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Exploiting Gene-Environment Independence
for Analysis of Case-Control Studies: An
Empirical Bayes Approach to Trade Off

between Bias and Efficiency

Bhramar Mukherjee and Nilanjan Chatterjee

Abstract

Standard prospective logistic regression analysis of case-control data often leads
to very imprecise estimates of gene-environment interactions due to small num-
bers of cases or controls in cells of crossing genotype and exposure. In contrast,
under the assumption of gene-environment independence, modern “retrospective”
methods, including the “case-only” approach, can estimate the interaction param-
eters much more precisely, but they can be seriously biased when the underly-
ing assumption of gene-environment independence is violated. In this article, we
propose a novel approach to analyze case-control data that can relax the gene-
environment independence assumption using an empirical Bayes framework. In
the special case, involving a binary gene and a binary exposure, the framework
leads to an estimator of the odds-ratio interaction parameter in a simple closed
form that corresponds to an weighted average of the standard case-only and case-
control estimators. We also describe a general approach for deriving the empiri-
cal Bayes estimator and its variance within the retrospective maximum-likelihood
framework developed by Chatterjee and Carroll (2005). We conduct simulation
studies to investigate the mean-squared-error of the proposed estimator in both
fixed and random parameter settings. We also illustrate the application of this
methodology using two real data examples. Both simulated and real data exam-
ples suggest that the proposed estimator strikes an excellent balance between bias
and efficiency depending on the true nature of the gene-environment association
and the sample size for a given study.
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SUMMARY

Standard prospective logistic regression analysis of case-control data often leads to very impre-

cise estimates of gene-environment interactions due to small numbers of cases or controls in cells

of crossing genotype and exposure. In contrast, under the assumption of gene-environment inde-

pendence, modern “retrospective” methods, including the “case-only” approach, can estimate the

interaction parameters much more precisely, but they can beseriously biased when the underlying

assumption of gene-environment independence is violated.In this article, we propose a novel ap-

proach to analyze case-control data that can relax the gene-environment independence assumption

using an empirical Bayes framework. In the special case, involving a binary gene and a binary

exposure, the framework leads to an estimator of the odds-ratio interaction parameter in a simple

closed form that corresponds to an weighted average of the standard case-only and case-control

estimators. We also describe a general approach for deriving the empirical Bayes estimator and

its variance within the retrospective maximum-likelihoodframework developed by Chatterjee and

Carroll (2005). We conduct simulation studies to investigate the mean-squared-error of the pro-

posed estimator in both fixed and random parameter settings.We also illustrate the application of

this methodology using two real data examples. Both simulated and real data examples suggest

that the proposed estimator strikes an excellent balance between bias and efficiency depending on

the true nature of the gene-environment association and thesample size for a given study.

KEY WORDS: case-only designs; Bayes; gene-environment interaction; profile likelihood; ret-

rospective analysis; semiparametrics.
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1 Introduction

While prospective logistic regression remains an established method to analyze case-control data,

recent problems emerging in genetic epidemiology have attracted attention to retrospective analysis

because it can incorporate certain scientifically plausible constraints on the exposure distribution in

the underlying population. In studies of gene-environmentassociation with disease, for example, it

often may be realistic to assume that genetic susceptibilities (G) and environmental exposures (E)

are independent of each other in the underlying population.Piegorsch et al. (1994) noticed that

underG-E independence and assuming a rare disease, the interaction odds-ratio betweenG andE

can be estimated using the association odds-ratio between these factors in cases alone. Moreover,

this “case-only” estimate of interaction can be much more precise than that obtained from standard

case-control analysis. Umbach and Weinberg (1997) generalized this idea to show that the maxi-

mum likelihood estimates of all of the parameters of a logistic regression model involving categor-

ical exposures can be obtained under the independence assumption by fitting a suitably constrained

log-linear model to the case-control data. Recently, Chatterjee and Carroll (2005) developed a rig-

orous semiparametric framework for retrospective maximum-likelihood analysis of case-control

data under the gene-environment independence assumption in a general setting that may involve

continuous exposures, non-rare diseases and population stratification. The classical result about

the equivalence of prospective and retrospective maximum-likelihood (Andersen, 1970; Prentice

and Pyke, 1979), which assumes unconstrained covariate distribution, does not hold in this setting

and the retrospective approach is generally more efficient (Chatterjee and Carroll, 2005). Similar

gain in efficiency has been also noted for retrospective methods that can incorporate constraints on

the genotype distribution imposed by population genetic laws such as Hardy-Weinberg equilibrium

(Epstein and Satten, 2003; Satten and Epstein 2004; Spinka et al, 2005; Lin and Zeng, 2006).

A major hindrance for practical use of retrospective methods, in spite of their efficiency ad-

vantage, has been the potential for large bias in these methods when some of the underlying as-

sumptions such as gene-environment independence or Hardy-Weinberg equilibrium (HWE) are
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violated (Albert et al, 2001; Chatterjee and Carroll, 2005;Satten and Epstein 2004; Spinka et al,

2005). A number of alternative strategies for relaxing the underlying assumptions have been pro-

posed. Chatterjee and Carroll (2005) considered a model that can account for gene-environment

dependence due to population stratification. Satten and Epstein (2004) and Lin and Zeng (2006)

considered relaxing the HWE assumption based on alternative more flexible population genetics

models. These models, alleviate the concern of bias somewhat, but may not be adequate because

they only capture certain type of departures from the underlying constraints. One could also use a

two-stage procedure where, at first, one formally tests for the adequacy of the underlying assump-

tion(s) based on the data itself and then use the outcome of that test to decide whether to the use the

efficient retrospective or the more robust prospective method for odds-ratio estimation. For a given

study of modest sample size, however, the power of the tests for HWE or/and gene-environment

independence would be typically low and consequently the two-stage procedure, as a whole, could

still remain significantly biased. Moreover, a proper variance calculation for the two-stage esti-

mator accounting for the underlying model uncertainty can be fairly complicated. The standard

two-stage testing procedure that ignores this model uncertainty maintains a much higher Type-I

error level than desired (Albert et al, 2001).

In this article, we propose a novel solution to the bias vs efficiency dilemma of retrospective

methods using a simple stochastic framework that allows foruncertainty around the assumption of

gene-environment independence. We show how the magnitude of the uncertainty parameter can

be estimated from the data itself. The estimate of this uncertainty parameter is then used, in an

“empirical Bayes (EB)” way, to combine the two sets of estimates of odds-ratio parameters, one

obtained assumingG-E independence and the other obtained allowing a general model for G-E

dependence.

