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Cluster Mass Inference Method via Random
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Hui Zhang, Thomas E. Nichols, and Timothy D. Johnson

Abstract

Cluster extent and voxel intensity are two widely used statistics in neuroimag-
ing inference. Cluster extent is sensitive to spatially extended signals while voxel
intensity is better for intense but focal signals. In order to leverage strength from
both statistics, several nonparametric permutation methods have been proposed
to combine the two methods. Simulation studies have shown that of the different
cluster permutation methods, the cluster mass statistic is generally the best. How-
ever, to date, there is no parametric cluster mass inference available. In this paper,
we propose a cluster mass inference method based on random field theory (RFT).
We develop this method for Gaussian images, extend it to Student’s t-statistic im-
ages and investigate its statistical properties via simulation studies and real data.
Simulation results show that the method is valid under the null hypothesis and
demonstrate that it can be more powerful than the cluster extent inference method.
Further, analyses with a single-subject and a group fMRI dataset demonstrate bet-
ter power than traditional cluster size inference, and good accuracy relative to a
gold-standard permutation test.
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Abstract

Cluster extent and voxel intensity are two widely used stias in neuroimaging infer-
ence. Cluster extent is sensitive to spatially extendedassgwhile voxel intensity is better
for intense but focal signals. In order to leverage stretfigim both statistics, several non-
parametric permutation methods have been proposed to nertti® two methods. Simulation
studies have shown that of the different cluster permutatiethods, the cluster mass statistic
is generally the best. However, to date, there is no par&radtister mass inference available.
In this paper, we propose a cluster mass inference methed lbasrandom field theory (RFT).
We develop this method for Gaussian images, extend it toeftigd-statistic images and in-
vestigate its statistical properties via simulation stgcand real data. Simulation results show
that the method is valid under the null hypothesis and detratesthat it can be more powerful
than the cluster extent inference method. Further, analysh a single-subject and a group
fMRI dataset demonstrate better power than traditionatelusize inference, and good accu-

racy relative to a gold-standard permutation test.

Keywords: cluster mass, random field theory, Gaussian f&ddissianizedimage
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1 Introduction

Cluster extent and voxel intensity are two widely used stigs in neuroimaging inference. Cluster
extent is sensitive to spatially extended signals [6, 23iijlewoxel intensity is sensitive to focal,

intense signals [5, 24]. Both can suffer from a lack of povmrdignals of moderate extent and
intensity [9]. Furthermore, one does not generally knowiarp whether the generated signal is
large in extent, intensity or both. While some practitiansimply select the statistic that gives
the most statistically significant test, this embodies atiplel testing problem and will result in

inflated false positive error rates. An ideal test statigtizild combine spatial extent and peak

height intensity and would be sensitive to both without @asing the number of tests considered.

Poline et al. [23] (henceforth referred to as PWEF) develop a method whahbines extent
and intensity based on Gaussian random field theory (RFT18y @erive the joint distribution of
cluster extent and voxel-wise peak height intensity andematerence on minimum P value of a
cluster extent test and a local maximum intensity test. Heweheir method is only applicable to
Gaussian or approximately Gaussian images (e.g. a very taoup analysis, or a single subject

fMRI analysis).

Cluster mass, the integral of suprathreshold intensitiésinva cluster, naturally combines both
signal extent and signal intensity. Initially suggestedHmymes [11], Bullmoreet al.[2] used per-
mutation to obtain cluster mass P values. Currently the@lusass is default test statistic in the
BAMM ! and CAMBA? software, and is implemented in FSL's randomiml and in the SnPK/

toolbox for SPM.

Ihttp://www-bmu.psychiatry.cam.ac.uk/BAMM
2http://www-bmu.psychiatry.cam.ac.uk/software/
Shttp://www.fmrib.ox.ac.uk/fsl/randomise
*http://lwww.sph.umich.edu/ni-stat/SnPM
Shttp://www.fil.ion.ucl.ac.uk/spm
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Hayasaka & Nichols [9] study the statistical properties loister mass along with a variety of
other “combining methods” in the permutation testing fraraek. Among the combining methods
they study are Tippet's method [15, 22] (minimum P valuesdusy PWEF) and Fisher’'s method
(-2 x sum ofIn P values). They conclude, through simulation studies aatlyaes of real data,

that the nonparametric cluster mass method is generallg powerful than the other methods

they investigate.

A strength of nonparametric inference methods is that tegyaon fewer assumptions about the
distributional form of the data. However, they require &iddial computational effort and are not
very flexible. For example, the precise permutation schessgl Wlepends on the experimental
design and cannot be trivially determined from a designimadttuisance covariates cannot be ac-
commodated in general, as they induce null-hypothesistsirel which violates exchangeability.

Also, nonparametric methods cannot be used directly fgisisubject data analysis as a paramet

ric autocorrelation model or wavelet transformation isdeskto whiten the data. For all of these
reasons, a parametric cluster mass inference method thapesate with a general linear model

and deal with single subject analyses would be of great value

In this paper we develop a theoretical distribution for thester mass statistic via Gaussian RFT.
We generalize the work of PWEF, deriving the cluster maststitg extending the method to
Gaussianized data. We study the statistical size and power of our test ars§an and Gaussian-
izedt image data through simulations and illustrate the methoavorreal data example, a single

subject fMRI dataset and a group level fMRI data analysi& Vatwv degrees of freedom.
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2 Materialsand Methods

2.1 Cluster masstest theory
In a mass univariate data analysis, a general linear regresedel (GLM)
Yi= X0 + & 1)

is fit for each voxel = 1,..., I, whereY; isan/N x 1 vector of responsesy is a commonV X g
design matrix of predictorsj; is ag x 1 vector of unknown parameters andis a N x 1 vector
of random errors. Typically, at each voxel, errors are agslto be independent and identically
distributed N (0, ¢?) random variates, though dependent errors can be accomedofd#]. The
ordinary least squares estimator/fis 3; = (XTX)~'X"Y;, and ofc? is 52 = ¢e;/n, where
e, =Y, — X@- and where, is the error degrees of freedom. Then the Studerstatistic at voxel
1S

7, = o, (e(x"x)e?) @)

wherec is a contrast of interest (row vector). We write thstatistic image a¥ = {T;}._,.

