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A note on bias due to fitting prospective
multivariate generalized linear models to

categorical outcomes ignoring retrospective
sampling schemes

Bhramar Mukherjee and Ivy Liu

Abstract

Outcome dependent sampling designs are commonly used in economics, market
research and epidemiological studies. Case-control sampling design is a classic
example of outcome dependent sampling, where exposure information is collected
on subjects conditional on their disease status. In many situations, the outcome un-
der consideration may have multiple categories instead of a simple dichotomiza-
tion. For example, in a case-control study, there may be disease sub-classification
among the “cases” based on progression of the disease, or in terms of other his-
tological and morphological characteristics of the disease. In this note, we in-
vestigate the issue of fitting prospective multivariate generalized linear models
to such multiple-category outcome data, ignoring the retrospective nature of the
sampling design. We first provide a set of necessary and sufficient conditions for
the link functions that will allow for equivalence of prospective and retrospective
inference for the parameters of interest. We show that for categorical outcomes,
prospective-retrospective equivalence does not hold beyond the generalized multi-
nomial logit link. We then derive an approximate expression for the bias incurred
when link functions outside this class are used. We illustrate the extent of bias
through a real data example, based on the ongoing Prostate, Lung, Colorectal and
Ovarian (PLCO) cancer screening trial by the National Cancer Institute.
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SUMMARY
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1 Introduction

Case-control study is a prime example of outcome dependent sampling where individuals are sam-

pled conditional on their disease status, and exposure information is then collected on the sampled

individuals. Several other forms of outcome dependent sampling are commonly observed in econo-

metric and social research, where explanatory variables are related to the discrete choices already

made by individuals (Manski and McFadden, 1981). For binary outcomes, it is well-known that the

disease-exposure (response-explanatory variable) association can be consistently estimated using

a prospective logistic model (Andersen, 1970; Prentice and Pyke, 1979) under outcome dependent

sampling. The prospective-retrospective equivalence does not hold for any other generalized lin-

ear model (GLM) for binary data, beyond the logistic link function (Kagan, 2001). Ignoring the

outcome-dependent nature of sampling and fitting any arbitrary link function (such as probit, com-

plimentary log-log) could produce biased estimates of the regression parameters of interest, and

the bias could be substantial depending on the sampling rates from the two response categories

(Neuhaus, 2002).

In modern medicine, with precise characterization of diseases in histological and morpholog-

ical terms, it is natural to consider disease states with more than one category, i.e., there may be

subdivisions within the “cases”. For example, patients diagnosed with cancer may have cancer of

stage-I, stage-II or stage-III at the time of the diagnosis or may simply be classified in terms of the

number/size of adenomas/tumors present. There are several popular models for analyzing categor-

ical response (Agresti, 2002), for instance, the cumulative logit model for ordered outcomes, that

one may want to fit in such scenarios. It may also be desirable to select a fixed number of sub-

jects from each disease category through an outcome dependent sampling scheme. The purpose of

this note is to establish an approximation to the bias when multivariate generalized linear models

(which includes many common models for outcomes with multiple categories) are fitted to data

collected by retrospective sampling. An additional objective is to illustrate the degree and extent

of bias through a real example based on the PLCO cancer screening trial (based on data available
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in Ji et al, 2006;). In our example, we consider disease outcomes that are classified according

to number of colorectal adenomas detected in a subject by sigmoidoscopy screening of the distal

colon (descending colon and sigmoid or rectum). We investigate the association between smoking

(never vs. ever) and number of adenomas and illustrate the extent of bias that may result with a

naive prospective analysis of data sampled retrospectively from the PLCO cohort. This dataset is

also used to assess the accuracy of our analytical approximation to the bias.

We would like to emphasize that there exists a rich literature on appropriate estimation tech-

niques for fitting prospective models under outcome-dependent or choice-based sampling schemes.

We refer the reader to the pioneering work by Scott and Wild (1986) and Breslow and Cain (1988).

Their work spurred further research in this area (Breslow and Holubkov, 1997a, 1997b; Bres-

low and Chatterjee 1999; Chatterjee 2004; Scott and Wild 1991, 1997; Wild 1991; Wang et al

1997). Pfeffermann et al (1998) and Pfeffermann and Sverchov (1999) also considered outcome

dependent-sampling in the context of sample surveys. The purpose of this note is not to develop

new inferential procedures, but to provide an analytical description of the bias for the situation with

multiple outcome categories, and to leave the reader with an intuitive sense of the bias mechanism

via our real data example.

