. In this manuscript, we use hidden MRFs to model the spatial correlation in

the true “change” of contrast uptake. Furthermore, we build the current “true” contrast

uptake on the “true” contrast uptake at the previous visit, to model temporal correlation in

a manner that is computationally tractable.

In many statistical problems, a population model that borrows strength across individuals

is more desirable than modeling each individual separately. The proposed longitudinal image
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model is fitted for each subject independently. We argue that the number of subjects in the

motivating study is rather limited compared to the heterogeneity of tumors. Hence, a pixel-

level population model is not necessarily more beneficial than the current one, e.g. imposing a

hyperprior on the pixel “true” change, µ. It adds one more level on the model hierarchy, and

is computationally more difficult. We believe that the disadvantages outweigh the benefits.

Therefore, we only fit individual longitudinal image models in this work.

Although the longitudinal image model discussed in this manuscript helps to “denoise”

the images by borrowing strength both across neighboring pixels and over time, the tens

of thousands of pixel-wise contrast uptake profiles do not provide useful information indi-

vidually. We summarize the differential tumor/healthy tissue responses with AUC, which is

intuitive and interpretable.

The analysis in this manuscript only deals with the area under the entire ROC curve.

The partial AUC (pAUC(t0) =
∫ t0

0
ROC(t)dt) is of possible interest, especially when there

is special interest in the area under the ROC curve with a low false positive fraction. The

partial AUC is considered a compromise between the AUC and a single point ROC(t0) at a

given threshold value t0 (McClish 1989; Thompson and Zucchini 1989).

The models and computer algorithms have been developed for either 2D or 3D data. For

the purpose of illustrating the model and algorithm, we analyze the MRI slice with the

largest tumor volume. It is possible that the results could change if the entire brain volume

is used.

Extensions of the proposed model include adding covariate information in the longitudinal

image model, for example radiation dose maps, and specifying more flexible functional forms

for the mean model, such as a cubic-spline, which better represents the nature of biological

response to radiotherapy.
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Appendix

We treat the number of components at each visit as an independent parameter, and estimate

it via RJMCMC (Green, 1995; Green and Richardson, 1997). We follow Zhang et al. (2008b)

in trans-dimensional proposals.

We first randomly choose between a split and a merge proposal with

Psplit(Mj) =



























0 if Mj = Mmax

1 if Mj = Mmin

0.5 otherwise

and Pmerge(Mj) =



























0 if Mj = Mmin

1 if Mj = Mmax

0.5 otherwise

.

When a trans-dimensional move for subject h, visit j, is proposed (with M∗
j components),

the new configuration is denoted by z∗j = (z∗1j, · · · , z
∗
Nj)

T with zij ∈ {1, 2, · · · ,M
∗
j }, the

new component parameters are µ∗j = (µ∗1j, · · · , µ
∗
M∗

j j
)T and σ∗j = (σ∗1j, · · · , σ

∗
M∗

j j
)T. We also

update the “true” contrast uptake at visit j with new values ν∗j .

Split Proposal. If a split is chosen, we randomly pick a component k (1 6 k 6 Mj) to split,

i.e. Psplit
select(k) = 1/Mj. We need two extra parameters for the Gaussian mean and variance. To

match the increase of dimension, we introduce two independent random variables, u1, u2 ∼

Beta(2, 2), and define a bijective transformation (µ∗k1 , µ
∗
k2
, σ∗k1

2, σ∗k2
2) = ψ(µk, σ

2
k, u1, u2) that

matches the first two moments,

µ∗k1 = µk − u1σk, µ∗k2 = µk + u1σk,

σ∗k1
2 = 2u2(1− u2

1)σ
2
k, σ∗k2

2 = 2(1− u2)(1− u2
1)σ

2
k. (A.1)

The acceptance rate of a split proposal is the product of prior ratio, likelihood ratio,

proposal ratio, and the Jacobian of the bijective transformation.