Given cluster-forming threshold, > 0, the set of suprathreshold statistics;, : 7; > u.}/_,
is used to define clusters. Contiguous clusters are definachbjghborhood scheme, typically 18

connectivity scheme on a three dimensional image.

Let L be the number of clusters found, with clustenaving S, voxels (i.e. the cluster extent),
¢ =1,2,...,L. Further let/, be the set of voxel indices corresponding to clugterhe cluster
mass,M,, of cluster/ is the summation of the suprathreshold intensities:
M;=3 H, (3)
i€l
whereH; = T, — u.. Note that\/, = S,H, whereH, = > ie1, Hi/ Seis the average suprathreshold

intensity of cluster, showing cluster mass to be the product of the cluster ezgtthe average

5
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suprathreshold intensity.

To use Random Field Theory results, we begin by assuminghkastandardized error images,
called thecomponent fieldsare discrete samplings of a continuous, smooth, stagfdBaussian
random process. The component field for sgas {<;;/0;};, whereg;; is the error for scan

at voxeli. The component fields are assumed to follow a mean zero, anéance multivariate
Gaussian distribution. Stationarity implies that the gpatorrelation is determined by an auto-
correlation function that is homogeneous over space. Toeess is regarded as “smooth” if the
autocorrelation function has two derivatives at the origdased on these assumptionsmage

defined by (2) defines a Student’'sandom field.

While any univariate random variable can be transformemar®aussian variate, @aussianized
a Gaussianizedimage may not resemble a realization of Gaussian random fRelddomness in
o2 reduces the smoothness of the statistic image relativeetodimponent fields [24], as reviewed
in Appendix B.1. However, Worsley et al [25] argues that wkiest degrees of freedom exceed
120, the Gaussianizdektatistic can be regarded as a Gaussian Random Field. Menpeoceed
by deriving results assumin@ is a Gaussian image, but return to the issue of Gaussiamzati

below.

The full derivation our the null distribution of the clusterass statistic is given in Appendix B,
but we sketch an overview of the result here. We begin by aqpiating the statistic image about
a local maximum as a parabaloid, which allows cluster maggtobtained a function of cluster

extent,S,, and suprathreshold peak intensityy, = max{H, : j € I,},

My~=2/(D+2)x5;x Hy 4)

http://biostats.bepress.com/umichbiostat/paper76



whereD is the dimension of the image. By assuming that the autoletioa function of the image
is proportional to a Gaussian probability density functitre distribution off{, conditional onf,
can be found. At this point PWEF made a small excursion assampeplacing peak height
u. + H, with u.. We also make this assumption and create what we denoté tesult, but also
remove this assumption, deriving t&eresult.

Finding the joint distribution and integrating o#f, yields the final result, an expression for
P(M, > m), the uncorrected P-value for an observed cluster mass wélue This requires two
numerical integrations, one dependentwgnand one onn. In practice, for any given dataset,
P-values for a gridn values can be pre-computed and interpolation used to finB-tredue for an

arbitrary value ofn.

Note that the tail probability?(}/, > m) is an uncorrected P-value which does not account for
searching over all clusters in the image. Uncorrected Beghre only appropriate for a single
cluster that can be pre-identified before observing the[d§ta situation that rarely arises in prac-
tice. As detailed in Appendix B, the uncorrected P-valuestmatransformed into familywise-error
corrected P-values which accounts for the chance of one oz fatse positive clusters anywhere

in the image.
2.1.1 Student’st-statisticimage

When the degrees of freedom are small, a Gaussian randomvilettbt provide a good approx-
imation for a Student’$-statistic image. In this case tdo-z transformation is performed via the
probability integral transform. The transformed imageybweer, will be rougher than the compo-
nent field, and so the roughness parameter is adjusted angaodthe degrees of freedom of the
t-statistic image. Subsequently the above results areeapifind the uncorrected and corrected

P values for the cluster mass statistic.
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2.2 Simulation

To evaluate the accuracy of our cluster mass result, Equédip both 2D 256 x 256) and 3D
(64 x 64 x 30) Gaussian noise images are simulated. In order to unddrgtannfluence of image
roughness on the proposed statistic, each of the 10,00pendent Gaussian noise images are
convolved with different isotropic Gaussian smoothingniets. Kernel sizes 2, 4, 8, 10, and 12
voxels full width at half maximum (FWH®) are used, and these sizes then directly deteriije
the image roughness parameter. Two cluster forming thidslame investigated:( = 2.326 and

u. = 3.090, corresponding to uncorrected = 0.01 and P = 0.001, respectively). A nominal

significance level of 0.05 is used for all inferences.

To evaluate the method on Gaussianitzsthtisticimages, 15 Gaussian noise images are simulated,
mean-centered and divided by the voxel-wise standard &rproduce 14 degrees-of-freedam
images. At-to-z transformation is then applied to generate Gaussianizadges (see Appendix

B.1).

