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Cluster Mass Inference Method via Random
Field Theory

Hui Zhang, Thomas E. Nichols, and Timothy D. Johnson

Abstract

Cluster extent and voxel intensity are two widely used statistics in neuroimag-
ing inference. Cluster extent is sensitive to spatially extended signals while voxel
intensity is better for intense but focal signals. In order to leverage strength from
both statistics, several nonparametric permutation methods have been proposed
to combine the two methods. Simulation studies have shown that of the different
cluster permutation methods, the cluster mass statistic is generally the best. How-
ever, to date, there is no parametric cluster mass inference available. In this paper,
we propose a cluster mass inference method based on random field theory (RFT).
We develop this method for Gaussian images, extend it to Student’s t-statistic im-
ages and investigate its statistical properties via simulation studies and real data.
Simulation results show that the method is valid under the null hypothesis and
demonstrate that it can be more powerful than the cluster extent inference method.
Further, analyses with a single-subject and a group fMRI dataset demonstrate bet-
ter power than traditional cluster size inference, and good accuracy relative to a
gold-standard permutation test.
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Abstract

Cluster extent and voxel intensity are two widely used statistics in neuroimaging infer-

ence. Cluster extent is sensitive to spatially extended signals while voxel intensity is better

for intense but focal signals. In order to leverage strengthfrom both statistics, several non-

parametric permutation methods have been proposed to combine the two methods. Simulation

studies have shown that of the different cluster permutation methods, the cluster mass statistic

is generally the best. However, to date, there is no parametric cluster mass inference available.

In this paper, we propose a cluster mass inference method based on random field theory (RFT).

We develop this method for Gaussian images, extend it to Student’s t-statistic images and in-

vestigate its statistical properties via simulation studies and real data. Simulation results show

that the method is valid under the null hypothesis and demonstrate that it can be more powerful

than the cluster extent inference method. Further, analyses with a single-subject and a group

fMRI dataset demonstrate better power than traditional cluster size inference, and good accu-

racy relative to a gold-standard permutation test.

Keywords: cluster mass, random field theory, Gaussian field,Gaussianizedt image
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1 Introduction

Cluster extent and voxel intensity are two widely used statistics in neuroimaging inference. Cluster

extent is sensitive to spatially extended signals [6, 23], while voxel intensity is sensitive to focal,

intense signals [5, 24]. Both can suffer from a lack of power for signals of moderate extent and

intensity [9]. Furthermore, one does not generally know, a priori, whether the generated signal is

large in extent, intensity or both. While some practitioners simply select the statistic that gives

the most statistically significant test, this embodies a multiple testing problem and will result in

inflated false positive error rates. An ideal test statisticwould combine spatial extent and peak

height intensity and would be sensitive to both without increasing the number of tests considered.

Poline et al. [23] (henceforth referred to as PWEF) develop a method whichcombines extent

and intensity based on Gaussian random field theory (RFT). They derive the joint distribution of

cluster extent and voxel-wise peak height intensity and make inference on minimum P value of a

cluster extent test and a local maximum intensity test. However, their method is only applicable to

Gaussian or approximately Gaussian images (e.g. a very large group analysis, or a single subject

fMRI analysis).

Cluster mass, the integral of suprathreshold intensities within a cluster, naturally combines both

signal extent and signal intensity. Initially suggested byHolmes [11], Bullmoreet al. [2] used per-

mutation to obtain cluster mass P values. Currently the cluster mass is default test statistic in the

BAMM 1 and CAMBA2 software, and is implemented in FSL’s randomise3 tool and in the SnPM4

toolbox for SPM5.
1http://www-bmu.psychiatry.cam.ac.uk/BAMM
2http://www-bmu.psychiatry.cam.ac.uk/software/
3http://www.fmrib.ox.ac.uk/fsl/randomise
4http://www.sph.umich.edu/ni-stat/SnPM
5http://www.fil.ion.ucl.ac.uk/spm
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Hayasaka & Nichols [9] study the statistical properties of cluster mass along with a variety of

other “combining methods” in the permutation testing framework. Among the combining methods

they study are Tippet’s method [15, 22] (minimum P values, used by PWEF) and Fisher’s method

(-2 × sum of ln P values). They conclude, through simulation studies and analyses of real data,

that the nonparametric cluster mass method is generally more powerful than the other methods

they investigate.

A strength of nonparametric inference methods is that they rely on fewer assumptions about the

distributional form of the data. However, they require additional computational effort and are not

very flexible. For example, the precise permutation scheme used depends on the experimental

design and cannot be trivially determined from a design matrix. Nuisance covariates cannot be ac-

commodated in general, as they induce null-hypothesis structure which violates exchangeability.

Also, nonparametric methods cannot be used directly for single subject data analysis as a paramet-

ric autocorrelation model or wavelet transformation is needed to whiten the data. For all of these

reasons, a parametric cluster mass inference method that can operate with a general linear model

and deal with single subject analyses would be of great value.

In this paper we develop a theoretical distribution for the cluster mass statistic via Gaussian RFT.