The rest of the article is organized as follows. In Section 2, we introduce the model, notations,

and provide a characterization of the link functions in a multivariate generalized linear model for

categorical outcomes (MVGLM) which allow prospective-retrospective equivalence of likelihood

inference regarding the regression parameters of interest. In Section 3, we provide an approxima-

tion to the bias when a prospective MVGLM is fitted to retrospective data, completely ignoring

the sampling design. In Section 4, we illustrate the magnitude of the bias and the quality of our

approximation through a real data example. Section 5 presents concluding remarks.
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2 Model and Notations

2.1 Multivariate Generalized Linear Models

Let Yi be a K-category outcome variable scaled from 1, . . . , K, and let xi denote the s× 1 vector

of covariates, both measured for subject i, i = 1, . . . , n. Let us define a set of q = K − 1 indicator

variables yi = (yi1, . . . , yiq)
′, where yim = 1 if subject i belongs to response class m and 0

otherwise, m = 1, · · · , q.

Following the notational convention of Fahrmeir and Tutz (2001), we express the multinomial

distribution for a general categorical variable Yi, in terms of the vector yi as

f(yi |θi, φ, wi) = exp

[
y′

iθi − b(θi)

φ
wi + c(yi, φ, wi)

]
,

where

θ′
i =

[
log

(
πi1

1−
∑q

j=1 πij

)
, . . . , log

(
πiq

1−
∑q

j=1 πij

)]

b(θi) = − log

(
1−

q∑
j=1

πij

)

c(yi, φ, wi) = − log

(
yi1! · · · yiq!(1−

q∑
j=1

yij)!

)
.

Here πim = P (yim = 1) = P (Yi = m). Typically, πim is modeled as a function of the covariates

xi for all m = 1, . . . , q. In that case, we can express the model as

π(xi) = h(Ziβ) (1)

where π(xi) = (πi1(xi), . . . , πiq(xi))
′; Zi is a q×p design matrix involving xi; β is a p×1 vector

of parameters; and h = (h1, . . . , hq)
′ is a vector valued function operator

h : S ⊂ Rq → M ⊂ Rq

where M is the q dimensional simplex representing the admissible set of probabilities M ={
(η1, . . . , ηq) | 0 < ηj < 1,

∑q
j=1 ηj < 1

}
.
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Let us now consider the class of MVGLMs for categorical data with the design matrix Zi of

the following particular structure,

Zi =


1 x′

i 0 0′ · · · 0 0′

0 0′ 1 x′
i · · · 0 0′

...
0 0′ 0 0′ · · · 1 x′

i

 , β =



β01

β1

β02

β2
...

β0q

βq


In this model, the total number of parameters is given by p = (s + 1)q. The model in (1) can also

be expressed as

πim(xi) = P (Yi = m |xi) = hm(β01 + x′
iβ1, . . . , β0q + x′

iβq), m = 1, . . . , q,

where h = {h1, . . . , hq}′ is the multidimensional response function and hm : Rq → R is the

response function corresponding to the mth component (or category) of Y for all m = 1, . . . , q.

We assume that for all m = 1, · · · , q, hm is differentiable with respect to each co-ordinate.

2.2 Likelihood under outcome-dependent sampling scheme

Let us assume that the sampling probabilities for each individual in the population depend only on

the outcomes and let λm denote the sampling rate at which subjects from response category Y = m

is sampled, m = 1, . . . , K. Let nm be the number of subjects selected from outcome category m

and let Nm be the total number of subjects available in category m for the population under study.

Then λm = nm/Nm. Typically, the sampling rates are unknown, as Nms are unknown except for

some special cases. Let Si be an indicator variable denoting whether subject i is selected or not

from the population. Instead of the assumption of sampling without replacement, we will assume

that the sampling model is iid Bernoulli sampling where each member from category Y = m is

selected by the result of a coin toss with equal selection probability λm. Therefore,

P (Si = 1 |Yi = m, xi) = λm.

5
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By Bayes theorem, we have

P (Yi = m |xi, Si = 1) =
P (Si = 1 |Yi = m, xi)P (Yi = m |xi)

P (Si = 1 |xi)

=
λmhm(β01 + x′

iβ1, . . . , β0q + x′
iβq)∑q

j=1 λjhj(β01 + x′
iβ1, . . . , β0q + x′

iβq) + λq+1(1−
∑q

j=1 hj(β01 + x′
iβ1, . . . , β0q + x′

iβq))

=
λmhm(ui1, . . . , uiq)∑q

j=1 λjhj(ui1, . . . , uiq) + λq+1(1−
∑q

j=1 hj(ui1, . . . , uiq))
, (2)

where uim = β0m + x′
iβm, m = 1, · · · , q. Without loss of generality, let the response category

K = q +1 denote the baseline category. The retrospective likelihood based on the above sampling

scheme is

LR(β01, . . . , β0q, β1, . . . ,βq|xi, yi, i = 1, . . . , n)

∝
n∏

i=1

 q∏
m=1

 λmhm(ui1, . . . , uiq)∑q
j=1 λjhj(ui1, . . . , uiq) + λq+1

(
1−

∑q
j=1 hj(ui1, . . . , uiq)

)


yim

×

 λq+1

(
1−

∑q
j=1 hj(ui1, . . . , uiq)