In Section 2, we consider a simple scenario involving a binary G and a binaryE, where the

EB estimator of the interaction odds-ratio can be derived inthe form of a simple weighted average

of the standard “case-only” and “case-control” estimators. Simulation studies show that in finite

2
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samples, the proposed estimator strikes an excellent balance between bias and efficiency depend-

ing on the changing scenarios of gene-environment association. Motivated by these results, in

Section 3, we then describe a general approach for deriving such composite estimators for all of

the parameters of a general logistic regression model usingthe retrospective maximum-likelihood

framework developed by Chatterjee and Carroll (2005). Further simulation studies are conducted

to investigate the performance of the general estimator when there are two environmental expo-

sures, one of which is associated withG and the other is not. In both Sections 2 and 3, a method

for variance estimation for the respective EB estimators isproposed. In Section 4, we analyze two

datasets, both providing compelling evidence of how the EB estimate is tracking the maximum

likelihood estimates from the constrained or unconstrained model depending upon the strength of

G-E association in the respective studies. Section 5 presents discussion and possibilities for future

work.

2 Binary genetic and environmental factors

In this section, we consider the simple set-up of an unmatched case-control study with a binary

genetic factorG and a binary environmental exposureE. LetE = 1 (E = 0) denote an exposed

(unexposed) individual andG = 1 (G = 0) denote whether an individual is a carrier (non-carrier)

of the susceptible genotype. LetD denote disease status, whereD = 1 (D = 0) stands for

an affected (unaffected) individual. Letn0 andn1 be the number of selected controls and cases,

respectively. The data can be represented in the form of a2 × 4 table as displayed in Table 1.

Let r0 = (r000, r001, r010, r011) andr1 = (r100, r101, r110, r111) denote the vector of observed

cell frequencies in the controls and cases respectively. The population parameters, namely, the

cell probabilities corresponding to a particularG-E configuration in the underlying case and

control populations are denoted asp0 = (p000, p001, p010, p011 = 1 − p000 − p001 − p010) and

p1 = (p100, p101, p110, p111 = 1 − p100 − p101 − p110), respectively. The observed vectors of cell

counts can be viewed as realizations from two independent multinomial distributions, namely,r0 ∼
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Multinomial(n0,p0) andr1 ∼ Multinomial(n1,p1). Let OR10 = p000p101/p001p100 denote the

odds-ratio associated withE for nonsusceptible subjects (G = 0), OR01 = p000p110/p010p100 de-

note the odds-ratio associated withG for unexposed subjects (E = 0) andOR11 = p000p111/p011p100

denote the odds-ratio associated withG = 1 andE = 1 compared to the baseline categoryG = 0

andE = 0. Therefore,ψ = OR11/(OR10OR01) = (p001p010p100p111) / (p000p011p101p110) is the

multiplicative interaction parameter of interest.

To this end, let us consider a measure ofG-E association in the control population, namely,

θGE = log {(p000p011)/(p001p010)} . (1)

The assumption ofG-E independence, together with the rare disease approximation impliesθGE =

0 (Schmidt and Schaid, 1999). When one is not certain about theG-E independence, one may con-

ceptually posit a stochastic framework for the underlying true parameterθGE as,θGE ∼ N(0, τ 2),

whereτ 2 reflects a measure of uncertainty about the independence assumption. Next we investigate

how one can estimate the prior variabilityτ 2 using the data itself.

The MLE of theG-E odds-ratio among controls, namely,θGE, is given by

θ̂GE = log {(r000r011)/(r001r010)} .

Standard likelihood theory implies that, givenθGE, θ̂GE ∼ N(θGE , σ
2
θGE

), where an estimate of the

asymptotic variance is given bŷσ2
θGE

=
∑1

g=0

∑1
e=0(1/r0ge). Unconditioning onθGE, it follows

that marginallŷθGE ∼ N(0, τ 2+σ2
θGE

). Thus, based on the marginal likelihood ofθ̂GE, a consistent

estimator of the unknown hyperparameterτ 2 can be obtained simply as (Morris, 1983; Greenland,

1993), τ̂ 2
+ = max(0, θ̂2

GE − σ̂2
θGE

). We propose to use a more conservative estimate of the prior

variance obtained aŝτ 2 = θ̂2
GE because it leads to a convenient form for the variance expression of

our subsequently proposed estimator ofβ = log(ψ).

With this Bayesian framework in mind, we now propose a composite estimator by combining

two commonly used estimators oflog(ψ) = β, the one obtained from using case control data

4
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(β̂CC), and the other obtained from cases alone (β̂CO), with the corresponding formulae given by

β̂CC = log
(r001r010r100r111
r000r011r101r110

)
and β̂CO = log

(r100r111
r101r110

)
.

Note thatβ̂CC is the unconstrained MLE ofβ given the data shown in Table 1, whereasβ̂CO

is the MLE under the constraint ofG-E independence, i.e.θGE = 0 (Umbach and Weinberg,

1997). Employing standard asymptotic theory, the asymptotic variances of these two estimators

can be obtained aŝσ2
CC =

∑1
d=0

∑1
g=0

∑1
e=0(1/rdge) andσ̂2

CO =
∑1

g=0

∑1
e=0(1/r1ge). Consider

the following weighted estimator of the interaction parameter:

β̂EB =
σ̂2

CC

(τ̂ 2 + σ̂2
CC)

β̂CO +
τ̂ 2

(τ̂ 2 + σ̂2
CC)

β̂CC . (2)

The form of the estimator is motivated by the expression for the posterior mean obtained in a con-

jugate analysis under a normal-normal model (Berger, 1985,p131), with the prior variance substi-

tuted by an estimate obtained from the marginal likelihood in the spirit of Morris (1983). Further

justification of the proposed estimator as a special case of amore general framework is provided

in Section 3. We, however recognize that this estimator is not a true “Bayes” or “empirical Bayes”

estimator in a strict technical sense as we are not carrying out a proper full Bayesian analysis here

with a joint prior structure on all the parameters of interest; we are using prior structureonly on

the “nuisance parameter”θGE and embedding that prior uncertainty in the estimation paradigm for

the parameter of interestβ. In this sense, the proposed method has a conceptual resemblance to

partially Bayes inference introduced by Cox (1975).

We observe that aŝτ 2 = θ̂2
GE → 0, i.e. as the data provide evidence in favor ofG-E in-

dependence in the control population,β̂EB → β̂CO, and aŝτ 2 = θ̂2
GE → ∞, i.e., as the uncer-

tainty regardingG-E independence in control population becomes stronger,β̂EB → β̂CC . Since

β̂CC = β̂CO − θ̂GE, one can also express the estimator in (2) as

β̂EB = β̂CO −K(σ̂2
CC , τ̂)θ̂GE , (3)

where the shrinkage factorK(σ̂2
CC , τ̂ ) = {1 + (σ̂2

CC/τ̂
2)}−1 “shrinks” θ̂GE, the control log odds-

ratio betweenG andE, to its hypothesized mean value of zero under theG-E independence
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assumption. In the following subsection, we study the performance of the EB estimator under

varying scenarios ofG-E association.