To assess the power of our method, a spherically shaped ¢rgdaus 1, 3, 5, 7, 20mm) with

various uniform intensities (0.25, 0.5, 0.75, 1, 1.5, 2)dded to the center of Gaussian noise im-
ages. Power is measured as the probability of a true positinter, defined a significant cluster
that contains one or more non-null voxels. The cluster éxtgarence methods are those from

RFT [1] implemented in the Statistical Parametric Mappi&gi12) [21] software.

One objective of the evaluations is to determine whethet/thesult, based on the small excursion
approximation, or theZ result is more accurate. Since the derivation depends ojoititedistri-
bution of cluster mass and peak height, we examine the ajpation accuracy of our results for

this bivariate distribution with simulation. In additioa visualizing images of the predicted and

5Kernel standard deviation = FWHM/81n 2 ~ 0.4247 FWHM
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simulated densities for th& andi/ results, we compute the Kullback-Leibler divergences,[h4]
measure of distance between two distributions. This allpggantitative comparison between the

two results.

The ultimate accuracy of the method depends on the margisiibdition of cluster mass. We
compare the specificity and validity of the mass test statiet thel/ and Z results, as well as
cluster size P-values found with our derived cluster extigsitibution and cluster extent P-values
produced by SPM. We present results for both uncorrecteccandcted P values to understand
the performance of the method, though only the correctedlieg are of practical interest. The
specificity and validity is gauged with plots of theory-ba$tvalues versus Monte Carlo (“true”)

P-values, called P-P plots.

2.3 Applications

We demonstrate our cluster mass inference method on two MRl sets, one single subject and

one group dataset
2.3.1 FIAC data

The first example is the Functional Imaging Analysis Con(E$AC) example [8]. The experi-

ment uses a sentence listening task, considering effedifefent or same speakers and different
or same sentences. We only consider the sentence effetef@it Sentence vs. Same Sentence”:
In each block, six sentences are read; in the “Different'dtoon six different sentences are read,

while in “Same” condition the same sentence is repeatedrsst For complete details see [8].

We use subject 3 (“func4”), block design data with 6mm FWHMosthing, fit with a GLM
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which produces & statistic image with 179 degrees-of-freedom. Here we cauoras that the
image reasonably approximates a Gaussian image and usethecddlirectly on théimage. The

cluster forming threshold i = 0.001 uncorrected.
2.3.2 Working Memory Data

We also use a group level analysis with 12 subjects from awgnrkemory experiment. Since the
degrees of freedom is rather small (11), we perforataaz transformation to generate a Gaussian-
izedt image.

While the experiment considers different aspects of waykilemory, we only use the item
recognition task. In the item recognition condition sukgeare shown a set of five letters and, after
a 2 second delay, shown a probe, to which respond “Y” if it wathe set, or “N” otherwise; in
a control condition five “X”s are shown and the probe is just 0¥ “N” indicating the required

response. For full details see Marshuetal[17].

A one-sample-test is used to model the data. We uge-z transformation and a cluster defining
threshold ofP = 0.01 uncorrected#(; = 4.02 or z = 3.09). The roughness parameter is adjusted
by 1.3891 [11, 24] to account for increased roughness of tigs&anized statistic. In addition

to parametric results in SPM, we also use SnPM to obtain rranpetric cluster extent and mass
results. With 12 subjects there ar€ = 4096 possible sign flips of the contrast data to create a

permutation distribution.

3 Results

3.1 Simulations

For the simulation studies, we only show results for a smuoegh parameter of FWHM = 8 voxels,

as the results are similar for the other smoothness paranete

10
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3.1.1 Accuracy of derived joint distribution

The top row of Figure 1 shows the true (simulated) joint disttion of cluster mass and peak
height intensity, theZ result and thé/ result for 3D Gaussian noise images. The bottom row
shows difference images of true and derived distributi@ngtie Z andi{ results. The distribu-
tions are qualitatively similar, though for very small deismasses and cluster height around 0.5
to 1.0, the two results tend to underestimate the truth;eMui cluster mass between 0 and 50
and cluster heights between 0 and 0.5, the results can dveaésthe truth. The Kullback-Leibler

divergences aré.285 for the Z result andl.610 for thelf result.

Figure 2 displays corresponding results for 3D Gaussidrtimmage. Again, there is little differ-
ence between the true distribution and the two results, gathdahe Kullback-Leibler divergence
between the true distribution and tBeresult is smaller than that between the true distributiah an
theld result (1.701 vs. 2.338). Thus, for both Gaussian imagesGagsianized images, tiie

result appears to be superior to theesult.

[Figure 1, 2 are about here]
3.1.2 Accuracy of derived cluster massnull distribution

Figure 3 shows the P-P plots for 3D Gaussian null simulatéa alad Figure 4 3D Gaussianized
t-statistic null simulated data. Both cluster mass (dath@al lines) and cluster size results (solid
lines) are shown. For all of our derived methods, theesults are more conservative (the null
will be rejected less often than nominal) than tBeresults. The SPM cluster size results are
also more conservative than tieresults for Gaussian null simulated data andétheesults for
Gaussianized t-statistic null simulated data. While guresult for cluster size exhibits some
anticonservativeness, overall tBeresult of cluster mass is the least conservative methodewhi

maintaining validity over most of the range of probabiktiacluded in this simulation study.
[Figure 3, 4 are about here]

11
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Figure 5 shows the Type | error rates for a 3D Gaussiantiredge with 14 degrees of freedom
with various smoothness parameters (FWHM) and clusteridgfimresholds. The figure shows
that the Z cluster mass result provides better results for high ttulelshand large FWHM than
for low threshold and low FWHM. For corrected P values, tlasult is valid for all levels of
smoothing studied, whereas tleresult of cluster extent is, by and large, invalid. Furtheren
the Z cluster mass corrected P-values—those that are used iticera@re always closer to the

nominal significance level when correcting for multiple quarisons.