)
∑q

j=1 λjhj(ui1, . . . , uiq) + λq+1

(
1−

∑q
j=1 hj(ui1, . . . , uiq)

)


1−
Pq

j=1 yij


However, the prospective likelihood assuming that the data was obtained through a cohort study is

given by

LP (β01, . . . , β0q, β1, . . . ,βq|xi, yi, i = 1, . . . , n)

∝
n∏

i=1

 q∏
m=1

{hm(ui1, . . . , uiq)}yim

(
1−

q∑
j=1

hj(ui1, . . . , uiq)

)1−
Pq

j=1 yij


We now establish the following theorem which provides necessary and sufficient conditions for

the response functions which will allow the effect of sampling rates in LR to be absorbed in the

intercept parameters β0m, m = 1, · · · , q , and thus allow LR to differ from LP by intercept terms

only. Consequently, only for such link functions, the regression parameters βm, m = 1, · · · , q

remain identifiable via the prospective likelihood.

Theorem 1: Suppose that h1, · · · , hq are real valued functions and for m = 1, · · · , q, θm(λ) is a
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real valued function of the sampling ratios, with λ = (log(λ1/λq+1), · · · , log(λq/λq+1))
′. Then,

n∏
i=1

 q∏
m=1

 λmhm(ui1, . . . , uiq)∑q
j=1 λjhj(ui1, . . . , uiq) + λq+1

(
1−

∑q
j=1 hj(ui1, . . . , uiq)

)


yim

 λq+1

(
1−

∑q
j=1 hj(ui1, . . . , uiq)

)
∑q

j=1 λjhj(ui1, . . . , uiq) + λq+1

(
1−

∑q
j=1 hj(ui1, . . . , uiq)

)


1−
Pq

j=1 yij


=
n∏

i=1

[
q∏

m=1

{hm(ui1 + θ1(λ), ui2 + θ2(λ), . . . , uiq + θq(λ))}yim

(
1−

q∑
j=1

hj(ui1 + θ1(λ), ui2 + θ2(λ), . . . , uiq + θq(λ))

)1−
Pq

j=1 yij

 (3)

iff

hm(u1, . . . , uq) =
exp(dm +

∑q
j=1 cmjuj)

1 +
∑q

l=1 exp(dl +
∑q

j=1 cljuj)
(4)

and

log

(
λm

λq+1

)
= log

(
λm

λK

)
=

q∑
j=1

cmjθj(λ).

for some set of scalars {dm, cmj, m = 1, . . . , q, j = 1, . . . , q}. The theorem holds under the as-

sumption that the map f : λ = (log(λ1/λq+1), · · · , log(λq/λq+1))
′ → θ(λ) = (θ1(λ), · · · , θq(λ))′

is one to one and onto, that is, if we know one vector we can retrieve the other.

Proof: The proof of this theorem resemble the argument in Kagan (2001) where an analogous

characterization for the logistic link function is presented for all GLMs for binary data. The math-

ematical argument has to be modified for MVGLMs for outcomes with multiple categories and a

rigorous complete proof is contained in the Appendix (A.1). Examples of commonly used link

functions which satisfy the above characterization are the multinomial and adjacent category logit

links, or any other generalized logit link functions (McCullagh and Nelder, 1999).

3 Magnitude of bias by ignoring the sampling scheme

From Theorem 1, we know that by using LP in MVGLM model with link functions beyond the

multiplicative intercept and odds structure, one is not able to estimate the true model parameters

7
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by a naive prospective analysis. We now present an approximation to the bias incurred by fitting

a prospective MVGLM to these categorical observations. We treat the problem of ignoring the

sampling design as a model mis-specification problem (Neuhaus, 1999, 2002) and use classical

results from (Huber, 1967; White, 1982) to derive properties of MLEs under the mis-specified

model ignoring the sampling design.

From (2), we know that the true model which acknowledges the retrospective sampling scheme

is given by

πT
m(x) = PT(Y = m |x, S = 1)

=
λmhm(β01 + x′β1, . . . , β0q + x′βq)∑q

j=1 λjhj(β01 + x′β1, . . .) + λq+1(1−
∑q

j=1 hj(β01 + x′β1, . . .))
, (5)

for m = 1, . . . , q. The false model that ignores the retrospective sampling scheme is described by

πF
m(x) = PF(Y = m |x, S = 1) = hm(β∗

01 + x′β∗
1, . . . , β

∗
0q + x′β∗

q).

Note that when λ1 = λ2 = · · · = λq+1, then πT
m(x) = πF

m(x) for all m and the two likelihoods

agree perfectly. However, in a typical outcome dependent design, sampling rates for the rare

outcome categories are much higher than sampling rates for the controls or the commonly prevalent

outcome category, and this equality is extremely unlikely to hold in any practical situation.