We generalize the work of PWEF, deriving the cluster mass statistic, extending the method to

Gaussianizedt data. We study the statistical size and power of our test on Gaussian and Gaussian-

izedt image data through simulations and illustrate the method ontwo real data example, a single

subject fMRI dataset and a group level fMRI data analysis with low degrees of freedom.
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2 Materials and Methods

2.1 Cluster mass test theory

In a mass univariate data analysis, a general linear regression model (GLM)

Yi = Xβi + εi (1)

is fit for each voxeli = 1, . . . , I, whereYi is anN × 1 vector of responses,X is a commonN × q

design matrix of predictors,βi is aq × 1 vector of unknown parameters andεi is aN × 1 vector

of random errors. Typically, at each voxel, errors are assumed to be independent and identically

distributedN(0, σ2
i ) random variates, though dependent errors can be accommodated [16]. The

ordinary least squares estimator ofβi is β̂i = (XTX)−1XTYi, and ofσ2
i is σ̂2

i = eT
i ei/η, where

ei = Yi − Xβ̂i and whereη is the error degrees of freedom. Then the Student’st-statistic at voxel

i is

Ti = cβ̂i

(
c(XTX)−1cTσ̂2

i

)−1/2

(2)

wherec is a contrast of interest (row vector). We write thet-statistic image asT = {Ti}I
i=1.

Given cluster-forming thresholduc > 0, the set of suprathreshold statistics{Ti : Ti > uc}I
i=1

is used to define clusters. Contiguous clusters are defined bya neighborhood scheme, typically 18

connectivity scheme on a three dimensional image.

Let L be the number of clusters found, with clusterℓ havingSℓ voxels (i.e. the cluster extent),

ℓ = 1, 2, . . . , L. Further letIℓ be the set of voxel indices corresponding to clusterℓ. The cluster

mass,Mℓ, of clusterℓ is the summation of the suprathreshold intensities:

Mℓ =
∑

i∈Iℓ

Hi (3)

whereHi = Ti−uc. Note thatMℓ = SℓH̄ℓ whereH̄ℓ =
∑

i∈Iℓ
Hi/Sℓ is the average suprathreshold

intensity of clusterℓ, showing cluster mass to be the product of the cluster extentand the average

5

Hosted by The Berkeley Electronic Press



suprathreshold intensity.

To use Random Field Theory results, we begin by assuming thatthe standardized error images,

called thecomponent fields, are discrete samplings of a continuous, smooth, stationary Gaussian

random process. The component field for scanj is {εij/σi}i, whereεij is the error for scanj

at voxeli. The component fields are assumed to follow a mean zero, unit variance multivariate

Gaussian distribution. Stationarity implies that the spatial correlation is determined by an auto-

correlation function that is homogeneous over space. The process is regarded as “smooth” if the

autocorrelation function has two derivatives at the origin. Based on these assumptions,t image

defined by (2) defines a Student’st random field.

While any univariate random variable can be transformed into a Gaussian variate, orGaussianized,

a Gaussianizedt image may not resemble a realization of Gaussian random field. Randomness in

σ̂2
i reduces the smoothness of the statistic image relative to the component fields [24], as reviewed

in Appendix B.1. However, Worsley et al [25] argues that whenthe t degrees of freedom exceed

120, the Gaussianizedt-statistic can be regarded as a Gaussian Random Field. Hencewe proceed

by deriving results assumingT is a Gaussian image, but return to the issue of Gaussianization

below.

The full derivation our the null distribution of the clustermass statistic is given in Appendix B,

but we sketch an overview of the result here. We begin by approximating the statistic image about

a local maximum as a parabaloid, which allows cluster mass tobe obtained a function of cluster

extent,Sℓ, and suprathreshold peak intensity,Hℓ = max{Hi : j ∈ Iℓ},

Mℓ ≈ 2/(D + 2) × Sℓ × Hℓ (4)
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whereD is the dimension of the image. By assuming that the autocorrelation function of the image

is proportional to a Gaussian probability density function, the distribution ofHℓ conditional onHℓ

can be found. At this point PWEF made a small excursion assumption, replacing peak height

uc + Hℓ with uc. We also make this assumption and create what we denote theU result, but also

remove this assumption, deriving theZ result.

Finding the joint distribution and integrating outHℓ yields the final result, an expression for

P(Mℓ > m), the uncorrected P-value for an observed cluster mass valueof m. This requires two

numerical integrations, one dependent onuc, and one onm. In practice, for any given dataset,

P-values for a gridm values can be pre-computed and interpolation used to find theP-value for an

arbitrary value ofm.

Note that the tail probabilityP(Mℓ > m) is an uncorrected P-value which does not account for

searching over all clusters in the image. Uncorrected P-values are only appropriate for a single

cluster that can be pre-identified before observing the data[4], a situation that rarely arises in prac-

tice. As detailed in Appendix B, the uncorrected P-values can be transformed into familywise-error

corrected P-values which accounts for the chance of one or more false positive clusters anywhere

in the image.

