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Asymptotic Results for Simultaneous Group
Sequential Analysis of Rank-Based and
Weighted Kaplan-Meier Tests with Paired
Survival Data in the Presence of Censoring.
Technical report

Adin-Cristian Andrei and Susan Murray

Abstract

This research sequentially monitors paired survival differences using a new class
of non-parametric tests based on functionals of standardized paired weighted log-
rank (PWLR) and standardized paired weighted Kaplan-Meier (PWKM) tests.
During a trial these tests may alternately assume the role of the more extreme
statistic. By monitoring PEMAX, the maximum between the absolute values of
the standardized PWLR and PWKM, one combines advantages of rank-based and
non rank-based paired testing paradigms. Simulations show that monitoring treat-
ment differences using PEMAX maintains type I error and is nearly as powerful as
using the more advantageous of the two tests, in proportional hazards (PH) as well
as non-PH situations. Hence, PEMAX preserves power more robustly than indi-
vidually monitored PWLR and PWKM, while maintaining a reasonably simple
approach to design and analysis of results. An example from the Early Treatment
Diabetic Retinopathy Study (ETDRS) is given.
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SUMMARY. This research sequentially monitors paired survival differences using a new class
of non-parametric tests based on functionals of standardized paired weighted log-rank (PW LR)
and standardized paired weighted Kaplan-Meier (PW K M) tests. During a trial these tests
may alternately assume the role of the more extreme statistic. By monitoring PEM AX, the
maximum between the absolute values of the standardized PW LR and PW K M, one combines
advantages of rank-based and non rank-based paired testing paradigms. Simulations show that
monitoring treatment differences using PEM AX maintains type I error and is nearly as powerful
as using the more advantageous of the two tests, in proportional hazards (PH) as well as non-PH
situations. Hence, PEM AX preserves power more robustly than individually monitored PW LR
and PW K M, while maintaining a reasonably simple approach to design and analysis of results.

An example from the Early Treatment Diabetic Retinopathy Study (ETDRS) is given.

KEY WORDS: Clinical Trials; Group Sequential Monitoring; Nonparametric; Paired Weighted
Kaplan-Meier; Paired Weighted Log-Rank.

1 Introduction

At the design stages of clinical trials comparing survival outcomes in independent groups, a com-
mon plan is to base the design upon a log-rank (LR) statistic of some form (see, for example
Gehan (1965), Mantel (1966) or Gill (1980)). Another approach for stochastically ordered alter-
natives is to compare areas under survival curves (see for example Pepe and Fleming (1989)).
Versatile tests combining rank-based (RB) and non RB statistics for independent groups are
studied by Chi and Tsai (2001), while Kosorok and Lin (1999) develop sophisticated methods
for combining various rank-based tests. Fundamental independent groups sequential methods
for families of weighted LR (W LR) tests have been developed and studied by Tsiatis (1981,
1982), Sellke and Siegmund (1983), Slud (1984), Gu and Lai (1991), among others, and sequen-

tial methods for comparing areas under survival curves were developed by Murray and Tsiatis
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(1999).

For paired censored survival data, where optimality properties for the paired weighted LR
(PW LR) have not been studied, competing methodologies exist to a lesser extent. Some RB and
frailty methods are presented by O’Brien and Fleming (1987), Dabrowska (1986, 1990), Murray
(2000), Oakes (1989) and Oakes and Jeong (1998), among others, and paired Pepe-Fleming
tests are developed by Murray (2001, 2002). Paired survival data arise in various situations
including time to death, disease occurrence or other morbidity in twins, time to vision loss in
paired eyes or failure of matched allografts on an individual. For example, 3711 patients with
diabetic retinopathy in both eyes were enrolled in the Early Treatment Diabetic Retinopathy
Study (ETDRS 1991a, 1991b) from April 1980 to July 1985, with one eye per patient randomly
assigned to early photocoagulation and the other to deferral of photocoagulation until detection
of high-risk proliferative retinopathy.

In paired settings such as ETDRS, little research involving multiple test statistics is available
and it is often difficult to choose between available methods. Relatedly, Oakes and Feng (2003)
propose tests combining different versions of PW LR tests in cases when PH assumptions hold
either within pairs or marginally between groups. Further complicating the design choice in the
group sequential setting, the preferred test may change from one interim analysis to the next.