It is well known that the MLEs from the false model converge to (β∗
01, . . . , β

∗
0q, β

∗
1, . . . ,β

∗
q)

that minimizes the Kullback-Leibler (KL) divergence between the true model and the false model

(Akaike, 1973 and Huber, 1967). The KL-divergence between the two models is defined as

KLD(T, F) = EX

[
EY/X

{
log

πT
Y (x)

πF
Y (x)

}]
= EX

[
q∑

j=1

πT
j(x) log

πT
j(x)

πF
j(x)

+

{
1−

q∑
j=1

πT
j(x)

}
log

{1−
∑q

j=1 πT
j(x)}

{1−
∑q

j=1 πF
j(x)}

]

So (β∗
01, . . . , β

∗
0q, β

∗
1, . . . ,β

∗
q), which minimize KLD(T, F ), solve the system of equations:

∂

∂β∗
0m

KLD(T, F) = 0 for m = 1, . . . , q,

∂

∂β∗
m

KLD(T, F) = 0 for m = 1, . . . , q. (6)
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Let us consider a single covariate x, to simplify the notations. The results and proof directly

translate to multiple covariates. With a single x, the equations in (6) can be expressed as,

EX

[
q∑

j=1

πT
j(x)

πF
j(x)

∂

∂β∗
0m

πF
j(x) +

{1−
∑q

j=1 πT
j(x)}

{1−
∑q

j=1 πF
j(x)}

∂

∂β∗
0m

{
1−

q∑
j=1

πF
j(x)

}]
= 0 (7)

and

EX

[
x

{
q∑

j=1

πT
j(x)

πF
j(x)

∂

∂β∗
m

πF
j(x) +

{1−
∑q

j=1 πT
j(x)}

{1−
∑q

j=1 πF
j(x)}

∂

∂β∗
m

{
1−

q∑
j=1

πF
j(x)

}}]
= 0 (8)

for m = 1, . . . , q.

Remark 1: Suppose there is no association between Y and X , i.e., β1 = β2 = . . . = βq = 0,

then πT
j(x) is independent of X . Without loss of generality, let E(X) = 0. Then, if β∗

1 = β∗
2 =

. . . = β∗
q = 0, each equation in (8) is a multiple of X and has expected value 0. Therefore,

β∗
1 = β∗

2 = . . . = β∗
q = 0 is a solution to the equations in (8). Thus, under the null model, using a

prospective likelihood, ignoring the sampling scheme, does provide consistent ML estimation for

βm, m = 1, · · · , q.

Remark 2: Values of (β∗
01, . . . , β

∗
0q, β

∗
1 , . . . , β

∗
q ) which result in

πT
j(x) = πF

j(x)

for all x, trivially satisfy (7) and (8); the right hand sides of these equations then reduce to the

expectation of true score function, which is zero by classical ML theory.

In a general setting, solving (7) and (8) is considerably difficult. We adopt the route followed

in Neuhaus (1999, 2002) by solving an alternate system of equations.

For the multivariate generalized linear model as described in (1), namely, π(xi) = h(Ziβ),

consider the link function denoted by g = h−1. The equivalent model is written as

g(π(xi)) = Ziβ,

where g = (g1, . . . , gq)
′ is a vector function from Rq → Rq. For a simple case with only one

9

Hosted by The Berkeley Electronic Press



covariate x, the model in terms of the link functions can be written as,
g1(π1(x), . . . , πq(x))
g2(π1(x), . . . , πq(x))

...
gq(π1(x), . . . , πq(x))

 =


β01 + β1x
β02 + β2x

...
β0q + βqx


Therefore, the covariate effects under the FALSE prospective model are measured by

g1(π
F
1(x + 1), . . . , πF

q(x + 1))− g1(π
F
1(x), . . . , πF

q(x))
g2(π

F
1(x + 1), . . . , πF

q(x + 1))− g2(π
F
1(x), . . . , πF

q(x))
...

gq(π
F
1(x + 1), . . . , πF

q(x + 1))− gq(π
F
1(x), . . . , πF

q(x))

 =


β∗

1

β∗
2
...

β∗
q

 . (9)

Similarly, the covariate effects under the TRUE retrospective model are measured by
g1(π

T
1(x + 1), . . . , πT

q(x + 1))− g1(π
T
1(x), . . . , πT

q(x))
g2(π

T
1(x + 1), . . . , πT

q(x + 1))− g2(π
T
1(x), . . . , πT

q(x))
...

gq(π
T
1(x + 1), . . . , πT

q(x + 1))− gq(π
T
1(x), . . . , πT

q(x))

 =


β1

β2
...

βq

 . (10)

To relate the β∗s to the βs we try to find an approximate solution for which, g(πT (x)) ≈ g(πF (x)).

This is achieved by first equating the LHS of (10) to the RHS of (9).
H1(β1, . . . , βq)
H2(β1, . . . , βq)

...
Hq(β1, . . . , βq)

 =


β∗

1

β∗
2
...

β∗
q

 (11)

where Hl(β1, . . . , βq) = gl(π
T
1(x + 1), . . . , πT

q(x + 1))− gl(π
T
1(x), . . . , πT

q(x)), for l = 1, · · · , q.