The prior ratio in a split move (from k in Mj components to k1 and k2 in M∗
j = Mj + 1
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components) is

P(M∗
j )P(β∗j)P(Z∗j | βj,Mj)

∏M∗

j

k=1

{

P(µ∗kj)P(σ2
kj

∗
)
}

P(Mj)P(βj)P(Zj | βj,Mj)
∏Mj

k=1

{

P(µkj)P(σ2
kj)

}

=
β∗j

αβ−1 exp{−βββ
∗
j}

β
αβ−1
j exp{−βββj}

×
g−1(β∗j ,M

∗
j ) exp

{
∑

i∼i′ β
∗
j I[z

∗
ij = z∗i′j]

}

g−1(βj,Mj) exp
{
∑

i∼i′ βjI[zij = zi′j]
}

×
σ−1
µ exp

{

σ−2
µ (µ∗k1j − µµ)

2
}

σ−1
µ exp

{

−.5σ−2
µ (µ∗k2j − µµ)

2
}

σ−1
µ exp

{

−.5σ−2
µ (µkj − µµ)

2
}

×

(

σ−2
k1j

∗)ασ−1
exp

(

− ββσ
−2
k1j

∗)(
σ−2
k2j

∗)ασ−1
exp

(

− ββσ
−2
k2j

∗)

(

σ−2
kj

)ασ−1
exp

(

− ββσ
−2
kj

)
.

The likelihood ratio term in the split proposal is

N
∏

i=1

exp
[

− .5σ−2
e

{

(yij − ν∗ij)
2 − (yij − νij)

2
}

]

.

We construct the reversible split and merge move on the equivalence classes, i.e. the lattice

is partitioned into same-labeled equivalence classes. In order to compute the proposal ratio,

we need to calculate the allocation probabilities associated with both moves.

We start with a split move. Let ε1, ε2, · · · , εL denote the L equivalence classes with label

E1, E2, · · · , EL. The allocation probability of class εl (l = 1, 2, · · · , L) assuming label k∗(k∗ =

1, 2, · · · ,Mj + 1) in the proposed configuration z∗j is

plk∗
∗

= P(Z∗ij = k∗, for all i ∈ εl)

∝
∏

i∈εl

exp
{

− .5σ−2
e (yij − ν∗ij)

2
}

.

The allocation probability from z∗j is Palloc(z
∗
j) =

∏L

l=1 p
l
El

. The probability of class εl

assuming label k(k = 1, 2, · · · ,Mj) satisfies

plk = P(Zij = k, for all i ∈ εl)

∝
∏

i∈εl

exp
{

−.5σ−2
e (yij − νij)

2
}

.

The plk
∗

satisfy
∑Mj+1

k=1 plk
∗

for all l = 1, 2, · · · , L. Let E∗l (E
∗
l = 1, 2, · · · ,Mj +1) denote the

new label of class εl drawn based on the above probabilities, i.e. plE∗

l

∗
= P(Z∗ij = E∗l ,∀i ∈ εl).
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Hence, the allocation probability from configuration zj conditional on the equivalence classes

is Palloc(zj) =
∏L

l=1 p
l
E∗

l

∗
.

The proposal ratio of a split move is

Psplit(Mj − 1)Psplit
select(k)Palloc(z

∗
j)

Pmerge(Mj)P
merge
select (k1, k2)Palloc(zj)

.

Merge Proposal. The merge proposal is determined by the above split move. We randomly

pick a pair of components with adjacent means, say k1 and k2 with Pmerge
select (k1, k2) = 1/(Mj−

1). Inverting Equation (A.1), the parameters for the new component are

µ∗k = 0.5
(

µk1 + µk2
)

,

µ∗k
2 + σ∗k

2 = 0.5(µ2
k1

+ σ2
k1

+ µ2
k2

+ σ2
k2

).