[Figure 5 is about here]
3.1.3 Power comparisons

Having found our own cluster extent result to be invalid, wenpare the power of out cluster
mass result to SPM’s cluster extent result. Table 1 listaukited power for the cluster extent
(SPM) and cluster mas<{. As expected, for a given intensity, the power increasél signal
intensity, and, for a given radius, power increases as fgmakintensity increases. When the image
smoothness is low (FWHNM 4 voxels), SPM cluster extent generally provides better pdinan
the Z mass result. However, for greater smoothness (FWHIE voxels), theZ result is more

powerful than SPM, regardless of signal extent or signainsity.
[Table 1 is about here]

3.2 Real Data Evaluations

The FIAC data results show the method’s performance at leghes:s-of-freedom, while the work-

ing memory data assess the method using Gaussianizatiba#htage.
321 FIAC data

The estimated smoothness of the component fields based arditials is [2.4964 2.3599
1.7525] voxel FWHM with 27,863.0 x 3.0 x 4.0mm? voxels. Figure 6 shows the maximum

12
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intensity projection of the all clusters found withfa = 0.001 threshold. Table 2 provides the
values of cluster extent, suprathreshold peak height sitieand cluster mass for each cluster, as
well as the P-values, all sorted by peak height. The firsetlhasters have corrected significance
with cluster mass, while peak height and cluster extent fintyone cluster significant each. The
uncorrected significances show that if a cluster is sigmfidgy any of the three methods, it is
significant by cluster mass. Again, while we do not advocat af uncorrected inferences, this

demonstrates the relative sensitivity of the method.

[Figure 6, Table 2 are about here]
3.2.2 Working Memory Data

The estimated smoothness is [4.8611 6.4326 6.6156] voxélAWith 122,6592.0 x 2.0 x 2.0
voxels. Figure 7 shows the all of the clusters found with a 0.001 cluster-forming threshold.
Table 3 compares our RFT cluster mass results to an equiademutation method. Our RFT
method finds the five largest clusters significant, as doeREiecluster size statistic. Notable is

the close correspondence between the RFT P-values andrthatpdon P-values.

[Figure 7, Table 3 are about here]

4 Discussion

Although cluster mass inference with nonparametric peatiart has been found to be a quite sen-
sitive inference method for neuroimaging data [9], permaotais computationally intensive, not a
very flexible modeling framework. We propose a new theoa¢tiluster mass inference method for
Gaussian images and Student&atistic images, based on Gaussian RFT. Our simulatimhest
show that our derived null distribution is accurate, andgrens well not only for Gaussian images,
but also for Student’s-statistic image. Like other RFT methods, our results ddpany on the

smoothness and the volume of the image. While we did not fiaskdorm results for the P-value

13
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for an arbitrary mass value, these are quickly pre-compated grid of mass values which can

then be interpolated.

Our evaluations of the test’s specificity reveal that thepps®d cluster mass inference method
works best when the image is sufficiently smoothed, at leaskél FWHM, and ideally for larger

smoothness parameters (FWHMS8 voxels). However, our real data evaluations found it te per
form as good or better than parametric cluster size infereeaen though image smoothness was

only about 2 voxels FWHM in the single subject dataset.

Consistent with its competitor, the nonparametric clustass inference method, our theoretical
cluster mass inference statistic generally has better pthvaa either the cluster extent inference
statistic or the voxel intensity statistic, alone. This $pecially true when the cluster extent and
the suprathreshold peak height intensity are moderateddsiMore remarkable, is that despite a
large number of assumptions and a sequence of approximsaton RFT cluster mass P-values

are so close to the permutation results which have very fewragtions.

The Gaussianization of images is a shortcoming of the method, but it is not an uncommo
strategy. The FSL [20] software has always (as of versioh 4sed Gaussianization efand

F images. While the SPM software has abandoned GaussiamZativoxel-wise inference ever
since SPM99, its cluster extent inference has always (aBWE} used Gaussian and niaandom
field results cluster extent P-values and currently neglaet smoothness adjustment described in

Appendix B.1.

Although the proposed cluster mass inference method hag guand statistical properties, it has
its limitations. When we derive the formulas for the margjaiatribution of cluster mass, we as-

sume that the shape of a cluster above a certain threshgtghiexamated by a parabaloid. This

14
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assumption is rational for a Gaussian image that has beermlved with a Gaussian smooth-
ing kernel. However, for real data, this assumption may loestocong, even after smoothing the
data. For example, we may have a large flat cluster with ong/\axel of high intensity. The
activated regions may also have other shapes that are nichppgbximated by a parabaloid. In
addition, we use a Gaussian shaped correlation functioimipli§y the variance in the derivation.
We also assume that we have stationary fields, though anseaiteto accommodate local variation

in smoothness [10] may be possible.

Finally we note that, while both real data examples were fMRé method makes no assump-

tions about the modality and should operate well with PET @thér types of imaging data.

5 Acknowledgments

This work is funded by the US NIH: grant number 5 R0O1 MHO069826-The authors would like

to thank Dr. Christy Marshuetz and the FIAC group for prongithe data sets used in this paper.

References

[1] R.J. Adler.The Geometry of Random Field&/iley, New York, 1981.

[2] E.T. Bullmore, J. Suckling, S. Overmeyer, S. Rabe-H#skE. Taylor, and M.J. Brammer.
Global, voxel, and cluster tests, by theory and permutafiona difference between two

groups of structural MR images of the braleEE Trans. Med. Imagindl8:32—42, 1999.