Next, we carry out a first order multivariate Taylor’s expansion of the elements Hl(β1, . . . , βq)

around β = (0, . . . , 0). Note that Hl(0, . . . , 0) ≡ 0 for all l = 1, · · · , q. The details of the Taylor’s

expansion are relegated to the Appendix (A.2). Combining the first order Taylor’s expansion with

the matrix equation in (11) we have,
∂

∂β1
H1(β1, . . . , βq) |(0,...,0) · · · ∂

∂βq
H1(β1, . . . , βq) |(0,...,0)

∂
∂β1

H2(β1, . . . , βq) |(0,...,0) · · · ∂
∂βq

H2(β1, . . . , βq) |(0,...,0)

...
∂

∂β1
Hq(β1, . . . , βq) |(0,...,0) · · · ∂

∂βq
Hq(β1, . . . , βq) |(0,...,0)




β1

β2
...

βq

 =


β∗

1

β∗
2
...

β∗
q
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Where the derivative at the null model for each Hl (generically denoted as H in the following) can

be evaluated as,

∂

∂βm

H(β1, . . . , βq) |(0,...,0)

=

q∑
j=1

g(j)(πT
10, . . . , π

T
q0)×

[
Gjm(β01, . . . , β0q)

{
∑q

t=1(rt − 1)ht(β01, . . . , β0q) + 1}2

]
, (12)

where rt = λt/λq+1, and we follow the convention that for any function f(u1, · · · , uq), f (i)(u1, · · · , uq)

is the partial derivative of f with respect to the i-th co-ordinate ui. The function Gjm is defined as

Gjm(β01, . . . , β0q) = rjh
(m)
j (β01, . . . , β0q)

[
q∑

t=1

(rt − 1)ht(β01, . . . , β0q) + 1

]

− rjhj(β01, . . . , β0q)

[
q∑

t=1

(rt − 1)h
(m)
t (β01, . . . , β0q)

]
,

and

πT
j0 =

λjhj(β01, . . . , β0q)∑q
t=1 λtht(β01, . . . , β0q) + λq+1(1−

∑q
t=1 ht(β01, . . . , β0q))

denotes the probabilities for category j, under the null model.

Thus we have related the true model parameters to the limiting values of the MLE’s under the

false model by an equation of the form

β = H−1β∗ (13)

where H is a q × q matrix with entries depending on the sampling ratios (λm/λq+1), and the

intercepts (β0m), m = 1, · · · , q. Equivalently, a knowledge of the disease risk for each category at

the baseline value of the covariate x and the sampling rates is necessary to compute the matrix H .

Remark 3: As shown in Neuhaus (2002), when q = 1, that is, for GLMs for binary data with any

general link function g, and h = g−1, ∂
∂β1

H(β1)|β1=0 simplifies to

g(1)(π0)π0(1− π0)

g(1)(µ0)µ0(1− µ0)
,

where

π0 =
rh(β01)

(r − 1)h(β01) + 1
,

µ0 = h(β01) and, g(1)(π0) =
∂g(π)

∂π
|π=π0 .

11
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This bias factor could be greater than or less than one depending on the sampling ratio r = λ1/λ2,

the link function, and the baseline disease risk.

Since the sampling rates and baseline disease risks are typically unknown for a given study,

it is potentially difficult to adopt a bias correction strategy based on the expression in (13). The

purpose of this note is to study this bias analytically and present a clear illustration through the

following data example.

4 Illustration through real data example

The data example is based on the large ongoing Prostate, Lung, Colorectal and Ovarian (PLCO)

Cancer Screening Trial at the National Cancer Institute, USA (Gohagan et al., 2000; Hayes et al.,

2005). The association between tobacco smoking and colorectal adenoma and hyperplastic polyps

in this trial has been documented in Ji et al (2006), and we use the same dataset. Data is available on

patients with sigmoidoscopy screening of the left side of the distal colon. Patients are classified into

three disease states based on the number of adenomas detected on the left side (1=sigmoidoscopy

negative, 2=single adenoma, 3=multiple adenoma). We consider a subjects’s cigarette smoking

behavior (0=never and 1=ever, which includes both former and current smokers) as the only risk

factor X . After deleting subjects with missing observations, we have complete information on

47364 subjects in the trial. The cohort data is represented by the following frequency table

Adenoma 1 2 3
Smoking

0 20420 1234 329
1 22397 2213 771

Total 42817 3447 1100

In view of the natural ordering of the disease states, one may be inclined to fit one of the most

popular models for ordered categorical outcomes, namely, the cumulative logit model (Agresti,

2002) given by,

logit[P (Y ≤ m|X)] = β0m + βmX, m = 1, · · · , q = K − 1. (14)

12

http://biostats.bepress.com/umichbiostat/paper68



Instead of the popular proportional odds structure, we do allow separate covariate effects (βm) for

each cumulative logit as that model appears to be more reasonable in the current context. This

model is also known as the partial proportional odds model (Peterson and Harrell, 1990). We first

analyze the available data on the whole cohort of 47364 subjects using the above cumulative logit

model with smoking history as the risk factor of interest. The fitted model is given by,

logit[P (Y ≤ 1|X)] = 2.570− 0.554X logit[P (Y ≤ 2|X)] = 4.187− 0.724X. (15)

The results suggest that the smokers are less likely to have no adenoma (versus more than one

adenoma) and less likely to have single or no adenoma (versus multiple adenoma) than the non-

smokers. Both the cumulative log odds ratio parameters are statistically significant (P < 0.001).