2.1 Simulation study for the2 × 4 table

Although the estimatêβEB is postulated in a Bayesian framework, it is purely a functional of the

data (namely, the multinomial counts,r0 andr1). The implicit background of assuming a normal

prior with varianceτ 2 does not play any explicit role in the computation of this estimator. Thus,

in our simulation, we first study the finite sample propertiesof this estimator in the standard fixed

parameter setting of a frequentist paradigm. We then proceed to study the performance of this

estimator in a random parameter setting, motivated by a realscenario where one could effectively

elicit a plausible value for the prior hyperparameterτ based on published data.

In the fixed parameter setting, we fix the values for the prevalences ofG andE, namelyPG and

PE, and the value of the odds-ratioθGE in the control population. Fixing these three quantities,

one is able to obtain the control probability vectorp0 by solving a system of equations. We then

set the values ofOR10, OR01 andψ, which together withp0, defines the case-probability vector

(Satten and Kupper, 1993). We generate data independently from the two multinomial distributions

corresponding to the case and control populations and compute the case-control, case-only and the

proposed EB estimator under varying scenarios. We also include the two-stage estimator proposed

by Albertet al. (2001) in our simulation study. The two-stage estimator first tests forG-E indepen-

dence in controls by testing the hypothesisH0 : θGE = 0 at a significance level ofα = 0.05, and

based on the acceptance/rejection of this hypothesis, the case-only or the case-control estimator is

then used.

Table 2 presents the mean-squared error (MSE) and bias of different estimators of the interac-

tion parameterβ = log(ψ), whenPG = PE = 0.3 andOR10 = OR01 = 1. TheG-E odds-ratio

among controls, namely,exp(θGE) is varied at four different values, 1, 1.25, 1.5 and 2. The true

value ofβ is set atlog(2). The results are based on 10000 simulated datasets. The results clearly

6
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indicate that the proposed EB estimator follows the case-control and the case-only estimators based

on the value ofθGE in a data-adaptive way. It has much reduced bias and MSE compared to the

case-only estimator under violation of the independence assumption. It also maintains significantly

smaller MSE compared to the case-control estimator under independence as well as under modest

departures from independence. Under large departures fromindependence, the EB estimator per-

forms very comparably to the case-control estimator. In contrast, the performance of the case-only

estimator deteriorates sharply as one moves away from the independence assumption. Unlike the

case-only estimator, which is asymptotically biased, any residual bias in the EB estimator goes

to zero in large sample. Under departures from the independence assumption, the EB estimator

also has a clear edge over the two-stage estimator in terms ofbias and MSE, especially in small

samples.

In the second set of simulations, we attempt to generate a stochastic model for uncertainty re-

garding theG-E independence assumption following Marcuset al. (2000), who published data on

association between N-Acetyltranferase 2 (NAT2) acetylation status (slow vs. rapid), and smok-

ing (ever vs. never) using the controls from 11 different case-control studies conducted in US,

Europe, India and Japan (Table 3, Figure 1). Study to study variation in the odds-ratios between

NAT2 and smoking was noted though none of the associations were found to be statistically sig-

nificant. It is evident that although the overallG-E independence assumption holds (mean over

the 11 sites=0.07), there is variation across study sites (sd=0.35). Treating this as a replica of the

distribution forθGE, in each simulated dataset, we generateθGE at random from a normal distribu-

tion with mean 0.07 and standard deviation 0.35, while values of all other simulation parameters

(PG,PE,OR10,OR01 andOR11) are held fixed.

Results shown in Table 4 bring out certain interesting features of the three estimators. Even

though the overallG-E independence is reasonable, with a variation about the mean, the case-only

estimator becomes inferior, whereas our proposed weightedestimator continues to adapt itself to

model this uncertainty while maintaining significant efficiency gain. In Table 4, we also included a
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modification of the EB estimator, namely EB-TRUE, where instead of estimating the prior variance

τ 2 by its marginal MLE, we substitutedτ 2 by its true value(0.35)2. The results illustrate that the

proposed EB estimator is marginally inferior to EB-TRUE, for n0 = n1 = 100, but performs nearly

as well as EB-TRUE for moderately larger sample sizes.

Variance of the proposed estimator:In the following, we propose a method to obtain an asymp-

totic variance expression for̂βEB. Sinceσ̂2
CC → 0 at the rate ofO(1/n), one may ignore the

variation inσ̂2
CC and treat this as a constant while obtaining the first order

√
n-asymptotic approxi-

mation of the EB estimator. Under this setting, the first and second term in (3) could be considered

as asymptotically independent as the first term depends onlyon cases, and the second depends only

on controls. Using the delta theorem on the second term, considering it as a function of̂τ = θ̂GE,

and treatinĝσ2
CC as a constant, we have an estimator of variance of the form,

V̂A(β̂EB) ≈ σ̂2
CO +

( θ̂2
GE(θ̂2

GE + 3σ̂2
CC)

(σ̂2
CC + θ̂2

GE)2

)2

σ̂2
θGE

. (4)

This estimate of the variance in (4), namely,V̂A performs remarkably well even in small samples

(n0 = n1 = 100) when compared to the empirical variance (see supplementary Table 1).

3 The general case: profile likelihood and empirical Bayes

Chatterjee and Carroll (2005) have described a general approach for estimation of the parameters of

a logistic regression model from case-control studies under the assumption of gene-environment

independence. They allowed for the presence of stratification factor(s) such as ethnicity which

could be related to bothG andE. They consider the following factorization of the retrospective

likelihood,

LR = pr(G,E,S|D) =
pr(D|G,E,S)pr(G|E,S)pr(E,S)∑

G,E,s pr(D|G,E,S)pr(G|E,S)pr(E,S)
. (5)

For continuous exposureE, the sum with respect toE in the denominator of (5) is replaced by

an integral. The ingredients of the retrospective likelihood are constituted in the following way.

Assume a logistic disease incidence model pr(D = 1|G,E,S) = H{γ0 +m(G,E,S; γ1)}, where

8
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H(u) = (1 + exp(−u))−1 andm(·) is a known but arbitrary function. The joint distribution

function for (E,S) is allowed to remain completely unrestricted (non-parametric). UnderG-E

independence, conditional onS, pr(G|E,S) = pr(G|S). Assuming a binary genetic factorG,

consider a logistic model of the form

pr(G = 1|E,S) = H{η0 + η1 S}. (6)

The model could be extended to a multinomial logistic model for a general categoricalG, such

as genotype data for single nucleotide polymorphisms (SNP)which is typically coded as 0, 1 or

2 by counting the number of variant alleles carried by an individual. We will refer to (6) as the

independence model, or the constrained model. Without the assumption ofG-E independence,

one can expand the model in (6) to

pr(G = 1|E,S) = H{η0 + η1 S + θE}, (7)

whereθ is a measure of dependence betweenG andE. We will refer to (7) as the dependence or

unconstrained model. Clearly, (6) can be viewed as a specialcase of (7) withθ = 0.