This research is motivated by a desire to formalize inference in the following scenario. Assume
that in a paired censored survival analysis with group sequential monitoring, an investigator first
uses a PW LR and fails to reject the null hypothesis by a narrow margin. Then, a paired weighted
Kaplan-Meier (PW K M) test is recalled as an attractive alternative and it leads to statistical sig-
nificance. Or perhaps at different analysis times, statistical advantages are attributed alternately
to PWLR or PWKM. In this setting, we provide a middle ground that allows monitoring of
both tests, while adjusting for their joint use over time. The proposed test, PEM AX, which is

the maximum of the absolute values of the standardized PW LR and PW KM, will be seen to
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preserve type I error and to have power comparable to the better of these competing tests.

The rest of this paper is organized as follows. In Section 2, the sequential joint limiting dis-
tribution of PW LR and PW K M is derived, from which the joint distribution of PEM AX over
time is estimated. Section 3 presents simulations assessing the moderate-sized sample perfor-
mance of PEM AX as compared to PW LR and PW KM. Sequential monitoring of the ETDRS
using PEM AX is shown in Section 4 and Section 5 is dedicated to comments and conclusions.
2 Joint Sequential Distribution of PW LR and PW KM
Assume that during an accrual period [0, A], n i.i.d. data pairs (e.g., n pairs of twins) are
enrolled (at least one pair member) in a prospective study ending at time 7, where A < 7 <
o0o. By examining the data repeatedly and systematically, one might detect significant survival
differences early on, should they occur. Although in practice pair members usually enter the
study simultaneously, this research allows for differential pair member entry times.

Suppose that pair [ = 1,...,n, member g = 1, 2, enters the study at time E, (a calendar time
during accrual), has underlying survival time T, and potential censoring or loss-to-follow-up time
Ly (both regarded as study times measured since E,). Although correlation between same pair
members’ entry times is likely, different pair members’ entry times pairs are independent. The
same assumptions apply separately to survival and to censoring times. For each pair member,
the entry, the survival and the censoring times are assumed to be independent. For technical
reasons, we require that the correlation between paired survival times is strictly less than 1.

At analysis (calendar) time ¢, one observes {Ey, Xg(t), Agi(t)}, where Xy(t) = min{T,, Ly,
maz(t — Eg,0)} and Ay(t) = I{T,; < min(Ly,t — Ey)}, representing the follow-up time and
the censoring indicator, respectively. If pair [, member g survives past calendar time ¢ without
being censored by L,, then it is considered censored at analysis time ¢, although this status
might change in the future. As usual, pair [, member g is observed as a censored value at

analysis time ¢ if Ly occurs prior to both Tj; and the time since entry ¢ — Eg. Further assume
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that within group g, (Eg, Ty, Lg,! = 1,...,n) are i.i.d. continuously distributed with survival
functions 1 — Gy(e) = P(Ey > e), Sy(s) = P(Ty > s) and Cy(c) = P(Ly > c), respectively.
Borrowing notation from Murray (2000), the number of pair members g = 1, 2 entered by analysis
(calendar) time ¢ is equal to n,(t) = Yj-; I(Ey < t). The number of pairs whose member g,
has entered the study by analysis time ¢; and member g, has entered by analysis time %y is
Ngigs (t1,t2) = iy 1(Egy < th, Egy < ty).

At analysis time ¢, the marginal cause-specific hazard function for pair member g at study
time 0 < u < ¢ is defined as Ag(u) = limgy—0 3= P{Xq(t) < u 4 0u, Ay (t) = 1|Xy(t) > u}. Using
information on pair member g; at analysis time #; and pair member g, at analysis time %5, de-
fine the joint hazard at study time 0 < u < ¢; (pertaining to pair member g;) and study time
0 < v <ty (pertaining to pair member g3) as Ag, g, {(t1, %), (t2,v)} = limsu sv—0 557 P{ Xgu(t1) <
U+ 0u, Xgi(ta) < v+ 0v,Ap(t1) = 1,80,(t2) = 1| Xgu(t1) > u, Xgu(t2) > v}. Using infor-
mation on pair member g; at analysis time ¢; and pair member g, at analysis time 5, the
cause-specific conditional hazard for pair member g¢; at study time 0 < u < ¢y, given that
pair member go is at-risk at study time 0 < v < ¢y, is defined as Ay, g, {(t1,u)|(t2,v)} =
limgy—o 50 P{X g (t1) < u+ 6u, Agyu(t1) = 1| Xg(t1) > u, Xgy1(t2) > v}. Let Ry, g, {(t1,v), (t2,v)}
= Aguga {(t1,0), (t2, )} — Mgy {11, 0) (2, 0) P Aga (0) = Agai {2 0)] (12, 0) gy (1) + Agy (1) g (1),
By, g {(t1,u), (t2,v)} = P{Xgu(t1) > u, Xgu(t2) > v[Egu < 1, Egy < to} x [P{Xgu(t1) >
ulBgu < t1}P{Xga(tz) > v|Eg, < t2}]7" and Gy, g, = Ry, 0. Byy 0