We can consider these fitted values as the ‘TRUE’ values of the parameters, as obtained via a

prospective study of the full cohort.

Suppose we now take a retrospective sample from the given cohort, conditional on the multiple

adenoma category and then analyze the retrospective data by the cumulative logit model, ignoring

the sampling design. Note that the cumulative logit model does not have a multiplicative intercept

structure as required by Theorem 1 for prospective-retrospective equivalence, thus the estimates of

β1 and β2 obtained by this analysis of the retrospectively collected data will be typically different

from the ones obtained in (15). The difference in magnitude of the two estimates will reflect

the resultant bias. We furnish an empirical estimate of the bias factor by first taking repeated

retrospective samples from the cohort under a given sampling design (with fixed sampling rates

for each category) and then calculating the ratio of the mean of the resultant estimates with the

“true” estimate obtained in (15). We compare this estimated bias with the bias computed by using

our analytical approximation formula as given in Section 3, under the same design and parameter

setting. The numerical results are collected in Table 1, whereas the analytical details specific to

the cumulative logit model are available in Appendix A.3. Table 1 clearly brings out the fact

that with multiple disease categories, ignoring the sampling design may provide quite inaccurate

point estimate of disease-exposure association depending on the sampling rates. We also notice

that our analytical approximation is remarkably close to the empirical estimate of the bias factor.

13
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Because of the special logistic structure of the cumulative logit model in terms of the cumulative

probabilities, it can be noted from Table 1 and also Appendix A.3 that whenever λ2 = λ3, an

unbiased estimate of β1 can be obtained, though the estimate of β2 remain biased. Only in the

event of λ1 = λ2 = λ3, both the estimates of β1 and β2 are unbiased.

Figure 1 plots the bias factor (β∗
m/βm, m = 1, 2) as obtained by our analytical formulae, when

1500 controls (Y = 1) are selected from the 42817 controls in our cohort, and the sampling rates

for the outcome categories Y = 2 and Y = 3 vary freely from 0 to 1. The values of the intercept

parameters are set at the estimates obtained in (15). One can note that under this setting, the

estimate of β1 is inflated, whereas the estimate of β2 is deflated. The bias seems to be more severe

for β2 for a wide range of sampling rates, whereas the bias in β1 is significant for small values of

λ2 or small values of λ3 (< 0.2).

Figure 2 represents one of the common designs used in practice, when one includes half/all

available cases in the case-control sample. Since in both of the designs, λ2 = λ3, the estimate

of β1 is unbiased. The bias factor for β2 is plotted as a function of λ1, the sampling rate for the

controls and one can notice that the plotted curve crosses the vertical axis at 1 (reflecting no bias)

only when λ1 = λ2 = λ3. The figure also indicates that sampling 20-30% controls is sufficient to

reduce much of the bias under such a sampling design, with a baseline disease risk as noticed in

the colorectal adenoma data. If one has prior information on the baseline disease risks from past

historical data, and a prospective model is implemented, the bias approximation could be used to

evaluate possible sampling strategies for a given study.

5 Concluding Remarks

In this note, we consider the problem of fitting multivariate generalized linear models for categori-

cal outcomes under an outcome dependent sampling scheme. We first provide a rigorous character-

ization result for the link functions which allow prospective and retrospective equivalence and then

provide an approximation to the bias incurred by ignoring the sampling scheme. The characteri-

14
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zation illustrates that for categorical outcomes, prospective-retrospective equivalence of likelihood

inference in terms of the regression parameters do not hold beyond the generalized multinomial

logit links. Although for binary outcomes, similar issues have been investigated thoroughly, re-

sults of this nature have not previously been collected in the literature for a general categorical

outcome variable. The findings imply that direct prospective approaches which consider flexible

non-parametric modeling of link functions for categorical outcomes, are not appropriate under out-

come dependent sampling scheme unless some additional supplementary information is included

(Scott and Wild, 1986). The real data example based on the PLCO trial, where case-control sam-

ples are selected from a prospective cohort, is reflective of how many of the case-control studies

are carried out in practice. We study the bias under some common sampling designs one may im-

plement in a real investigation. Though we illustrate the results with the partial proportional odds

model, there are other commonly used models for polytomous outcome, like the continuation-ratio

logit model (Agresti, 2002), which models logit of P (Y = j|Y ≥ j, x), does not fall in the gen-

eralized multinomial logit class. Since this link function lies somewhere intermediate between the

multinomial and the cumulative logit links, it will be another interesting link function to investi-

gate. The purpose of this note is to leave the reader with an analytical and practical understanding

of the bias mechanism for multicategory outcomes, when common prospective models are fitted

by ignoring an outcome dependent sampling process.
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7 Appendix

A.1 Proof of Theorem 1: We first establish the necessity part of Theorem 1, i.e., (3) implies (4).