The maximum-likelihood estimates for the parametersω = (γ,η) under model (6) as well as

those forω = (γ,η, θ) under model (7) can be obtained using the profile-likelihoodtechniques of

Chatterjee and Carroll (2005). In particular, the estimates of theω- parameters that would max-

imize the retrospective likelihoodLR, while allowing the distribution ofZ = (E,S) to remain

completely non-parametric, can be obtained by maximizing asimpler pseudo-likelihood of the

form L∗ = pr(D,G|E,S, R = 1), where the conditioning eventR = 1 reflects the outcome de-

pendent sampling mechanism for case-control studies. Computationally, the likelihoodL∗ is much

more tractable as it does not require estimation of the high-dimensional “nuisance parameters” in-

volved in specification of the distribution ofZ. The details of the estimation method are provided

in Chatterjee and Carroll (2005), and we use their developedsoftware to implement the two mod-

els. In the following, the MLE for the common set of regression parametersβ=(γ, η) under the

unconstrained and constrained models will be denoted byβ̂ML andβ̂
0

ML, respectively.
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Before we proceed to form the EB estimator for this particular context, we consider a general

framework where one is interested in estimating a set of focus parametersβ in the presence of prior

information on a set of ”nuisance” parametersθ. The general paradigm itself is a novel feature of

this article.

Supposeζ = (β, θ)T denotes a column-vector of parameters, whereβ denotes a set of focus

parameters andθ denotes a set of nuisance parameters. Let the dimensions ofβ andθ bep andm

respectively. Letζ0 = (β0, θ0)
T denote the true values of the parameters in the population. Assume

that one is willing to postulate a prior distribution forθ as MVNm(0,A), am-dimensional zero-

mean multivariate normal distribution with variance-covariance matrixA. The goal is to conduct

inference onβ, without any further prior specification onβ. Intuitively, givenθ and in the absence

of any prior information onβ, a natural way to estimateβ would be to usêβML(θ), the profile

maximum-likelihood estimate ofβ for fixed θ. In the following, we show how to utilize the prior

information onθ while working with the profile-MLEβ̂(θ). Defineβ(θ) to be the limiting value

of β̂ML(θ) which is a population parameter withβ(θ) = β0 whenθ is fixed at the true valueθ0.

Note that the constrained MLE forβ, with θ = 0, can be written aŝβ0
ML = β̂ML(θ = 0), and the

unconstrained MLE can be written asβ̂ML = β̂ML(θ = θ̂ML).

Let us then consider the general problem of EB estimation of ageneral vector functionφ =

f(θ), of dimensionp when the argumentθ (m × 1) has a priorMV Nm(0,A). By applying the

delta theorem, the prior onφ could be approximated asφ ∼ MVNp(f(0), {f ′(0)}⊤ Af ′(0)),

wheref ′(θ) = ∂f⊤(θ)/∂θ is the gradient matrix of dimensionm × p. Let V̂φ be the estimated

asymptotic variance off(θ̂ML). Then an approximation to the Bayes estimate ofφ = f(θ) for a

fixedA is given by

φ̂ = {f ′(0)}⊤ Af ′(0)
[
V̂φ + {f ′(0)}⊤ A {f ′(0)}

]−1

f(θ̂ML)+V̂φ

[
V̂φ + {f ′(0)}⊤ Af ′(0)

]−1

f(0).

(8)

By applying (8), the Bayes estimator ofβ = β(θ) in our setting can be approximated for a known
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value of the prior covariance matrixA as,

β̂(θ) = ∆⊤A∆(V̂β̂ML
+ ∆⊤A∆)−1β(θ̂ML) + V̂β̂ML

(V̂β̂ML
+ ∆⊤A∆)−1β(0), (9)

where∆ = ∂β⊤(θ)/∂θ, is the gradient matrix of dimensionm × p evaluated atθ = 0. Note that

∆⊤A∆ is ap× p matrix wherep is the dimension ofβ. Now (9) itself cannot be used to estimate

β as it involves the unknown functionβ(θ). We propose to plug in̂βML(θ) for β(θ). Further, by

observing the identityS β̂ML(θ)(θ) ≡ 0, whereSβ(θ) denotes the ML-score function forβ givenθ,

by chain rule of derivatives, one can derive an estimate of∆ as

∆̂ =
∂β̂⊤

ML

∂θ
(θ = 0) = −Iθβ(θ = 0) {Iββ(0)}−1 . (10)

HereIθβ andIββ denote suitable information matrices under the unconstrained model. In align-

ment with the empirical Bayes spirit, we now estimate the prior hyperparameterA by a conserva-

tive upper bound to its marginal MLE, given bŷθMLθ̂
⊤

ML. Thus the final form of our proposed EB

estimate is given by

β̂EB = ∆̂⊤θ̂MLθ̂
⊤

ML∆̂
(
V̂β̂ML

+ ∆̂⊤θ̂MLθ̂
⊤

ML∆̂
)−1

β̂ML + V̂β̂ML

(
V̂β̂ML

+ ∆̂⊤θ̂MLθ̂
⊤

ML∆̂
)−1

β̂0
ML.

(11)

Computationally, this requires only fitting the constrained model and the unconstrained model and

extracting the variance covariance components for the unconstrained model and evaluating it at

θ = 0.

Revisiting the simple estimator in the2 × 4 case:Now consider our proposed estimator in the

2 × 4 table. Let the focus parameterβ denote the log odds-ratio for interaction andθ denote the

log odds-ratio betweenG andE in controls. Then, for a fixedθ, β̂ML(θ) ≡ β̂CO − θ whereβ̂CO

denotes the log odds-ratio betweenG andE in cases. Sô∆ = ∂β̂⊤

ML(θ)/∂θ = −1. In this special

case, the prior covarianceA is a positive scalarτ 2, consistent with our previous notation in Section

2. Thus, following (11), the “profile likelihood-empiricalBayes” estimate ofβ using our general
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framework is given by

β̂EB =
σ̂2

β̂ML

(τ̂ 2 + σ̂2
β̂ML

)
β̂0

ML +
τ̂ 2

(τ̂ 2 + σ̂2
β̂ML

)
β̂ML

=
σ̂2

CC

(θ̂2
GE + σ̂2

CC)
β̂CO +

θ̂2
GE

(θ̂2
GE + σ̂2

CC)
β̂CC ,

which is exactly what we have proposed in Section 2.