2.1.1 Student’s t-statistic image

When the degrees of freedom are small, a Gaussian random fieldwill not provide a good approx-

imation for a Student’st-statistic image. In this case, at-to-z transformation is performed via the

probability integral transform. The transformed image, however, will be rougher than the compo-

nent field, and so the roughness parameter is adjusted according to the degrees of freedom of the

t-statistic image. Subsequently the above results are applied to find the uncorrected and corrected

P values for the cluster mass statistic.

7
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2.2 Simulation

To evaluate the accuracy of our cluster mass result, Equation (4), both 2D (256 × 256) and 3D

(64× 64× 30) Gaussian noise images are simulated. In order to understand the influence of image

roughness on the proposed statistic, each of the 10,000 independent Gaussian noise images are

convolved with different isotropic Gaussian smoothing kernels. Kernel sizes 2, 4, 8, 10, and 12

voxels full width at half maximum (FWHM6) are used, and these sizes then directly determine|Λ|,

the image roughness parameter. Two cluster forming thresholds are investigated (uc = 2.326 and

uc = 3.090, corresponding to uncorrectedP = 0.01 andP = 0.001, respectively). A nominal

significance level of 0.05 is used for all inferences.

To evaluate the method on Gaussianizedt-statistic images, 15 Gaussian noise images are simulated,

mean-centered and divided by the voxel-wise standard errorto produce 14 degrees-of-freedomt

images. At-to-z transformation is then applied to generate Gaussianizedt images (see Appendix

B.1).

To assess the power of our method, a spherically shaped signal (radius 1, 3, 5, 7, 10mm) with

various uniform intensities (0.25, 0.5, 0.75, 1, 1.5, 2) is added to the center of Gaussian noise im-

ages. Power is measured as the probability of a true positivecluster, defined a significant cluster

that contains one or more non-null voxels. The cluster extent inference methods are those from

RFT [1] implemented in the Statistical Parametric Mapping (SPM2) [21] software.

One objective of the evaluations is to determine whether theU result, based on the small excursion

approximation, or theZ result is more accurate. Since the derivation depends on thejoint distri-

bution of cluster mass and peak height, we examine the approximation accuracy of our results for

this bivariate distribution with simulation. In addition to visualizing images of the predicted and

6Kernel standard deviation = FWHM /
√

8 ln 2 ≈ 0.4247 FWHM
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simulated densities for theZ andU results, we compute the Kullback-Leibler divergences [14], a

measure of distance between two distributions. This allowsa quantitative comparison between the

two results.

The ultimate accuracy of the method depends on the marginal distribution of cluster mass. We

compare the specificity and validity of the mass test statistic for theU andZ results, as well as

cluster size P-values found with our derived cluster extentdistribution and cluster extent P-values

produced by SPM. We present results for both uncorrected andcorrected P values to understand

the performance of the method, though only the corrected P-values are of practical interest. The

specificity and validity is gauged with plots of theory-based P-values versus Monte Carlo (“true”)

P-values, called P-P plots.

2.3 Applications

We demonstrate our cluster mass inference method on two fMRIdata sets, one single subject and

one group dataset

2.3.1 FIAC data

The first example is the Functional Imaging Analysis Contest(FIAC) example [8]. The experi-

ment uses a sentence listening task, considering effects ofdifferent or same speakers and different

or same sentences. We only consider the sentence effect “Different Sentence vs. Same Sentence”:

In each block, six sentences are read; in the “Different” condition six different sentences are read,

while in “Same” condition the same sentence is repeated six times. For complete details see [8].

We use subject 3 (“func4”), block design data with 6mm FWHM smoothing, fit with a GLM

9
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which produces at statistic image with 179 degrees-of-freedom. Here we can assume that thet

image reasonably approximates a Gaussian image and use the method directly on thet image. The

cluster forming threshold isP = 0.001 uncorrected.

2.3.2 Working Memory Data

We also use a group level analysis with 12 subjects from a working memory experiment. Since the

degrees of freedom is rather small (11), we perform at-to-z transformation to generate a Gaussian-

ized t image.

While the experiment considers different aspects of working memory, we only use the item

recognition task. In the item recognition condition subjects are shown a set of five letters and, after

a 2 second delay, shown a probe, to which respond “Y” if it was in the set, or “N” otherwise; in

a control condition five “X”s are shown and the probe is just “Y” or “N” indicating the required

response. For full details see Marshuetzet al [17].

A one-samplet-test is used to model the data. We uset-to-z transformation and a cluster defining

threshold ofP = 0.01 uncorrected (t11 = 4.02 or z = 3.09). The roughness parameter is adjusted

by 1.3891 [11, 24] to account for increased roughness of the Gaussianizedt statistic. In addition

to parametric results in SPM, we also use SnPM to obtain nonparametric cluster extent and mass

results. With 12 subjects there are212 = 4096 possible sign flips of the contrast data to create a

permutation distribution.