Let Yi = m for all i, that all individuals are selected from the m-th response category. (i.e., yim = 1

for all i = 1, . . . , n and yij = 0 for all j 6= m and i = 1, . . . , n. Then the equality in (3) becomes

n∏
i=1

λmhm(ui1, . . . , uiq)∑q
j=1 λjhj(ui1, . . . , uiq) + λq+1

(
1−

∑q
j=1 hj(ui1, . . . , uiq)

)
=

n∏
i=1

hm(ui1 + θ1(λ), ui2 + θ2(λ), . . . , uiq + θq(λ))
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Since ui1, . . . , uiq for i = 1, . . . , n are free variables with range R, this implies

λmhm(u1, . . . , uq)∑q
j=1 λjhj(u1, . . . , uq) + λq+1

(
1−

∑q
j=1 hj(u1, . . . , uq)

)
= hm(u1 + θ1(λ), ui2 + θ2(λ), . . . , uq + θq(λ)), (16)

By dividing the numerator and denominator of LHS of (16) by (1−
∑q

j=1 hj(u1, . . . , uq)), we have

λmh̃m(u1, . . . , uq)∑q
j=1 λj g̃j(u1, . . . , uq) + λq+1

= hm(u1 + θ1(λ), . . . , uq + θq(λ)) (17)

Where h̃m(u1, . . . , uq) = λmhm(u1, . . . , uq)/(1−
∑q

j=1 hj(u1, . . . , uq)).

Summing both sides of (17) over m and subtracting from 1, we have

λq+1∑q
m=1 λmh̃m(u1, . . . , uq) + λq+1

= 1−
q∑

m=1

hm(u1 + θ1(λ), . . . , uq + θq(λ)) (18)

Dividing (17) by (18), and then taking logarithms on each side, we have

log h̃m(u1, . . . , uq) + log

(
λm

λq+1

)
= log h̃m(u1 + θ1(λ), . . . , uq + θq(λ)) (19)

The above equation (19), is of the form,

Am(u1, . . . , uq) + Bm(λ) = Am(u1 + θ1(λ), . . . , uq + θq(λ)),

where Am = h̃m and Bm(λ) = log (λm/λq+1).

Let u = (u1, · · · , uq)
′ and v = [θ(λ)] = (θ(λ1), · · · , θ(λq))

′. We may rewrite Bm(λ) =

Bm(f−1(θ(λ))) = Bm(f−1(v)), where f : λ → θ(λ) is a one to one and onto mapping according

to Theorem 1, then the above equation can be written in the form,

Am(u) + B̃m(v) = Am(u + v),

where B̃m = Bm ◦ f−1.

We will now need the following lemma.

Lemma 1: Let u and v be q × 1 vectors and A, B be continuous functions from

Rq → R such that,

A(u) + B(v) = A(u + v) ∀ u, v, (20)
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Then,

A(u) = c′u + d.

Proof: By (20), we have, for any set of vectors u, v, and w,

A(u + v + w) = A(u) + B(v + w) and also,

A(u + v + w) = A(u + v) + B(w) = A(u) + B(v) + B(w).

Therefore,

B(v + w) = B(v) + B(w).

By the above property of B, for every rational number r, and vector u, we have

B(ru) = rB(u). Implying the linearity of B (recall that B is continuous), i.e.,

B(u) = c′u, for some vector c. Thus by (20), we have,

A(u) = A(0) + B(u) = c′u + A(0) = c′u + d

where A(0) = d, is some scalar. Therefore, A(u) is linear in u. By the relationship

B(v) = A(v)− A(0), it follows that B(v) = c′v.

Returning to the proof of Theorem 1, applying Lemma 1 directly to (19), exponentiating and

normalizing, we have,

hm(u) =
exp(c′mu + dm)

1 +
∑q

l=1 exp(c′lu + dl)
, (21)

Letting B̃m(v) = B(v) in Lemma 1, it also follows that,

log

(
λm

λq+1

)
= c′mθ(λ).

Translating in terms of the model parameters, we have, c′mu =
∑q

j=1 cmjuj =
∑q

j=1 cmj(β0j +

x′βj) = β∗
0m + x′β∗

m. Thus, hm(x) is a response function with multiplicative intercept and odds

structure and we have the necessity part of Theorem 1.