Variance-Covariance matrix of the EB estimate: The variance of the proposed estimator in

(9) can be obtained by viewinĝβEB as a function of the ML estimates, (β̂ML, θ̂ML, β̂
0

ML). The

joint asymptotic multivariate normal distribution for these three estimates can be obtained in terms

of the associated score functions and information matricesfollowing classical ML theory. An

application of the multivariate delta theorem provides thevariance-covariance expression forβ̂EB.

The derivation and expression of the covariance matrix is deferred to the appendix. The small

sample performance of the variance estimator in the simulation setting of Section 3.1 is shown in

supplementary Table 2.

3.1 Simulation study with bivariate environmental exposure

In this section, we design a simulation study involving a binary genetic factorG and two binary

environmental exposuresE1 andE2. The joint distribution of(G,E1, E2) among the controls is

specified as following. We assumeP (G = 1) = P (E1 = 1) = P (E2 = 1) = 0.3, and allow

E1 andE2 to be associated withOR(E1, E2) = 2.0. We assumeG andE1 are independent with

OR(G,E1) = 1, butG andE2 are associated withOR(G,E2) = 1.5. With the parameters fixed

at these values, one can solve a system of equations to obtainthe multinomial probability vector

corresponding to the eight possible configurations of(G,E1, E2). We assume a disease risk model

with no main effects forG, E1 or E2, but allow for interactions for bothE1 andE2 with G, with

the corresponding log odds-ratio parameters beingβG∗E1
= βG∗E2

= log(2). Given the control

probabilities and the restrictions on the parameters in thedisease risk model, one can determine

the probabilities for each(G,E1, E2) configuration in the case population. We also considered
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other simulation settings where the disease risk model included main effects (results not shown),

the basic pattern of results remain fairly similar.

The simulation results in Table 5 exhibit that the EB estimator is closer to the constrained MLE

in determiningG ∗ E1 interaction, where the independence assumption does in fact hold, whereas

in estimatingG ∗ E2 interaction, for which the independence assumption is violated, it is closer

to the unconstrained MLE. For both the interaction parameters, EB has smaller MSE compared

to the unconstrained ML estimator. The constrained ML estimator assumingG-E independence

performs very poorly for estimatingG ∗ E2 interaction. If one considers the sum of the MSE’s

corresponding to the two interaction parameters as a performance criterion, the EB estimate has

leverage over all the other contenders.

This simulation brings out a major appealing feature of the “profile-likelihood-empirical-Bayes”

estimator. It is often the case that one is considering multiple interaction parameters where the in-

dependence assumption may hold for some, but not hold for others, or may be quite ambiguous for

a subset. In such situations, one can tacitly avoid specifying which of the independence models are

likely to hold and simply use the EB estimator as a data adaptive solution to the vexing problem of

model specification. Remarkably, one can still maintain attractive MSE properties in finite samples

without relying on unverifiable model assumptions.

4 Data analysis

In this section, we apply the proposed methodology to two real datasets, reflecting different de-

grees of certainty regarding theG-E independence assumption. Both data examples present strong

evidence for the adaptability of the EB estimator dependingupon the nature of theG-E association

present in the data.
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4.1 Analysis of Israeli ovarian cancer data

The first example involves a population based case-control study of ovarian cancer conducted

in Israel, data from which was first reported in Modan et al (2001) and was then re-analyzed by

Chatterjee and Carroll (2005). The main goal of the study wasto examine how mutations in the two

major susceptibility genes BRCA1 and BRCA2 may interact with known reproductive risk factors

for ovarian cancer, such as number of years of oral contraceptive (OC) use and number of children

(parity). Both Modan et al. (2001) and Chatterjee and Carroll (2005) analyzed data from this study

assuming independence of BRCA1/2 mutations and the reproductive risk factors in the general

population.We re-visited the study to explore how the estimates of regression parameters from the

previous analyses may change if certain amount of uncertainty regarding the gene-environment

independence assumption was allowed using the proposed EB framework.

Our analysis included 1579 observations in the dataset with832 cases and 747 controls who did

not have bilateral oophorectomy. Similar to Chatterjee andCarroll (2005), we considered fitting a

logistic regression model that included main effects for BRCA1/2 mutations (presence/absence),

OC, parity and the interaction terms OC∗BRCA1/2 and parity∗BRCA1/2. The model was ad-

justed for a set of covariatesS that included age (categorized into 5 groups, by decades), ethnicity

(Ashkenazi or non-Ashkenazi), presence of personal history of breast cancer (PHB), family history

of breast or ovarian cancer (FHBO, coded as 0 for no history infamily, 1 for one breast cancer case

in the family and 2 for one ovarian cancer or two or more breastcancers in family) and history of

gynaecological surgery. The model for BRCA1/2 mutation frequency is parameterized as

logit{pr(G = 1|E,S)} = η0 + ηAgeI(Age≥ 50) + ηEthI(Non-Ashkenazi) + ηPHI(PHB = 1)

+ η1FHI(FHBO = 1) + η2FHI(FHBO = 2) + θOCOC+ θparParity.

Chatterjee and Carroll (2005) assumed the constrained model θOC = θpar = 0, which implies

conditional independence of reproductive risk factors andBRCA1/2 mutation given the strati-

fication factorsS. Table 6 shows the estimates and 95% confidence intervals fordisease log
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odds-ratio parameters of interest under the independence model, dependence model and using

the proposed EB estimator. Under the dependence model, theG-E association parameters were

estimated aŝθOC = 0.036 andθ̂par=0.094. We can notice from Table 6 that EB inference regard-

ing BRCA1/2∗OC interaction is closer to the independence model, whereasEB inference regard-

ing the BRCA1/2∗parity interaction is intermediate between the unconstrained and constrained

model. This could be expected of the EB estimate as the independence assumption is less certain

for BRCA1/2 and parity based on the current data. The independence model estimator and the EB

estimator produce significant BRCA1/2*OC interaction estimate, while the unconstrained model

fails to detect significance. On the other hand, the BRCA1/2*parity interaction is not significant

under any model, though the confidence intervals based on theconstrained MLEs and EB estimator

are noticeably narrower when compared to those obtained from the dependence model.