The asymptotic proportion m,(t) of pair members g = 1,2 available at analysis time ¢ (among
the n pairs that will be accrued by A is estimated by 7,(¢t) = ny(t)n'. For the pair member
in group g, the probability m,(1|t2) of study entry by analysis time ¢;, given entry by analysis
time ¢o, where ¢; < ¢, is consistently estimated by 7,(t1|t2) = ng(t1){ny(t2)} . The number of
dependent pairs in groups g; and g, at analysis times ¢, and ¢, is equal to ng, 4,(t1,%2), so the

proportion 6, ,,(t1, ;) of such dependent observations is consistently estimated by 8, ., (t1, t2) =
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219, 9, (t1,12){ng, (t1) + ng, (t2)}~'. The asymptotic proportion v, 4,(¢1,%2) of pair members in
group ¢; that have entered by analysis time ¢;, among the pairs where the other pair mem-
ber has entered by analysis time ¢y, is estimated by 9, 4, (t1,t2) = ng, (t1){ng, (t1) + 1y, (t2)} 1.
For 0 < p < 1, let OR(p) = p(1 — p)~' be the odds ratio. Define v, 4,(t1,t2) = 0.5 X
B4, .95 (tl,tg)\/ﬂ'g_gl (t1)m3—g, (t2) [\/OR(q/gl,g2 (t1,t2)) + \/OR(%M1 (tg,tl))J . Therefore, an estima-
tor g, g, (t1, t2) Of g, 4 (11, 12) is readily available.

At analysis time ¢, one knows { E, Yy (¢, u), Ng(t,u); 0 < uw < t}, where Ny (t, u) = I{Xu(t) <
u, Ag(t) = 1} and Yy (t,u) = I{Xyu(t) > u}, are the failure and the at-risk indicators at
study time u based on data available at calendar time ¢, respectively. N,(t,u) and Y,(¢,u) are
the obvious aggregate versions. Let My(t,u) = Ny(t,u) — [o' Ya(t, s)Ag(s)ds and M,y(t,u) =
Yy My(t,u). For each fixed ¢, M,(t,u) is a marginal martingale in u with respect to the fil-
tration containing all survival and censoring information available at analysis time ¢ up to study
time u for group g. As an unfortunate consequence of the paired nature of the data, M, (¢, u) is no
longer a martingale with respect to the filtration simultaneously containing the above mentioned

information from both pair members.

2.1 PWLR(t) and PWKM/(t) Test Statistics

At analysis time ¢, these tests are defined flexibly so that one may test for survival differences
over any period of time up to 7 by incorporating J(¢t,u) = I(0 < u < 7)I{Y1(t,u)Ys(t,u) > 0}
in their integrand. Let p(t,u) = I(0 < u < 7)I[P{X1;(t) > u} P{X2;(t) > u} > 0] for 0 < u < ¢,
and assume that J(t, u) — p(t, u), for all fixed ¢.

Defined as an integrated weighted difference of the estimated hazard functions, PW LR(t) =
\/Ffo K(t,u) [{Y1(t,u)} "INy (¢, du) — {Ya(t, u)} "L No(t, du)], with n*(t) = nq(t)ne(t)x
{n1(t) + nz(t)}_l, K(t,u) = {n*(t)} " Wouir (t, u) Y1 (t, w)Ya(t, u){Y1(t,u) + Ya(t,u)} ™! and the
weighting function W, (t,u) converging uniformly in probability to a deterministic function