3 Results

3.1 Simulations

For the simulation studies, we only show results for a smoothness parameter of FWHM = 8 voxels,

as the results are similar for the other smoothness parameters.
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3.1.1 Accuracy of derived joint distribution

The top row of Figure 1 shows the true (simulated) joint distribution of cluster mass and peak

height intensity, theZ result and theU result for 3D Gaussian noise images. The bottom row

shows difference images of true and derived distributions for theZ andU results. The distribu-

tions are qualitatively similar, though for very small cluster masses and cluster height around 0.5

to 1.0, the two results tend to underestimate the truth; while for cluster mass between 0 and 50

and cluster heights between 0 and 0.5, the results can overestimate the truth. The Kullback-Leibler

divergences are1.285 for theZ result and1.610 for theU result.

Figure 2 displays corresponding results for 3D Gaussianized t image. Again, there is little differ-

ence between the true distribution and the two results, and again the Kullback-Leibler divergence

between the true distribution and theZ result is smaller than that between the true distribution and

theU result (1.701 vs. 2.338). Thus, for both Gaussian images andGaussianized images, theZ

result appears to be superior to theU result.

[Figure 1, 2 are about here]

3.1.2 Accuracy of derived cluster mass null distribution

Figure 3 shows the P-P plots for 3D Gaussian null simulated data and Figure 4 3D Gaussianized

t-statistic null simulated data. Both cluster mass (dot-dashed lines) and cluster size results (solid

lines) are shown. For all of our derived methods, theU results are more conservative (the null

will be rejected less often than nominal) than theZ results. The SPM cluster size results are

also more conservative than theZ results for Gaussian null simulated data and theU results for

Gaussianized t-statistic null simulated data. While ourZ result for cluster size exhibits some

anticonservativeness, overall theZ result of cluster mass is the least conservative method, while

maintaining validity over most of the range of probabilities included in this simulation study.

[Figure 3, 4 are about here]
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Figure 5 shows the Type I error rates for a 3D Gaussianizedt image with 14 degrees of freedom

with various smoothness parameters (FWHM) and cluster defining thresholds. The figure shows

that theZ cluster mass result provides better results for high thresholds and large FWHM than

for low threshold and low FWHM. For corrected P values, this result is valid for all levels of

smoothing studied, whereas theZ result of cluster extent is, by and large, invalid. Furthermore,

theZ cluster mass corrected P-values—those that are used in practice—are always closer to the

nominal significance level when correcting for multiple comparisons.

[Figure 5 is about here]

3.1.3 Power comparisons

Having found our own cluster extent result to be invalid, we compare the power of ourZ cluster

mass result to SPM’s cluster extent result. Table 1 lists simulated power for the cluster extent

(SPM) and cluster mass (Z). As expected, for a given intensity, the power increases with signal

intensity, and, for a given radius, power increases as the signal intensity increases. When the image

smoothness is low (FWHM≤ 4 voxels), SPM cluster extent generally provides better power than

theZ mass result. However, for greater smoothness (FWHM≥ 8 voxels), theZ result is more

powerful than SPM, regardless of signal extent or signal intensity.

[Table 1 is about here]

3.2 Real Data Evaluations

The FIAC data results show the method’s performance at high degrees-of-freedom, while the work-

ing memory data assess the method using Gaussianization of thet image.

3.2.1 FIAC data

The estimated smoothness of the component fields based on theresiduals is [2.4964 2.3599

1.7525] voxel FWHM with 27,8623.0 × 3.0 × 4.0mm3 voxels. Figure 6 shows the maximum
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intensity projection of the all clusters found with aP = 0.001 threshold. Table 2 provides the

values of cluster extent, suprathreshold peak height intensity and cluster mass for each cluster, as

well as the P-values, all sorted by peak height. The first three clusters have corrected significance

with cluster mass, while peak height and cluster extent onlyfind one cluster significant each. The

uncorrected significances show that if a cluster is significant by any of the three methods, it is

significant by cluster mass. Again, while we do not advocate use of uncorrected inferences, this

demonstrates the relative sensitivity of the method.

[Figure 6, Table 2 are about here]

3.2.2 Working Memory Data

The estimated smoothness is [4.8611 6.4326 6.6156] voxel FWHM with 122,6592.0× 2.0× 2.0

voxels. Figure 7 shows the all of the clusters found with aP = 0.001 cluster-forming threshold.

Table 3 compares our RFT cluster mass results to an equivalent permutation method. Our RFT

method finds the five largest clusters significant, as does theRFT cluster size statistic. Notable is

the close correspondence between the RFT P-values and the permutation P-values.

[Figure 7, Table 3 are about here]

4 Discussion

Although cluster mass inference with nonparametric permutation has been found to be a quite sen-

sitive inference method for neuroimaging data [9], permutation is computationally intensive, not a

very flexible modeling framework. We propose a new theoretical cluster mass inference method for

Gaussian images and Student’st-statistic images, based on Gaussian RFT. Our simulation studies

show that our derived null distribution is accurate, and performs well not only for Gaussian images,

but also for Student’st-statistic image. Like other RFT methods, our results depend only on the

smoothness and the volume of the image. While we did not find close form results for the P-value
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for an arbitrary mass value, these are quickly pre-computedon a grid of mass values which can

then be interpolated.