4.2 Analysis of colorectal adenoma data

The second example involves a case-control study of colorectal adenoma, a precursor of colorectal

cancer, smoking andNAT2, a gene that is believed to play an important role in metabolism of

smoking-related carcinogens. In this study, a total of 772 left-sided prevalent advanced adenoma

cases and 777 gender and ethnicity-matched controls were selected from the screening arm of

the large ongoing Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial at the

National Cancer Institute, USA (Gohagan et al., 2000; Hayeset al., 2005). Subjects selected in the

case-control study were genotyped for six single neucleotide polymorphisms that have been related

to NAT2-acetylation activity in previous laboratory studies. Based on the genotypes, subjects were

assigned an acetylation phenotype as “slow” (NAT2 = 0), “intermediate” (NAT2 = 1) or “rapid”

(NAT2 = 2). Baseline questionnaire data were used to categorize subjects as “never” (SMK =

0), “former” (SMK = 1) or “current” (SMK = 2) smokers. Results from standard logistic

regression analysis of this data has been recently reportedby Moslehi et al (2006). We considered

re-analysis of this study in the proposed EB framework. We restricted the analysis to Caucasian
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subjects who has complete NAT2-phenotype information, resulting in a total of 610 cases and 605

controls. We considered fitting a logistic regression modelwith main effects of smoking , NAT2

(categorized as rapid or not) and their interactions. The model was adjusted for co-factorsS that

included age, gender and family history of colorectal cancer (FHCO=1 for yes, 0 for No). The

prevalence of NAT2 rapid acetylation phenotype was modelled as,

logit{P (NAT2 = 2|E,S)} = η0 + ηFHCOI(FHCO) + ηgenderI(Male)

+ θSMK1I(SMK = 1) + θSMK2I(SMK = 2).

In this dataset, there seems to be much less certainty about the independence of NAT2 and smoking,

with θSMK1=0.340;θSMK2=0.495. Notice that these values can be viewed as typical realizations

from the distribution elicited via the Marcuset al. (2000) data (Figure 1). Estimates of the interac-

tion between NAT2 rapid enzymatic phenotype and current smokers (NAT2 = 2 ∗ SMK = 2) is

highly significant under all models, whereas the interaction between NAT2 rapid enzymatic phe-

notypes with former smokers (NAT2 = 2 ∗ SMK = 1) is not significant under any model. The

EB estimates of interaction parameters for this dataset arenot quite close to the ones obtained from

the independence model. The EB confidence intervals are considerably narrower compared to the

corresponding intervals from the dependence model, reflecting the combined efficiency-robustness

feature of the EB estimator.

5 Discussion

Empirical Bayes (Efron and Morris, 1972; Morris, 1983; Efron, 1993; Carlin and Louis, 2000)

is a pragmatic Bayesian paradigm, steering between the extreme Bayesian and frequentist stand-

points. In the context of the problem of relaxing gene-environment independence assumption, the

proposed Empirical Bayes (EB) approach has a natural appealand interpretation, powered with an

extremely straightforward maximum likelihood based computation. This makes the method readily

available and implementable to the practitioner. We believe, for example, the simple closed form
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expression for the estimate of interaction between a binarygenetic and a binary environmental

exposure should facilitate the use of the method for very large-scale studies such as a genomewide

scan. We also observe that although the estimator is conceived from a Bayesian standpoint, it is

simply a functional of the observed data and can thus be viewed as a novel frequentist estimator.

Our simulation studies involving fixed parameter setting indicate that the estimator has excellent

frequentist properties in the sense of maintaining low mean-squared-errors across different scenar-

ios of gene-environment dependence.

Our simulation study also reveals some interesting features of the case-only estimator. When

we simulated case-control studies from a fixed population (Table 2), for which the gene-environment

independence assumption holds, the case-only estimator ofinteraction had the smallest mean-

squared errors among all of the methods considered. However, when we simulated case-control

studies from different populations allowing for some study-to-study variability in the gene-environment

distribution (Table 3), the case-only estimator became much inferior to the case-control estimator

even though the independence assumption was satisfied in theoverall super-population. In con-

trast, the proposed EB estimator always maintained significantly smaller or similar MSE as the

case-control estimator. Given that this kind of study-to-study variability may be expected in prac-

tice, as seen in the data published by Marcus et al. (2000), the performance of the EB estimator in

the random parameter setting seems very promising.

As discussed in the introduction, practitioners may find it natural to resolve the bias vs effi-

ciency issue by deciding between the case-only and case-control estimators depending on a sta-

tistical test of the independence assumptionθGE = 0 using the control sample. This “two-stage”

method essentially leads to an weighted estimator for the interaction parameter with weights be-

ing 0-1 random variable indicating the acceptance/rejection of the test of the null hypothesis of

independence. Our simulation studies indicate that the discrete weights of two-stage method gen-

erally leads to substantially larger bias and mean-squared-errors than those obtained using the

EB-weights which depend onθGE in a continuous fashion. Moreover, obtaining a proper variance
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estimator for the two-stage estimator, accounting for the uncertainty of the decision rule associated

with the hypothesis testing of independence, can be fairly complex. A naive approach that uses the

standard case-control or case-only variance estimator depending on which of the two estimators is

being used for a given study leads to underestimation of the variance of the whole procedure. The

resulting test of interaction could have highly inflated Type I error (Albert et al., 2001).

Another simple way to combine the case-only and case-control estimator would be to use a

Bayesian Model Averaging (BMA) approach (Madigan and Raftery, 1994) where the weights for

the two estimators could be approximated based on the Bayesian Information Criterions (BIC)

for the constrained and unconstrained retrospective likelihoods. Our simulation studies indicate

(results not included) that the BMA approach has often larger bias and MSE than the EB estimator

because the former method often attaches more weight to the constrained estimator due to the large

penalty given in the BIC criterion for each extra parameter.

The proposed “profile-likelihood-empirical-Bayes” framework has other potential applications

for analysis of case-control studies when certain type of covariate distributional constraints are

likely, but not certain. The same framework, for example, can be used to exploit the constraint of

Hardy-Weinberg equilibrium for genetic association studies. In this context, development of the

EB estimator would first require specifying an “unconstrained” model for the genotype distribution

in which the “constraint” of HWE would be a special case. The maximum-likelihood estimates of

genetic odds-ratio parameters under the constrained and unconstrained models can be then com-

bined based on the estimate(s) of certain index parameter(s) that would measure the magnitude

of departure of the “unconstrained” genotype distributionfrom HWE. The proposed framework

also raises a number of interesting theoretical issues including how it relates to a proper full Bayes

procedure. Intuitively, a non-informative or minimally informative prior onβ, after a possible or-

thogonalization (Tibshirani, 1989) of the parameter spacefor (β, θ), may lead to approximately

similar inference. An in-depth, rigorous examination of this connection is needed in the future.