Wywir(t, u) on [0, t]. Weights such as Wiy (8, u) = 1 or Wy (t, w) = Y1 (¢, u)Ya(t, u){ni (t)na ()} !
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yield the paired LR and the paired Gehan test, respectively. By the weak law of large numbers,
limy, (1) o0 Yy (t, w){ng ()} = Sy(u)Hy(t, u), where Hy(t,u) = P(Ly > u,t — E; > u|E, < t) is
the censoring survival function among group g members entered by analysis time ¢ and S, is the
survivor function in group g. Denote Sy(u)H,y(t,u) by Qq(t,v). Then, lim,, () n,1)—o0o{ Y1 (t, ) +
Yalt, w)Hm (6+ma(6)} ) = S22, 7, (9)Qy (t ) and k(E ) = im0y mt)so0 K (2, 4) = wpuir (£, 1)
Q1(t, u)Qa(t, u){m (t)Q1(t, u) +ma(t)Q2(t, u)} ~* on [0, t]. With A, being the group g true cumula-
tive hazard, arguments as in Appendix A of Lee, Wei and Ying (1993) yield that asymptotically,
PWLR(t) = /n*(t) S22, (= 1)+ [5° T (6, u) K (, u){Yy(t, u)} " My(t, du) + \/n*(8) J5° T (t,u

K (t,u){dA1(u) — dAy(u)} is equivalent in distribution to \/n*(t) 32, (—1)9 [5° p(t, u)k(t, u) X
{Qq(t,u)ny(t)} 1 My(t, du +\/n*7f0 k(t,u){dA:(u) —dAs(u)}. From now on, PW LR(t)
will refer to this latter quantity.

Obtained as an integrated weighted difference of the Kaplan-Meier (K M) estimates com-

puted at analysis time t, PWKM(t) = y/n* fo YWk (£, u){ S (¢, u) Sy(t,u)}du =
n*(t) 23:1(_1)9 Joo J(, U)prkm(ta u){Sy(u) — Sy(t,u)}du + \/ n*(t) foo J pwkm(t u) X

{S;(u) — So(u) }du, where S,(t,u) denotes the K M estimator of S,(u) obtained using data avail-
able at analysis time ¢. The weighting process prkm(t, u) converges in probability to a determin-
istic function Wpupm (t, u) on [0,]. With H,(t,u) being the K M estimator of H,(t,u) and 7, (t) =
ng(t){n1(t)+ny(t)} " being the analysis time ¢ sampling proportions, possible Wukm (t, u) choices
are Hy(t,u—)Hy(t,u—){# (t)Hy(t,u—) + 75(t)Ha(t,u—)}"", which is in the spirit of the weight-
ing recommended by Pepe and Fleming (1989), or alternatively prkm(t, u) = 1, interpreted
as paired years-of-life saved (PY'LS) over 7 years of study. Again, arguments as in Lee, et. al
(1993), yield that PW K M (t) is asymptotically equivalent to the quantity obtained when p(t, u)
replaces J(t,u). Lemma 2.4 from Gill (1983) leads to [5° p(t, u)Wpwkm(t, u){Sy(u) — S, (t, u) }du =
% Ay (1,05, (6 u=){S, ()Y, (6, )} My (¢, du), where Ag(t,u) = 2 plt, ) wpem(t, 1) Sy u)dy,
0 < u < t. With S,(t,u—) estimating S,(u), PWKM(t) is asymptotically equivalent to
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(1) [ ot (=1)7 J5° Ayt w){Yy (t, )}~ My (1, du) + [5° p(t, u)wgukm (t, u){S1 (1) — Sa(u)}du].
From now on, PW KM (t) will stand for this equivalent quantity.

For stochastically ordered survival curves, the null hypothesis is Ho : Si(.) = Sa(.) = S(.)
on [0,7]. If t; < ty < ... < tp are successive analysis times such that the statistical in-
formation expected between them is sufficient to warrant additional analyses, then it follows
that {PWLR(t,), PWKM(t,),..., PWLR(tp), PWKM((tp)}* 2, Np(02p, X), with covari-
ance matrix 3, which is described and estimated subsequently.

Results derived in Murray (2000), imply that within pairl, g1 # g» and t; < t;, E{Mg,(t;, du)x
Mg, (t5,dv)} = P{Xgu(ti) > u[Egy < ti}P{Xgu(t;) 2 v|Eg, < t}Gg, g0{(ts; u), (£, v) pdvdu.
Given the marginal martingale structure for group g, the use of the theory of stochastic inte-
grals with respect to martingales facilitates the derivation of parts of the asymptotic variances-
covariances for PWLR(t;) and PW KM (t;). Results from Gu and Lai (1991) indicate that
E{M,(t;, du) My(t;,du)} = Yy(ti,u)A\g(u)du. These key results, as well as the multivariate cen-
tral limit theorem, are used to compute the entries of 3 that have one of the following forms:
cov{PWLR(t;), PWLR(t;)}, coo{f PWKM(t;),PWKM(t;)}, coo{ PWLR(t;), PWKM(t;)} or
cov{ PWKM(t;), PWLR(t;)}, where 1 <i < j < D.