Our evaluations of the test’s specificity reveal that the proposed cluster mass inference method

works best when the image is sufficiently smoothed, at least 4voxel FWHM, and ideally for larger

smoothness parameters (FWHM≥ 8 voxels). However, our real data evaluations found it to per-

form as good or better than parametric cluster size inference, even though image smoothness was

only about 2 voxels FWHM in the single subject dataset.

Consistent with its competitor, the nonparametric clustermass inference method, our theoretical

cluster mass inference statistic generally has better power than either the cluster extent inference

statistic or the voxel intensity statistic, alone. This is especially true when the cluster extent and

the suprathreshold peak height intensity are moderately sized. More remarkable, is that despite a

large number of assumptions and a sequence of approximations, our RFT cluster mass P-values

are so close to the permutation results which have very few assumptions.

The Gaussianization oft images is a shortcoming of the method, but it is not an uncommon

strategy. The FSL [20] software has always (as of version 4.0) used Gaussianization oft and

F images. While the SPM software has abandoned Gaussianization for voxel-wise inference ever

since SPM99, its cluster extent inference has always (as of SPM5) used Gaussian and nott random

field results cluster extent P-values and currently neglects the smoothness adjustment described in

Appendix B.1.

Although the proposed cluster mass inference method has many good statistical properties, it has

its limitations. When we derive the formulas for the marginal distribution of cluster mass, we as-

sume that the shape of a cluster above a certain threshold is approximated by a parabaloid. This
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assumption is rational for a Gaussian image that has been convolved with a Gaussian smooth-

ing kernel. However, for real data, this assumption may be too strong, even after smoothing the

data. For example, we may have a large flat cluster with only one voxel of high intensity. The

activated regions may also have other shapes that are not well approximated by a parabaloid. In

addition, we use a Gaussian shaped correlation function to simplify the variance in the derivation.

We also assume that we have stationary fields, though an extension to accommodate local variation

in smoothness [10] may be possible.

Finally we note that, while both real data examples were fMRI, the method makes no assump-

tions about the modality and should operate well with PET andother types of imaging data.
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Appendix

A P values

For permutation test analyses of fMRI data [12, 19], there are two types of P values, uncorrected P

values (not adjusted for multiple comparisons) and corrected P values (adjusted for multiple com-

parisons). Uncorrected voxel-wise permutation P-values are just those from a standard univariate

permutation test. Uncorrected cluster-wise permutation P-values require additional assumptions.

Based on an assumption of stationarity, that the distribution of cluster statistics (e.g. size, mass,

local peak height, etc) does not vary with space, cluster statistics can be pooled over space. For

each permutation, the set of observed cluster statistics are added to the permutation distribution,

creating a distribution with many more entries than the number of permutations. Uncorrected clus-

ter inferences are then obtained by reference to this distribution.

For familywise error (FWE) corrected P-values, the distribution of the maximal cluster statistic,

searched over the image, is created. This process produces one (maximal) cluster statistic per per-

mutation, yielding a permutation with the standard number of elements. The corrected P-value is

the proportion of permutation elements as large or larger than that the cluster statistic considered.

No assumption of stationarity is required, though if there is severe non-stationarity, the smoothest

regions of the image will contain the greatest risk of false positives, and rough regions will lack sen-

sitivity to detect small clusters (which, relative to the local smoothness, may be unusually large).

For more on the issue of spatially varying smoothness, see [10].

If cluster statistics are marked as significant only when FWE-significant at 0.05, there is then

95% confidence of no false positive clusters anywhere in the image. For more on FWE see [18].
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B Derivation of Null Distribution of Cluster Mass

Our derivation of the distribution of cluster mass follows that of Polineet al. [23] (PWEF) with

several departures. A rough outline of the derivation is as follows:

1. A second order Taylor series approximates the statistic image at a local maximum as a para-

baloid, determined by peak height and curvature about the maximum.

2. The geometry of a parabaloid gives cluster extent and massas a function of peak height and

the curvature (Jacobian determinant).

3. Distribution of the curvature, conditional on peak height, is found using an assumption of a

Gaussian autocorrelation function.

4. Combining two previous results relates extent and mass, conditional on peak height, to aχ2

distribution. A bias correction is made using the expected Euler characteristic.

5. PWEF proceeds with a small excursion assumption; we produce a pair of results, with and

without this assumption.

6. Joint distribution of mass and height are found and marginalized to produce final mass result.

Let Z(x) be aD-dimensional Gaussian image, with

E(Z(x)) = 0,

Var(Z(x)) = 1,

Var(∇Z(x)) = Λ

for all x ∈ Ω ⊂ ℜD in the image volume, where∇ is the gradient operator andΛ is theD × D

matrix which parameterizes roughness. We assume the process is smooth, in that∇2ρ(0) exists,

whereρ(·) is the autocorrelation function and∇2 is the Hessian operator.
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Without loss of generality, suppose there exists a local maximum atx = 0, and consider the

approximating parabaloid from a second order Taylor seriesaboutx = 0

W(0) = Z(0) + x
T(∇2

Z(0))xT/2

Suppressing the spatial index, letZ ≡ Z(0), and denoteJ = | − ∇2
Z(0)| the negative Jacobian

determinant.