In conclusion, the proposed methodology provides a promising solution to the bias vs efficiency
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dilemma faced in case-control studies due to the assumptionof gene-environment independence

assumption. Further, the general framework we provide could be useful for resolving similar issues

in other areas of epidemiologic studies.
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Appendix
Variance approximation for the EB estimate in multivariatesetting
We first derive the joint asymptotic distribution of the MLE’sκML = (β̂ML, θ̂ML, β̂

0
ML)⊤ obtained

from models (6) and (7). LetI ((p+m)× (p+m)) andI0 (p×p) denote the observed information

matrices for the unconstrained and the constrained models respectively. Then, asymptotically,
(
β̂ML

θ̂ML

)
=

√
nI−1

n∑

i=1

Uβ,θ(Di, Gi, Ei,Si) + op(n
−1/2) and,

β̂0
ML =

√
n(I0)−1

n∑

i=1

U0
β(Di, Gi, Ei,Si) + op(n

−1/2),

whereUβ,θ(Di, Gi,Si), andU0
β(Di, Gi, Ei,Si) denote the individual score functions for subject

i corresponding to the unconstrained and the constrained MLEwith n denoting the total sample
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size. Consider the partitioningI−1 =
(
W⊤

1 ,W
⊤

2

)⊤
whereW 1 is a p × (p + m) matrix and

W 2 is am × (p + m) matrix. Further, letW 0 = (I0)−1, Ui = Uβ,θ(Di, Gi,Si) andU0
i =

U0
β(Di, Gi, Ei,Si). The asymptotic variance- covariance matrix of the vector of MLE’s κML can

be represented as

ΣκML
=




W 1Var(
∑

n

i=1
Ui)W

⊤

1
W 1Var(

∑
n

i=1
Ui)W

⊤

2
W 1Cov(

∑
n

i=1
Ui,

∑
n

i=1
U0

i
)(W 0)⊤

W 2Var(
∑

n

i=1
Ui)W

⊤

1
W 2Var(

∑
n

i=1
Ui)W

⊤

2
W 2Cov(

∑
n

i=1
Ui,

∑
n

i=1
U0

i
)(W 0)⊤

W 0Cov(
∑

n

i=1
U0

i
,
∑

n

i=1
Ui)(W 1)

⊤ W 0Cov(
∑

n

i=1
U0

i
,
∑

n

i=1
Ui)W

⊤

2
W 0Var(

∑
n

i=1
U0

i
)(W 0)⊤




.

Assuming that the firstn0 subjects among a total ofn selected subjects are controls and remaining

n − n0 subjects are cases, the covariances appearing in the above matrix can be computed under

the case-control sampling scheme as

Cov(
n∑

i=1

Xi,

n∑

i=1

Yi) = n0

( n0∑

i=1

XiY
⊤

i /n0−XcontrolY
⊤

control

)
+n1

( n∑

i=n0+1

XiY
⊤

i /n1−XcaseY
⊤

case

)
.

whereXcase (Xcontrol) andY case (Y control) denote the average ofX andY among cases and con-

trols respectively.

Now, we write,

β̂EB = g
(
β̂ML, θ̂ML, β̂

0
ML

)

= ∆̂⊤θ̂MLθ̂
⊤

ML∆̂
(
V̂β̂ML

+ ∆̂⊤θ̂MLθ̂
⊤

ML∆̂
)−1

β̂ML + V̂β̂ML

(
V̂β̂ML

+ ∆̂⊤θ̂MLθ̂
⊤

ML∆̂
)−1

β̂0
ML.

= β̂ML − V̂β̂ML

(
V̂β̂ML

+ ∆̂⊤θ̂MLθ̂
⊤

ML∆̂
)−1

(β̂ML − β̂0
ML), (12)

Then, by the multivariate delta theorem, the approximate variance-covariance matrix of̂βEB will

be given by
{
g′

(
β̂ML, θ̂ML, β̂

0
ML

)}⊤

ΣκML
g′

(
β̂ML, θ̂ML, β̂

0
ML

)
,

whereg′ is the gradient matrix ofg with respect to(β̂ML, θ̂ML, β̂
0
ML). In defining the gradients, we

follow the convention that the derivative of the vector function f(u) (of lengthr, say) with respect

to a vectoru (of lengths, say) denotes a matrix of dimensions × r with the(i, j)-th entry given

by
∂fj

∂ui
.
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Lemma: The derivative matrixg′ ((2p+m) × p) is given by,

g′
(
β̂ML, θ̂ML, β̂

0
ML

)
= [{I−V̂β̂ML

(V̂β̂ML
+∆̂⊤θ̂MLθ̂

⊤

ML∆̂)−1}, E⊤, {V̂β̂ML
(V̂β̂ML

+∆̂⊤θ̂MLθ̂
⊤

ML∆̂)−1}]⊤.

where,E is am× p matrix,

E =
θ̂⊤ML∆̂(V̂β̂ML

)−1(β̂ML − β̂0
ML)∆̂ + ∆̂(V̂β̂ML

)−1(β̂0
ML − β̂ML)θ̂⊤ML∆̂

{1 + θ̂⊤ML∆̂(V̂β̂ML
)−1∆̂⊤θ̂ML}

−
2θ̂⊤ML∆̂(V̂β̂ML

)−1(β̂ML − β̂0
ML)∆̂(V̂β̂ML

)−1∆̂⊤θ̂MLθ̂
⊤

ML∆̂

{1 + θ̂⊤ML∆(V̂β̂ML
)−1∆̂⊤θ̂ML}2

.

Proof: The above expression follows by first noticing that the matrix (V̂β̂ML
+∆⊤θ̂MLθ̂

⊤

ML∆)−1 is

of the form(V +uu⊤)−1 which could be expanded as in (i) below. Further simplification is carried

out by noticing that, for any matrixP and column vectorsu andc, of conformable multiplication

orders as needed, the derivative of the vectorPuu′c with respect tou can be obtained as in (ii).

(i). (V + uu⊤)−1 = V −1 − (V −1u)(u⊤V −1)

1 + u⊤V −1u

and, (ii).
∂

∂u
Puu⊤c = u⊤cP + cu⊤P .

The final expression in the lemma is obtained by first using (i), on the expression for̂βEB as in

(12), followed by using the quotient rule of differentiation. The result in (ii) is used to differenti-

ate terms of the formP∆⊤θ̂MLθ̂
⊤

ML∆c with respect tôθML which appear in the numerator of the

quotient. Some algebraic manipulation leads to the expression for E.
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Table 1: Data for a unmatched case-control study with a binary genetic factor and a binary envi-
ronmental exposure

G = 0 G = 1
E = 0 E = 1 E = 0 E = 1 total

D = 0 r000 r001 r010 r011 n0

D = 1 r100 r101 r110 r111 n1

Table 2: Simulation results showing mean squared error and bias (in parentheses) in estimation
of the interaction parameterβ = log(ψ) for different methods under varying scenarios ofG-E
association. The value ofθGE is the control odds ratio betweenG andE. The prevalences ofG
andE were fixed atPG = PE = 0.3 in the control population. The parameters in the disease risk
model were set atOR10 = OR01 = 1 andβ = log(ψ) = log(2) = 0.6931.