We denote the new set of parameters by µ∗ = (µ∗1, µ
∗
2, · · · , µ

∗
M−1)

T and σ∗2 = (σ∗21 , σ
∗2
2 , · · · ,

σ∗2M−1)
T. The proposal ratio of a merge move is the reciprocal of the split move.
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Figure 1. Observed contrast uptake (yj) for subject 1.
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Figure 2. The skeleton of “true” change image.
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Figure 3. Simulation study of random true “change” images: true “change” in contrast
uptake (δj), posterior mean (δ̂j)observed contrast uptake (yj), and posterior mean of “true”
contrast uptake (ν̂j).
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Figure 4. Results for subject 1: posterior mean of δj and posterior mean of (νj) for subject
1.
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Figure 5. Results on tumor core versus healthy tissue: (a) posterior mean of AUC for
all subjects and point-wise posterior mean and 95% credible interval of population AUC;
(b) posterior distribution of the change point location (τ); results on tumor annulus versus
healthy tissue: (c) posterior mean of AUC for all subjects and point-wise posterior mean
and 95% credible interval of population AUC; (d) posterior distribution of the change point
location (τ).

Hosted by The Berkeley Electronic Press



Longitudinal Image Analysis of Tumor/Brain Response to Radiation 29

Table 1

Average MSE and bias of the proposed method vs. a cross-sectional approach — simulation studies of random
“change” images, no treatment effect (NTE), and treatment effect (TE).

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6
Rand. Long. 2.60± 0.03 3.28± 0.07 3.45± 0.05 3.54± 0.04 3.89± 0.08 5.20± 0.08
(×10−1) C.S. 5.22± 0.47 9.81± 0.40 14.32± 0.73 19.90± 1.18 24.27± 1.09 29.2± 1.18
NTE Long. 3.04± 0.10 3.75± 0.05 3.74± 0.05 3.85± 0.04 3.92± 0.03 5.67± 0.07
(×10−1) C.S. 5.64± 0.16 11.45± 0.79 17.01± 1.07 21.35± 0.95 25.59± 0.72 29.62± 0.78
TE Long. 2.71± 0.15 3.48± 0.19 3.80± 0.07 3.83± 0.04 3.93± 0.03 5.62± 0.07
(×10−1) C.S. 5.63± 0.16 9.83± 0.65 14.66± 0.81 20.30± 1.51 25.26± 1.70 30.36± 1.99
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Table 2

Sensitivity analysis of posterior parameter estimates for the population AUC model for tumor core and annulus
versus healthy tissue.

90th 95th 97.5th

All subj. Excl. one All subj. Excl. one All subj. Excl. one
Core
τ 12.6± 4.4 12.3± 3.5 13.7± 7.2 12.9± 5.2 16.2± 10.1 15.4± 8.8
α −0.21± 0.21−0.26± 0.19 −0.03± 0.24−0.07± 0.22 0.15± 0.26 0.10± 0.25
β1 0.14± 0.05 0.15± 0.04 0.13± 0.05 0.14± 0.05 0.11± 0.06 0.12± 0.06
β2(×10−2)−0.65± 0.42−0.75± 0.42 −0.60± 0.52−0.70± 0.49 −0.61± 0.64−0.74± 0.65
φ 0.69± 0.09 0.62± 0.08 0.75± 0.10 0.67± 0.09 0.78± 0.10 0.71± 0.09
ψ 0.14± 0.03 0.15± 0.04 0.14± 0.03 0.15± 0.04 0.14± 0.03 0.15± 0.04
σ 0.13± 0.03 0.14± 0.03 0.13± 0.03 0.14± 0.03 0.13± 0.03 0.14± 0.03

Annulus
τ 14.1± 10.0 15.0± 5.3 10.1± 5.2 13.6± 4.2 8.3± 3.0 11.7± 3.2
α 3.36± 0.26 3.57± 0.19 3.77± 0.26 3.97± 0.18 4.15± 0.26 4.38± 0.18
β1 −0.17± 0.09−0.13± 0.05 −0.23± 0.09−0.17± 0.05 −0.29± 0.09−0.22± 0.06
β2(×10−2)−0.02± 0.50−0.01± 0.50 −0.04± 0.43−0.02± 0.43 −0.10± 0.46 0.01± 0.39
ψ 0.02± 0.01 0.02± 0.01 0.02± 0.01 0.02± 0.01 0.02± 0.01 0.02± 0.01
σ 0.65± 0.17 0.37± 0.09 0.67± 0.16 0.36± 0.08 0.71± 0.17 0.35± 0.08
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