For a cluster-defining thresholduc, letH = Z − uc be the suprathreshold magnitude (note that

we suppress theℓ subscript used in the body of the paper). Then the geometry ofthe approximating

parabaloid gives cluster extent as

S = a2D/2HD/2J−1/2 (5)

wherea = πD/2/Γ(D/2 + 1) is the volume of the unit sphere, and mass as

M = 2SH/(D + 2). (6)

Conditional onH, PWEF shows that another Taylor series yields

ln J |H ≈ ln |Λ| + D ln(H + uc) + η, (7)

whereη is mean zero Gaussian with variance7

Var(η|H) =
[
tr

(
(Λ−1 ⊗ Λ−1)ρ(4)(0)

)
− D2

]
/(H + uc).

While this expression is quite involved, if we assume thatρ is proportional to a Gaussian pdf,

it simplifies toVar(η|Z) = 2D/(H + uc)
2. Subsequently we will needJ−1/2, and so write the

exponentiated and powered equation (7) asJ−1/2 ≈ |Λ|−1/2(H + uc)
−D/2 exp(η/2)−1. However,

as in PWEF, we find that numerical evaluations of the final result are poor whenη is assumed to

be Gaussian (results not shown). We instead linearize the exponential,

J−1/2|H ≈ |Λ|−1/2(H + uc)
−D/2(1 + η/2)−1 (8)

7Note there is a typo in the PWEF paper’s equation (8), where2Z should in fact be justZ, or H + uc as we have
written.
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and approximate1+η/2 with η′, whereνη′ is χ2
ν variate. Matching the second moments of1+η/2

andη′ givesν = 4(H + uc)
2/D. Combining with Equations (8) and (5) yields

S|H ≈ a2D/2|Λ|−1/2(H + uc)
−D/2HD/2η′−1. (9)

B.0.3 The U result

PWEF proceed by using a small excursion approximation, thatH is small relative touc, replacing

H + uc with uc. With this change, and marginalizing outH, the expected cluster extent can be

found as

EU(S) = (2π)D/2 |Λ|−1/2 u−D
c . (10)

However, accurate results using the expected Euler Characteristic [1] give

EEC(S) = (2π)D/2 |Λ|−1/2 u−(D−1)
c (1 − Φ(uc))/φ(uc) (11)

whereΦ is the standard Gaussian CDF andφ is the standard Gaussian PDF. Hence, the approxi-

mation forS|H is scaled by

cU =
EEC(S)

EU(S)
= uc(1 − Φ(uc))/φ(uc). (12)

As a side note, this is Mill’s ratio [7] scaled byuc, which will havecU converging to 1 from below

for largeuc.

The bias-adjusted result is

M |H ≈ acU2D/2+1(D + 2)−1 |Λ|−1/2 u−D/2
c HD/2+1 η′−1, (13)

which is a scaled inverseχ2 random variable withν degrees of freedom and scale parameter

qU(H) = acU2D/2+1(D + 2)−1 |Λ|−1/2 u−D/2
c HD/2+1

The marginal distribution ofH is approximately exponential with mean1/uc [1], and thus the joint

pdf of M andH is

fU(M, H) ≈ (qU(H)ν/2)ν/2

Γ(ν/2)

exp [(qU(H)ν/2)/M ]

Mν/2+1
exp[−ucH ]uc (14)
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for M, H > 0. The uncorrected P-value for cluster mass is then found with

PU(M > m) ≈
∫

∞

m

∫
∞

0

fU(M, H) dH dM

using numerical integration over a fine grid.

B.0.4 The Z result

We repeat the preceding without the small excursion approximation. We call this theZ result,

sinceZ = H + uc is left as is. Returning to (9) and marginalizing outH we get

EZ(S) = a2D/2 |Λ|−1/2 E{[H/(H + uc)]
D/2} (15)

where the final term must be found numerically for a particular uc. This provides the bias adjust-

ment term

cZ = EEC(S)/EZ(S). (16)

This provides an approximation forM |H as a scaled inverseχ2 random variable withν degrees of

freedom and scale parameter

qZ(H) = acZ2D/2+1(D + 2)−1 |Λ|−1/2 (H + uc)
−D/2 HD/2+1

and joint pdf ofM andH of

fZ(M, H) ≈ (qZ(H)ν/2)ν/2

Γ(ν/2)

exp [(qZ(H)ν/2)/M ]

Mν/2+1
exp[−ucH ]uc. (17)

As before, the uncorrected P-value for cluster mass is then found with

PZ(M > m) ≈
∫

∞

m

∫
∞

0

fZ(M, H) dH dM

using numerical integration over a fine grid.
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B.0.5 Corrected P-values

The uncorrected P-values can be transformed into family-wise error (FWE) corrected P-values with

either a Bonferroni correction for the expected number clusters or the Poisson clumping heuristic

[1, 3, ?]. We opt for the later, as it provides a continuous transformation between uncorrected and

corrected P-values.