Sample Size
n0 = n1 = 100 n0 = n1 = 200 n0 = n1 = 500

case-control 0.46 (0.03) 0.22(0.02) 0.08(0.00)
θGE = 0 case-only 0.20(0.01) 0.10(0.01) 0.04(0.00)

EB 0.29(0.02) 0.14(0.01) 0.05(0.00)
two-stage 0.26 (0.00) 0.13(0.01) 0.05 (0.00)

case-control 0.45 (0.02) 0.21(0.00) 0.08(0.01)
θGE=log(1.25) case-only 0.26 (0.24) 0.15 (0.23) 0.09 (0.23)

EB 0.31 (0.12) 0.16 (0.10) 0.07 (0.09)
two-stage 0.31 (0.16) 0.19 (0.15) 0.10 (0.13)

case-control 0.45 (0.02) 0.21 (0.01) 0.08 (0.00)
θGE = log(1.5) case-only 0.39 (0.43) 0.27 (0.42) 0.21 (0.41)

EB 0.37(0.19) 0.20(0.16) 0.10(0.12)
two-stage 0.44 (0.27) 0.28 (0.22) 0.15 (0.13)

case-control 0.45 (0.03) 0.21 (0.02) 0.08 (0.01)
θGE = log(2) case-only 0.74 (0.73) 0.60 (0.71) 0.54 (0.70)

EB 0.46 (0.27) 0.26(0.20) 0.11 (0.12)
two-stage 0.67 (0.34) 0.38 (0.19) 0.11 (0.03)
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Table 3: Odds-ratios of association between NAT2 acetylation activity (rapid vs slow) and smoking
(ever vs. never) estimated using controls from 11 differentcase-control studies (Marcus et al.,
2000)

Study site ORGE θGE = log(ORGE) P -value
for testing

H0 : θGE = 0
Brockmoller 1.16 0.15 0.55

Taylor 1.44 0.37 0.21
Risch 1.85 0.62 0.39

Mommsen 0.88 -0.13 0.81
Roots 0.56 -0.57 0.29

Kaisary 0.76 -0.28 0.48
Romkes 0.95 -0.06 0.92
Dewan 1.04 0.03 0.94
Ishizu 1.23 0.21 0.73

Karakaya 1.39 0.33 0.42

Table 4: Simulation results showing mean-squared-error and bias (in parentheses) in estimation of
the interaction parameterβ = log(ψ) when the control odds-ratio betweenG andE, namely,θGE

is randomly generated from a N(0.07,0.35) distribution foreach simulated dataset, reflecting the
distribution elicited from Marcus et al., 2000 meta analysis. The prevalences ofG andE are fixed
atPG = PE = 0.3. The parameters in the disease risk model are fixed atOR10 = OR01 = 1 and
β = log(ψ) = log(2) = 0.6931.

Sample Size
n0 = n1 = 100 n0 = n1 = 200 n0 = n1 = 500

case-control 0.45 (0.03) 0.22 (0.01) 0.08 (0.00)
case-only 0.33 (0.08) 0.23 (0.07) 0.17 (0.06)

EB 0.33 (0.05) 0.18 (0.03) 0.08 (0.02)
EB-TRUE (τ = 0.35)1 0.30 (0.06) 0.17 (0.04) 0.08 (0.03)

1: This is the Bayes estimate obtained by using the true simulation value of the prior parameterτ instead of
estimatingτ from the marginal likelihood.
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Table 5: Simulation results showing mean-squared error andbias (in parentheses) for estimation of
interaction parameters of one genetic factor (G) with two environmental exposures (E1, E2). The
joint distribution of(G,E1, E2) in the controls was specified by the following restrictions:P (E1 =
1) = P (E2 = 1) = P (G = 1) = 0.3, ORE1 E2

= 2.0,ORGE1
= 1, ORGE2

= 1.5. The parameters
for the disease risk model were set atβG = βE1

= βE2
= 0, and,βG∗E1

= βG∗E2
= log(2).

MSE1 MSE2 MSE1
(G ∗ E1) (G ∗ E2) +MSE2

Dependence 0.46 (0.04) 0.48 (0.10) 0.94
n0 = n1 = 100 Independence 0.20 (0.04) 0.39 (0.44) 0.59

Empirical Bayes 0.29 (0.03) 0.36 (0.24) 0.65
Dependence 0.21 (0.05) 0.21 (0.01) 0.42

n0 = n1 = 200 Independence 0.10 (0.02) 0.26 (0.41) 0.36
Empirical Bayes 0.15 (0.03) 0.16 (0.14) 0.31

Dependence 0.08 (0.01) 0.09 (0.01) 0.17
n0 = n1 = 500 Independence 0.04 (0.00) 0.21 (0.41) 0.25

Empirical Bayes 0.06 (0.00) 0.09 (0.12) 0.15

26

Hosted by The Berkeley Electronic Press



Table 6: Analysis of Israeli ovarian cancer data: Estimatesof the log odds-ratio parameters corresponding to each effect is provided,
accompanied with 95% confidence intervals.1

β̂BRCA1/2 β̂OC β̂parity β̂BRCA1/2∗OC β̂BRCA1/2∗parity

Dependence 3.442 -0.051 -0.060 0.049 -0.131
CI (2.476,4.408) (-0.108,0.006) (-0.126,0.006) (-0.104,0.203) (-0.373,0.111)

Independence 3.154 -0.051 -0.061 0.086 -0.036
CI (2.509,3.799) (-0.102,-0.001) (-0.125,0.002) (0.021,0.15) (-0.141,0.068)

Empirical Bayes 3.270 -0.051 -0.062 0.070 -0.077
CI (2.620, 3.921) (-0.108,0.006) (-0.127,0.005) (0.002,0.139) (-0.185,0.032)

1 The analysis is adjusted for effects of age, ethnicity, personal history of breast cancer, family history of breast or ovarian cancer and
history of gynaecological surgery.

Table 7: Analysis of colorectal adenoma data: Estimates of the log odds-ratio parameters corresponding to each effect is provided,
accompanied with 95% confidence intervals.2

β̂NAT2=2 β̂SMK=1 β̂SMK=2 β̂NAT2=2∗SMK=1 β̂NAT2=2∗SMK=2

Dependence 0.833 0.196 1.03 -1.103 -2.784
CI (0.035,1.632) (-0.073,0.464) (0.692,1.367) (-2.227,0.021) (-4.569,-0.998)

Independence 0.596 0.176 0.999 -0.766 -2.308
CI (-0.046,1.239) (-0.089,0.443) (0.667,1.332) (-1.630,0.098) (-3.885,-0.732)

Empirical Bayes 0.698 0.183 1.009 -0.923 -2.531
CI (-0.031,1.426) (-0.083, 0.449) (0.678,1.339) (-1.956,0.111) (-4.214,-0.848)

2 The analysis is adjusted for effects of age, gender and family history of colorectal cancer.
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Figure 1: Histogram of log odds-ratios between NAT2 and smoking in control subjects from 11
case-control studies conducted in several study sites across US, Europe, Japan and India (Marcus
et al., 2000).
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