[3] J. Cao and K.J. WorsleyApplications of random fields in human brain mapping, in: Myo
M.(Ed), Spatial Statistics: Methodological Aspects angligations, Springer lecture Notes
in Statistics volume 159, pages 169-182. Springer, New York, 2001.

15

Hosted by The Berkeley Electronic Press



[4] K.J. Friston. Testing for anatomically specified regbeffects. Human Brain Mapping

5:133-136, 1997.

[5] K.J. Friston, C.D. Frith, P.F. Liddle, and R.S.J. Fragkak. Comparing functional (PET)
images: The assessment of significant chanheCereb. Blood Flow Metap11:690-699,
1991.

[6] K.J. Friston, A. Holmes, J.-B Poline, C.J. Price, and CHith. Detecting activations in pet

and fmri: levels of inference and powéteurolmage4:223-235, 1996.

[7] RD Gordon. Values of mill’s ratio of area to bounding ardie of the nor mal probability
integral for large values of the argumenAnnals of Mathematical Statistic42:364—-366,

1941.

[8] Madic Group. Functional Imaging Analysis Contest (FIAGt t p: / / www. madi c. or g/

fiac/ how to participate. htnl,2005.

[9] S. Hayasaka and T.E. Nichols. Combining voxel intenaitg cluster extent with permutaion

test frameworkNeuroimage23:54—63, 2004.

[10] Satoru Hayasaka, K. Luan Phan, Israel Liberzon, KeitWdrsley, and Thomas E. Nichols.
Nonstationary cluster-size inference with random field padnutation methodsNeuroim-

age 22(2):676-687, 2004.

[11] Andrew Holmes. Statistica Issues in functional Brain MappinghD thesis, University of

Glasgow, 1994.

[12] A.P. Holmes, R.C. Blair, J.D.G. Watson, and |. Ford. Narametric analysis of statistic
images from functional mapping experiments. Cereb. Blood Flow Metapl16(1):7-22,

1996.

16

http://biostats.bepress.com/umichbiostat/paper76



[13] S Kiebel, J.B. Poline, K.J. Friston, A Holmes, and K.Dbrédley. Robust smoothness estima-
tion in statistical parametric maps using standardizeidduess from the general linear model.

Neuroimagel10:756-766, 1999.

[14] S. Kullback and R. A. Leibler. On information and suféiocy. Annals of Mathematical

Statistics22:79-86, 1951.

[15] N.A. lazar, B. Luna, J.A. Sweeney, and W.F. Eddy. Cormgrbrains: a survey of methods

for statitical pooling of informationNeuroimage16:538-550, 2002.

[16] W.-L. Luo and T.E. Nichols. Diagnosis and exploratidmwassively univariate fmri models.

Neurolmage19(3):1014-1-32, 2003.

[17] C. Marshuetz, E.E. Smith, J. Jonides, J. DeGutis, ahddhenevert. Order information in
working memory:fMRI evidence for partietal and prefromtachanismJ. Cogn. Neurosgi.

12(S2):130-144, 2000.

[18] T.E. Nichols and S. Hayasaka. Controlling the familggverror rate in functional neuroimag-

ing: A comparative reviewStatistical Methods in Medical Researd?(5):419-446, 2003.

[19] T.E. Nichols and A.P. Holmes. Nonparametric permotatests for functional neuroimaging:

a primer with examplegduman Brain Mappingl5:1-25, 2002.

[20] Analysis Group of Functional Magnetic Resonance Imggif the Brain(FMRIB). Fmrib

software library.ht t p: / / www. f nTi b. ox. ac. uk/ f sl /. Oxford, London, UK.

[21] Wellcome Department of Imaging Neuroscience. Staatparametric mappinght t p:

[ Twwv. fil.ion.ucl.ac.uk/spni. University of College London, London, UK.

[22] F. PesarinMultivariate Permutation Test3Niley, New York, 2001.

17

Hosted by The Berkeley Electronic Press



[23] J.B. Poline, K.J. Worsley, A.C. Evans, and K.J. Frist@ombining spatial extent and peak

intensity to test for activations in functional imagingeuroimage5:83-96, 1997.

[24] K.J. Worsley, A.C. Evans, S. Marrett, and P. Neelin. ddidimensional statistical analysis

for CBF activation studies in human braih.Cereb. Blood Flow Metap12:900-918, 1992.

[25] K.J. Worsley, S. Marrett, P. Neelin, A.C. Vandal, K.Jiskon, and A.C. Evans. A unified sta-

tistical approach for determining significant signals irages of cerebral activatiotluman

Brain Mapping 4:58-73, 1996.

18

http://biostats.bepress.com/umichbiostat/paper76



Appendix
A Pvalues

For permutation test analyses of fMRI data [12, 19], theectap types of P values, uncorrected P
values (not adjusted for multiple comparisons) and coeké€t values (adjusted for multiple com-
parisons). Uncorrected voxel-wise permutation P-valuegust those from a standard univariate
permutation test. Uncorrected cluster-wise permutativalBes require additional assumptions.
Based on an assumption of stationarity, that the distibubif cluster statistics (e.g. size, mass,
local peak height, etc) does not vary with space, clusteisits can be pooled over space. For
each permutation, the set of observed cluster statistecad@ded to the permutation distribution,
creating a distribution with many more entries than the neinab permutations. Uncorrected clus-

ter inferences are then obtained by reference to this loligioin.