A FWE corrected P-value accounts for the chance of the maximal statistic exceeding that actu-

ally observed. Assuming the clusters arise a Poisson process, this P-value is found as

P(maxℓMℓ > m) ≈ 1 − exp{−E(L) · P(Mℓ > m)}, (18)

whereE(L) is the expected number of clusters in the image. For moderatethresholdsuc Euler

characteristic will count the number of clusters, and hencewe approximateE(L) ≈ EEC(L). The

most accurate results forEEC(L) depends on the dimension and the topology of the search region

[25]. For a 3D, approximately spherical search region

EEC(L) = λ(Ω)|Λ|1/2(2π)−2(u2
c − 1) exp[−u2

c/2]; (19)

whereλ(Ω) is the volume of the search region. In addition, for a high thresholduc, the number of

clusters above the threshold will be approximated by [1, 23]

E(L) = λ(Ω)|Λ|1/2(2π)−2u2
c exp[−u2

c/2]

B.0.6 Smoothness Estimation & Λ

The preceding results depend on the roughness of the component random fields, as parameter-

ized by |Λ|. Worsley et al. [24] proposed re-expressing this as the FWHMGaussian kernel re-

quired smooth an independent random field into one with roughnessΛ. Assuming the smoothing

is aligned with the major axes of the image, this relationship is

|Λ|1/2 =
(4 ln 2)D/2

∏
d FWHMd
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where FWHMd is the smoothness in thed-th dimension. If the smoothness is not known,|Λ|1/2

can be estimated from the residual images of a general linearmodel [13]

B.1 Student’s t-image

A Student’st-statistic image with small degrees of freedom is not well approximated by Gaussian

random field [25], however our results assume the statistic image is Gaussian. Gaussianization

of t statistic images will match the univariate distribution ateach voxel, but the converted image

will have greater roughness than the component fields. Worsley et al. and Holmes showed that

if the roughness of a Gaussian image isΛ, the roughness for a Student’st-statistic image can be

estimated byΛT = λnΛ, wheren > 4 is the number of scans used to generate thet image and

λn is the correction factor [11, 24]. When applying our method to Gaussianized data we adjustΛ

accordingly.
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Figure 1:Comparison of true and theoretical joint distributions of cluster mass and peak height intensity,
for Gaussian images. On top left is the true distribution obtained from simulation, on the top middle is the
U result and on the top right is theZ result. Below each of the theoretical results is the true minus estimated
distributions. While only an intermediate result, the agreement is reasonable, with better performance ob-
tained with theZ result. All distributions are transformed by the fourth root to improve visualization. Unless
otherwise noted, simulation settings used in the figures are: uc = 2.3263 (p=0.01),64 × 64 × 30 image at
FWHM 8 voxels.
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Figure 2:Comparison of true and theoretical joint distributions of cluster mass and peak height intensity,
for Gaussianizedt14 images. Same format as in Figure 1. Again the agreement between simulated truth and
derived theoretical result is good, with a closer match seenwith theZ result.
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Figure 3:Monte Carlo simulationP -values versus theoreticalP -values for uncorrected and correctedP -
values with Gaussian images. Values in the plot above the identity indicate conservative performance, below
the identity invalid performance. OurZ cluster mass method exhibits slight conservative performance, but
much less conservative than the other methods.
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Figure 4:Monte Carlo simulationP -values versus theoreticalP -values for uncorrected and correctedP -
values with Gaussianizedt14 images. Despite Gaussianization, ourZ cluster mass method provides close
to exact performance, and less conservative performance than other methods.
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Figure 5:Type I error rate for Gaussianizedt images, for bothP = 0.01 andP = 0.001 cluster-forming
thresholds, with different smoothness. While uncorrectedP-values perform poorly under low smoothness,
our Z cluster mass method has the corrected P-values are closest to the nominalα = 0.05 level without
being invalid.
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Figure 6: Results for “sentence” effect in FIAC single subject data.
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Figure 7: Results from item recognition effect in the working memory data.
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cluster extent via SPM Proposed cluster mass (Z) method
FW Inten- Radius Radius
HM sity 1 3 5 7 10 1 3 5 7 10
2 0.5 0.0122 0.0123 0.0195 0.0425 0.1211 0.0006 0.0006 0.0006 0.0008 0.0044

1.0 0.0122 0.0249 0.1991 0.5681 1.0000 0.0006 0.0012 0.02820.1601 0.9999
1.5 0.0122 0.1368 0.8113 0.9961 1.0000 0.0006 0.0212 0.47380.9345 1.0000
2.0 0.0122 0.5482 0.9972 1.0000 1.0000 0.0006 0.1976 0.97731.0000 1.0000

4 0.5 0.0156 0.0159 0.0166 0.0243 0.0447 0.0035 0.0036 0.0037 0.0051 0.0129
1.0 0.0156 0.0160 0.0287 0.1071 0.3821 0.0035 0.0037 0.00880.0468 0.2027
1.5 0.0156 0.0174 0.0902 0.4732 0.9162 0.0035 0.0051 0.05750.3099 0.8146
2.0 0.0156 0.0189 0.3125 0.8912 0.9993 0.0035 0.0110 0.25600.8008 0.9976