The sufficiency part follows by simple algebra, plugging in a response function with multi-

plicative intercept and odds structure in (3) and verifying that the result holds .
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A.2 The details of the Taylor’s approximation

In the following we suppress the suffix l in Hl. By first order Taylor’s expansion, we have,

H(β1, . . . , βq) ≈ H(0, . . . , 0) +

q∑
j=1

βj
∂

∂βj

H(β1, . . . , βq) |(0,...,0)

=

q∑
j=1

βj
∂

∂βj

H(β1, . . . , βq) |(0,...,0)

Recall that, H(β1, · · · , βq) = g(πT(x))− g(πT(x + 1)). The derivative of g can be obtained as,

∂

∂βm

g(πT
1[β01 + β1x, . . . , β0q + βqx], . . . , πT

q[β01 + β1x, . . . , β0q + βqx])

=

q∑
j=1

∂

∂πT
j

g[πT
1, . . . , π

T
q]×

∂

∂βm

πT
j(β01 + β1x, . . . , β0q + βqx)

=

q∑
j=1

∂

∂πT
j

g[πT
1, . . . , π

T
q]×

∂

∂um

πT
j(u1, . . . , uq)× x

By taking the difference of two such derivatives at x + 1 and x, we evaluate the derivative of H as

∂

∂βm

H(β1, . . . , βq) =

q∑
j=1

∂

∂πT
j

g[πT
1, . . . , π

T
q]×

∂

∂um

πT
j(u1, . . . , uq), (22)

where um = β0m + βmx. Let

g(j)(π1, . . . , πq) =
∂

∂πj

g(π1, . . . , πq)

We can write the derivative of πT
j as

∂

∂um

πT
j(u1, . . . , uq) =

∂

∂um

[
λjhj(u1, . . . , uq)∑q

t=1 λtht(u1, . . . , uq) + λq+1(1−
∑q

t=1 ht(u1, . . . , uq))

]
=

∂

∂um

[
rjhj(u1, . . . , uq)∑q

t=1(rt − 1)ht(u1, . . . , uq) + 1

]
, (23)

where

rj = sampling ratio of Y = j to the baseline group of Y = q + 1

=
λj

λq+1

The derivative in (23) becomes

∂

∂um

[
rjhj(u1, . . . , uq)∑q

i=1(rt − 1)ht(u1, . . . , uq) + 1

]
=

Gjm(u1, . . . , uq)

[
∑q

t=1(rt − 1)ht(u1, . . . , uq) + 1]
2 ,
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where

Gjm(u1, . . . , uq) = rjh
(m)
j (u1, . . . , uq)

[
q∑

t=1

(rt − 1)ht(u1, . . . , uq) + 1

]

− rjhj(u1, . . . , uq)×

[
q∑

t=1

(rt − 1)h
(m)
t (u1, . . . , uq)

]
Hence we arrive at our expressions in (12).

A.3. Derivatives for the cumulative logit model

For simplicity of expressions, let us consider q = 2, as in the PLCO data example. To translate

the cumulative logit model into the MVGLM set-up using the notations followed in the paper, we

have,

π1(x) = h1(β01 + β1x, β02 + β2x) =
exp(β01 + β1x)

1 + exp(β01 + β1x)

π2(x) = h2(β01 + β1x, β02 + β2x)

=
exp(β02 + β2x)

1 + exp(β02 + β2x)
− exp(β01 + β1x)

1 + exp(β01 + β1x)

and the link functions are given by,

g1(π1, π2) = log

(
π1

1− π1

)
g2(π1, π2) = log

(
π1 + π2

1− (π1 + π2)

)

Plugging these particular expressions in (13) we have the bias approximation in (11) as[ ∂
∂β1

H1(β1, β2) |(0,0)
∂

∂β2
H1(β1, β2) |(0,0)

∂
∂β1

H2(β1, β2) |(0,0)
∂

∂β2
H2(β1, β2) |(0,0)

] [
β1

β2

]
=

[
β∗

1

β∗
2

]
.

The derivative components of the matrix are given by,

∂

∂β1

H1(β1, β2) |(0,0) =
exp(β02)λ2 + λ3

exp(β02)λ2 + λ3 + exp(β01)(λ3 − λ2)

∂

∂β2

H1(β1, β2) |(0,0) =
exp(β02)(1 + exp(β01))(λ3 − λ2)

(1 + exp(β02))(exp(β02)λ2 + λ3 + exp(β01)(λ3 − λ2))

∂

∂β1

H2(β1, β2) |(0,0) =
exp(β01)(1 + exp(β02))(λ1 − λ2)

(1 + exp(β01))(exp(β02 + β01)λ1 + exp(β02)λ2 + exp(β01)(λ1 − λ2))

∂

∂β2

H2(β1, β2) |(0,0) =
exp(β02)(λ1 exp(β01) + λ2)

(exp(β02 + β01)λ1 + exp(β02)λ2 + exp(β01)(λ1 − λ2))
.
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