For familywise error (FWE) corrected P-values, the disttidtn of the maximal cluster statistic,
searched over the image, is created. This process prodoedsaximal) cluster statistic per per-
mutation, yielding a permutation with the standard numidesi@ements. The corrected P-value is
the proportion of permutation elements as large or largan that the cluster statistic considered.
No assumption of stationarity is required, though if thersevere non-stationarity, the smoothest
regions of the image will contain the greatest risk of falssifives, and rough regions will lack sen-
sitivity to detect small clusters (which, relative to thedbsmoothness, may be unusually large).
For more on the issue of spatially varying smoothness, sge [1

If cluster statistics are marked as significant only when F¥igificant at 0.05, there is then

95% confidence of no false positive clusters anywhere inrttage. For more on FWE see [18].
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B Derivation of Null Distribution of Cluster M ass

Our derivation of the distribution of cluster mass follovisit of Polineet al. [23] (PWEF) with

several departures. A rough outline of the derivation iso#ews:

1. A second order Taylor series approximates the statistge at a local maximum as a para-

baloid, determined by peak height and curvature about themusn.

2. The geometry of a parabaloid gives cluster extent and asmadunction of peak height and

the curvature (Jacobian determinant).

3. Distribution of the curvature, conditional on peak hejghfound using an assumption of a

Gaussian autocorrelation function.

4. Combining two previous results relates extent and masslitonal on peak height, tog

distribution. A bias correction is made using the expectel@iEcharacteristic.

5. PWEF proceeds with a small excursion assumption; we pdair of results, with and

without this assumption.
6. Joint distribution of mass and height are found and matgied to produce final mass result.

Let Z(x) be aD-dimensional Gaussian image, with

E(Z(x)) = O,
Var(Z(x)) = 1,

Var(VZ(x)) = A

for all x € Q ¢ R in the image volume, wher¥ is the gradient operator andis theD x D
matrix which parameterizes roughness. We assume the grissiooth, in that/?p(0) exists,

wherep(+) is the autocorrelation function and? is the Hessian operator.
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Without loss of generality, suppose there exists a localimam atx = 0, and consider the

approximating parabaloid from a second order Taylor setfegitx = 0
W(0) = Z(0) + xT(V?Z(0))xT /2

Suppressing the spatial index, lét= Z(0), and denote/ = | — V2Z(0)| the negative Jacobian
determinant.

For a cluster-defining threshold, let H = Z — u,. be the suprathreshold magnitude (note that
we suppress thésubscript used in the body of the paper). Then the geometheapproximating

parabaloid gives cluster extent as

S = a2P/2gh/2 =12 (5)
wherea = 72/2/T'(D/2 + 1) is the volume of the unit sphere, and mass as

M =2SH/(D + 2). (6)

Conditional onH, PWEF shows that another Taylor series yields
InJ|H ~In|A|+ DIn(H + u.) + 1, (7)
wheren is mean zero Gaussian with variafce
Var(n|H) = [tr (A" @ A™)p™(0)) — D?] /(H + u,).

While this expression is quite involved, if we assume thas proportional to a Gaussian pdf,
it simplifies toVar(n|Z) = 2D/(H + u.)?. Subsequently we will need—/2, and so write the
exponentiated and powered equation (7ya¥? ~ |A|7Y2(H + u.)~P/? exp(n/2)~'. However,
as in PWEF, we find that numerical evaluations of the finalltese poor whemn is assumed to

be Gaussian (results not shown). We instead linearize thenential,

JVAH o~ JATYVR(H ) TP (L4 /2) (8)

"Note there is a typo in the PWEF paper’s equation (8), whé&rehould in fact be jusZ, or H + u,. as we have
written.
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and approximaté -+ /2 with 1/, wherevn' is 2 variate. Matching the second moments efr /2

andr’ givesv = 4(H + u.)?/D. Combining with Equations (8) and (5) yields
S|H ~ a2D/2|A|_1/2(H + uc)_D/QHD/Zn/_l. (9)
B.0.3 Theld result

PWEF proceed by using a small excursion approximation,ihetsmall relative ta.., replacing
H + u. with u.. With this change, and marginalizing oHt, the expected cluster extent can be
found as

Eu(S) = (2m) P2 A7 u?. (10)
However, accurate results using the expected Euler Clesistat [1] give
Eec(S) = (2m) 2 [A[72u; PV (1 = (ue)) /(ue) (11)

where® is the standard Gaussian CDF apds the standard Gaussian PDF. Hence, the approxi-

mation forS|H is scaled by

_ Eec(d) _
u = EM(S) - uc(l - (I)<u0>>/¢(uc) (12)

As a side note, this is Mill's ratio [7] scaled hy., which will havec,, converging to 1 from below
for largeu..

The bias-adjusted result is
M|H =~ aCMQD/QH(D + 2)—1 ‘A‘—1/2 uC—D/z b/2+1 77/_17 (13)
which is a scaled inversg? random variable withy degrees of freedom and scale parameter
qz,{(H> o CLCu2D/2+1(D + 2)—1 |A|—1/2 uC—D/2 HD/2+1

The marginal distribution off is approximately exponential with meapu, [1], and thus the joint

pdf of M and H is

qu(H)v/2)""? exp ((qu(H)v/2)/M]
P(V/Q) Mv/2+1

fu(M, H) =~ ( exp|—u.H]u, 14
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for M, H > 0. The uncorrected P-value for cluster mass is then found with

Py(M > m) z/ / fu(M, H)dH dM
m 0
using numerical integration over a fine grid.
B.0.4 The Z result

We repeat the preceding without the small excursion appration. We call this theZ result,

sinceZ = H + u. is left as is. Returning to (9) and marginalizing diitwe get
Ez(S) = a2P/? |A|[72E{[H/(H + u.)]"?} (15)

where the final term must be found numerically for a particula This provides the bias adjust-

ment term
Cz — EE(;(S)/EZ(S) (16)

This provides an approximation fdr' | H as a scaled invers¢’ random variable with degrees of

freedom and scale parameter
q2<H> _ CLCZQD/2+1(D + 2)—1 ‘A‘—1/2 (H + Uc)_D/2 HD/2+1

and joint pdf of M/ andH of

(az(H)v/2)"? exp [(qz(H)v/2) /M]

fZ(Mv H) ~ F(V/2) Mv/2+1

exp|—uH]u,. (17)
As before, the uncorrected P-value for cluster mass is themd with

Pz(M>m)z/OO/OOfZ(M,H)deM
m 0

using numerical integration over a fine grid.
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B.0.5 Corrected P-values

The uncorrected P-values can be transformed into famigewiror (FWE) corrected P-values with
either a Bonferroni correction for the expected numbertehgsor the Poisson clumping heuristic
[1, 3,7?]. We opt for the later, as it provides a continuous transatiam between uncorrected and
corrected P-values.