8 0.5 0.0131 0.0131 0.0138 0.0164 0.0222 0.0227 0.0231 0.0243 0.0264 0.0356
1.0 0.0131 0.0132 0.0157 0.0219 0.0667 0.0227 0.0243 0.02720.0405 0.0941
1.5 0.0131 0.0134 0.0174 0.0365 0.2309 0.0227 0.0244 0.03600.0858 0.2864
2.0 0.0131 0.0141 0.0191 0.0675 0.5780 0.0227 0.0254 0.05900.2206 0.6418

10 0.5 0.0091 0.0091 0.0095 0.0105 0.0154 0.0314 0.0316 0.0331 0.0353 0.0432
1.0 0.0091 0.0095 0.0102 0.0135 0.0357 0.0314 0.0322 0.03500.0459 0.0885
1.5 0.0091 0.0095 0.0109 0.0191 0.1029 0.0314 0.0333 0.04130.0820 0.2237
2.0 0.0091 0.0095 0.0115 0.0272 0.2836 0.0314 0.0344 0.05670.1751 0.4891

12 0.5 0.0084 0.0086 0.0087 0.0095 0.0131 0.0495 0.0501 0.0508 0.0530 0.0631
1.0 0.0084 0.0086 0.0090 0.0114 0.0254 0.0495 0.0505 0.05400.0641 0.1015
1.5 0.0084 0.0086 0.0091 0.0143 0.0521 0.0496 0.0513 0.05850.0930 0.2130
2.0 0.0084 0.0086 0.0097 0.0159 0.1230 0.0496 0.0519 0.07120.1680 0.4199

Table 1: Power of cluster extent inference method via SPM andthe propose cluster mass inference
method via RFT for Gaussian image, the cluster defined threshold is 2.3263 (p=0.01).
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Cluster Cluster Uncorrected P values Corrected P values
No Extent Height Mass Extent Height Mass Extent Height Mass

1 13 5.09 9.35 0.0069 0.0008 0.00110.1606 0.0192 0.0279
2 24 4.52 12.54 0.0009 0.0092 0.00040.0238 0.2096 0.0106
3 13 4.45 7.97 0.0069 0.0122 0.00180.1606 0.2665 0.0451
4 5 4.10 2.09 0.0633 0.0463 0.04040.7999 0.6920 0.6425
5 10 4.08 3.60 0.0140 0.0508 0.01380.2992 0.7251 0.2959
6 6 3.87 2.60 0.0446 0.1056 0.02690.6782 0.9319 0.4960
7 5 3.65 1.22 0.0633 0.2134 0.09670.7999 0.9956 0.9145
8 5 3.48 0.98 0.0633 0.3492 0.13340.7999 0.9999 0.9664
9 3 3.43 0.64 0.1447 0.4013 0.23240.9764 1.0000 0.9973
10 1 3.34 0.25 1.0000 0.5261 0.68161.0000 1.0000 1.0000
11 2 3.21 0.22 0.2433 0.7304 0.76480.9979 1.0000 1.0000
12 1 3.18 0.09 1.0000 0.7924 1.00001.0000 1.0000 1.0000
13 1 3.16 0.07 1.0000 0.8429 1.00001.0000 1.0000 1.0000

Table 2: Real data results for FIAC single subject data analysis, comparing extent, peak height and
mass statistics for cluster inference. The cluster mass hasgood sensitivity, and, in particular, when
any of the three inference methods are significant, cluster mass is usually significant,
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Random Field Theory Cluster Mass Inference
Cluster Cluster Uncorrected p-values Corrected p-values

No Extent Height Mass Extent Height Mass Extent Height Mass
1 347 5.47 182.19 0.0005 0.0001 0.00020.0043 0.0011 0.0018
2 540 4.99 262.29 0.0001 0.0012 0.00010.0007 0.0111 0.0004
3 620 4.82 272.05 0.0000 0.0026 0.00010.0004 0.0231 0.0004
4 1150 4.34 448.15 0.0000 0.0192 0.00000.0000 0.1602 0.0000
5 481 4.02 119.41 0.0001 0.0621 0.00080.0012 0.4313 0.0076
6 40 3.43 5.26 0.1012 0.4110 0.16840.6014 0.9761 0.7836

Permutation-based Cluster Mass Inference
Cluster Cluster Uncorrected P values Corrected P values
No ‡ Extent Height Mass Extent Height Mass Extent Height Mass

1 347 5.47 182.19 0.0018 0.0000 0.00070.0098 0.0002 0.0034
2 540 4.99 262.29 0.0008 0.0008 0.00030.0039 0.0051 0.0015
3 620 4.82 272.05 0.0006 0.0018 0.00020.0037 0.0117 0.0012
4 1150 4.34 448.15 0.0000 0.0132 0.00000.0002 0.0803 0.0002
5 481 4.02 119.41 0.0010 0.0461 0.00180.0049 0.2305 0.0093
6 40 3.43 5.26 0.0658 0.3327 0.12020.2759 0.7515 0.4312

Table 3: Real data results for the small group fMRI data, comparing RFT parametric and permu-
tation nonparametric inferences. Note the similarity between the RFT P-values and permutation
P-values, even though the RFT method depends on many assumptions and approximations.
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