A FWE corrected P-value accounts for the chance of the mastatstic exceeding that actu-

ally observed. Assuming the clusters arise a Poisson ppttas P-value is found as
P(maxM, > m) ~ 1 —exp{—E(L) - P(M; > m)}, (18)

where E(L) is the expected number of clusters in the image. For modénegsholds:. Euler
characteristic will count the number of clusters, and heme@pproximate” (L) ~ Egc(L). The
most accurate results féec(L) depends on the dimension and the topology of the searchrregio

[25]. For a 3D, approximately spherical search region
Eec(L) = MQ)IA[Y?(2m) 2 (u? — 1) exp[—u?/2]; (19)

where\(2) is the volume of the search region. In addition, for a higleshioldu.., the number of

clusters above the threshold will be approximated by [1, 23]
E(L) = MQ)|A[Y?(2m)?u? exp[—u? /2]
B.0.6 Smoothness Estimation & A

The preceding results depend on the roughness of the comparelom fields, as parameter-
ized by|A|. Worsley et al. [24] proposed re-expressing this as the FWGHissian kernel re-
quired smooth an independent random field into one with roagd\. Assuming the smoothing

is aligned with the major axes of the image, this relatiopsi

\A\1/2 _ (41n2)P/?
[1, FWHM,
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where FWHM, is the smoothness in theth dimension. If the smoothness is not knov|'/?

can be estimated from the residual images of a general Imedel [13]

B.1 Student’st-image

A Student’st-statistic image with small degrees of freedom is not wefiragimated by Gaussian
random field [25], however our results assume the statistage is Gaussian. Gaussianization
of ¢ statistic images will match the univariate distributioreatch voxel, but the converted image
will have greater roughness than the component fields. &pedtl al. and Holmes showed that
if the roughness of a Gaussian imagé\isthe roughness for a Student:statistic image can be
estimated by\r = A\, A, wheren > 4 is the number of scans used to generatettimage and
A, IS the correction factor [11, 24]. When applying our methodaussianized data we adjust

accordingly.
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Figure 1: Comparison of true and theoretical joint distributions lofster mass and peak height intensity,
for Gaussian images. On top left is the true distributioratetd from simulation, on the top middle is the
U result and on the top right is th& result. Below each of the theoretical results is the trueusigstimated
distributions. While only an intermediate result, the agnent is reasonable, with better performance ob-
tained with theZ result. All distributions are transformed by the fourthtremimprove visualization. Unless
otherwise noted, simulation settings used in the figuresw@are 2.3263 (p=0.01)64 x 64 x 30 image at
FWHM 8 voxels.
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Figure 2: Comparison of true and theoretical joint distributions lnfster mass and peak height intensity,
for Gaussianized;, images. Same format as in Figure 1. Again the agreement betsimulated truth and

derived theoretical result is good, with a closer match séémthe Z result.

27

Hosted by The Berkeley Electronic Press



Gaussian 3D image, Uncorrected p’s, FWHM=8 Gaussian 3D image, Corrected p's, FWHM=8
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Figure 3:Monte Carlo simulationP-values versus theoreticél-values for uncorrected and correct®e
values with Gaussian images. Values in the plot above thifgéndicate conservative performance, below
the identity invalid performance. OW cluster mass method exhibits slight conservative perfaoaabut
much less conservative than the other methods.
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, 3D, Gaussianized t image, Uncorrected p's, FWHM=8 3D, Gaussianized t image, Corrected p's, FWHM=8
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Figure 4:Monte Carlo simulationP-values versus theoreticél-values for uncorrected and correctBe
values with Gaussianizeld, images. Despite Gaussianization, dicluster mass method provides close
to exact performance, and less conservative performaacedtmer methods.
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Uncorrected p value, u, at p=0.001, df = 14 Corrected p value, u, at p=0.001, df = 14
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Figure 5:Type | error rate for Gaussianizeédmages, for both? = 0.01 and P = 0.001 cluster-forming
thresholds, with different smoothness. While uncorre®edhlues perform poorly under low smoothness,
our Z cluster mass method has the corrected P-values are closhat hominale = 0.05 level without
being invalid.
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Figure 6: Results for “sentence” effect in FIAC single sabata.
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cluster extent via SPM

Proposed cluster ma&sniethod

FW Inten- Radius Radius
HM  sity 1 3 5 7 10 1 3 5 7 10
2 0.5 0.0122 0.0123 0.0195 0.0425 0.1211 0.0006 0.0006 6.0000008 0.0044
1.0 0.0122 0.0249 0.1991 0.5681 1.0000 0.0006 0.0012 0.0P8601 0.9999
1.5 0.0122 0.1368 0.8113 0.9961 1.0000 0.0006 0.0212 0.403m345 1.0000
2.0 0.0122 0.5482 0.9972 1.0000 1.0000 0.0006 0.1976 0.977®00 1.0000
4 0.5 0.0156 0.0159 0.0166 0.0243 0.0447 0.0035 0.0036 ©.0030051 0.0129
1.0 0.0156 0.0160 0.0287 0.1071 0.3821 0.0035 0.0037 0.0088468 0.2027
1.5 0.0156 0.0174 0.0902 0.4732 0.9162 0.0035 0.0051 0.0973099 0.8146
2.0 0.0156 0.0189 0.3125 0.8912 0.9993 0.0035 0.0110 0.2668008 0.9976
8 0.5 0.0131 0.0131 0.0138 0.0164 0.0222 0.0227 0.0231 8.0P40264 0.0356
1.0 0.0131 0.0132 0.0157 0.0219 0.0667 0.0227 0.0243 0.007405 0.0941
1.5 0.0131 0.0134 0.0174 0.0365 0.2309 0.0227 0.0244 0.0861858 0.2864
2.0 0.0131 0.0141 0.0191 0.0675 0.5780 0.0227 0.0254 0.099%206 0.6418
10 0.5 0.0091 0.0091 0.0095 0.0105 0.0154 0.0314 0.0316 30.08.0353 0.0432
1.0 0.0091 0.0095 0.0102 0.0135 0.0357 0.0314 0.0322 0.085mM59 0.0885
1.5 0.0091 0.0095 0.0109 0.0191 0.1029 0.0314 0.0333 0.0018B20 0.2237
2.0 0.0091 0.0095 0.0115 0.0272 0.2836 0.0314 0.0344 0.086I7751 0.4891
12 0.5 0.0084 0.0086 0.0087 0.0095 0.0131 0.0495 0.0501 08.06.0530 0.0631
1.0 0.0084 0.0086 0.0090 0.0114 0.0254 0.0495 0.0505 0.0p41641 0.1015
1.5 0.0084 0.0086 0.0091 0.0143 0.0521 0.0496 0.0513 0.088W30 0.2130
2.0 0.0084 0.0086 0.0097 0.0159 0.1230 0.0496 0.0519 0.001680 0.4199

Table 1: Power of cluster extent inference method via SPMiaagropose cluster mass inference
method via RFT for Gaussian image, the cluster defined thiés2.3263 /=0.01).

33

Hosted by The Berkeley Electronic Press



Cluster Cluster Uncorrected P values Corrected P values
No Extent Height Mass Extent Height Mass Extent Height Mass
1 13 5.09 9.35 0.0069 0.0008 0.00110.1606 0.0192 0.0279
2 24 452 12.54 0.0009 0.0092 0.00040.0238 0.2096 0.0106
3 13 4.45 7.97/ 0.0069 0.0122 0.00180.1606 0.2665 0.0451
4 5 4,10 2.09 0.0633 0.0463 0.04040.7999 0.6920 0.6425
5 10 4.08 3.60 0.0140 0.0508 0.01380.2992 0.7251 0.2959
6 6 3.87 2.60] 0.0446 0.1056 0.02690.6782 0.9319 0.4960
7 5 3.65 1.22| 0.0633 0.2134 0.096[70.7999 0.9956 0.9145
8 5 3.48 0.98/ 0.0633 0.3492 0.13340.7999 0.9999 0.9664
9 3 3.43 0.64] 0.1447 0.4013 0.23240.9764 1.0000 0.9973
10 1 3.34 0.25/ 1.0000 0.5261 0.68161.0000 1.0000 1.0000
11 2 3.21 0.22/ 0.2433 0.7304 0.76480.9979 1.0000 1.0000
12 1 3.18 0.09] 1.0000 0.7924 1.00001.0000 1.0000 1.0000
13 1 3.16 0.07| 1.0000 0.8429 1.00001.0000 1.0000 1.0000

Table 2: Real data results for FIAC single subject data amlgomparing extent, peak height and
mass statistics for cluster inference. The cluster masgdad sensitivity, and, in particular, when
any of the three inference methods are significant, cluséessiis usually significant,
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Random Field Theory Cluster Mass Inference
Cluster Cluster Uncorrected p-values Corrected p-values
No Extent Height Mass Extent Height Mass Extent Height Mass
347 5.47 182.19 0.0005 0.0001 0.00020.0043 0.0011 0.0018
540 4.99 262.29 0.0001 0.0012 0.000L0.0007 0.0111 0.0004
620 4.82 272.05 0.0000 0.0026 0.000L0.0004 0.0231 0.0004
1150 4.34 448.1%0.0000 0.0192 0.00000.0000 0.1602 0.0000
481 4.02 119.41 0.0001 0.0621 0.00080.0012 0.4313 0.0076
40 3.43 5.26 0.1012 0.4110 0.16840.6014 0.9761 0.7836

Permutation-based Cluster Mass Inference
Cluster Cluster Uncorrected P values Corrected P values
Noi | Extent Height Mass Extent Height Mass Extent Height Mass
347 5.47 182.19 0.0018 0.0000 0.000f0.0098 0.0002 0.0034
540 4,99 262.29 0.0008 0.0008 0.00030.0039 0.0051 0.0015
620 4,82 272.0% 0.0006 0.0018 0.00020.0037 0.0117 0.0012
1150 4.34 448.150.0000 0.0132 0.00000.0002 0.0803 0.0002
481 4,02 119.41 0.0010 0.0461 0.00180.0049 0.2305 0.0093
40 3.43 5.26/ 0.0658 0.3327 0.12020.2759 0.7515 0.4312

O U, WN B

OO WN PR

Table 3: Real data results for the small group fMRI data, canmg RFT parametric and permu-
tation nonparametric inferences. Note the similarity stwthe RFT P-values and permutation
P-values, even though the RFT method depends on many assoswnd approximations.
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