If we let ngs—g(ti, tj) = \/Ta—g(t:)Ta—g (t;)m(tilt;) and p(t, u)k(t, u) = r(t, u), computations lead
to, coo{PWLR(t), PWLR(t;)} = Y2 i[ngsg(ti,t;) Joo rti,u)r(ts, u){Qq(t,u)} " Ag(u)du —
Yg,3—g(tis t5) o~ Jo© m(ti, u)r(t5,v)Go—g{ (i u), (5, v) dvdu].

Also, cov{ PW KM (t;), PWKM (t;)} = ¥2_1[ng3—g(ti, ;) J5° Ag(ti, u)Ag(t;, u){Qq(t;,u)} 1 X
A (u)du — gyt ) [ & Alti, u) A(t, )Gy s_gf (ti, w), (5, v) }dvdu).

Similarly, coo{ PW LR(t;), PW KM (t;)} = X2 [—nga—g(ti, t;) J§° 7 (ti, u) Ay(t;, u){Qy(t;, u)} ' x
A (u)du + by s o(ti, ;) [0 S r(ti, u)As o(t;,0)Gys of (ti, u), (t;,v) Ydvdu).

Finally, cov{ PW KM (t;), PWLR(t;)} = X2_1[—ng3—g(tir t;) J5° Ag(ts, u)r (t, u){Qy (s, u)} " x
Ag(w)du + g 3-4(ti 5) Jo° Jo Ag(ti, u)r(t), v)Ggs—g{(ti, u), (¢, v) dvdu].
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Thus, one may now obtain quantiles for any functional of PW LR and PW KM by means
of Markov Chain Monte Carlo simulations. Suppose that in a hypothetical trial with D interim
analyses, one wishes to obtain the group sequential stopping boundaries (GSSB) for a generic
functional F. At the ith interim analysis, the quantity F', which we will refer to as F;, i =

1 D, may be the maximum or a linear combination of the absolute values of the standardized

statistics. First, one generates N replications of a 2D-dimensional zero-mean normal random
vector with covariance matrix equal to that of 2D standardized PW LR and PW K M tests from
the D interim analyses. For each such replication, compute F; and its stopping boundary at
analysis ¢ = 1,..., D, respecting the prespecified type I error «;. Specifically, the boundary of
F} at analysis time 1 is the a¢-th upper quartile of the N-dimensional vector of F; values. At
analysis time k = 2, ..., D form the vector of Fj, values for which all of F}; values, j = Hk—1,

did not exceed their corresponding analysis time j GSSB. The k-th interim analysis GSSB for

Fy is the {ay(1 — XFZ o;) "' }th upper quartile of this latter vector.

2.2 Estimation of X

Let Y, ,,{(ti,u), (t;,v)} = Syt %) 10X, (t) > u, X,p(t;) > v} be the number of pairs in
which, at analysis time ¢; pair member g¢; is at-risk at study time v and at analysis time ¢; pair
member gy is at-risk at study time v. Define Ny, 4,{(t;, du), (t;,dv)} = 320 (tits) IH{X,u(t:) €
[, u + du), Xg(t;) € [v,0+dv), Ag(ti) = 1,A4,(t;) = 1} to be the number of pairs in which
group ¢g; member, who has entered by analysis time ¢; fails at study time u and group g, member,
who has entered by analysis time ¢; fails at study time v. Finally, the number of pairs for which
the group g; member, who has entered by analysis time ¢; is at-risk until and fails at study time
u and group g, member, who has entered by analysis time ¢; is still at-risk at study time v is
equal to Ny go{ (£, du)| (£, v)} = Spov2 %) LX) (1) € [u,u+ du), Xpu(t;) > v, Agu(ts) = 1}
An estimator for P{X,(t;) > u|E, < t;} is Y, (t;,u){ny(t;)} ", while P{X,, (t;) > u, X,,(t;) >
v|Ey, < t;, By, <t} is estimable by Yy, o, {(t;,u), (tj,v) Hng. g i, t;)}
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Nelson-Aalen-type estimators of Ag(u)du, Ag, g,{(%i,u), (t;,v)}dudv and Ay g, {(ts, w)|(;,v) }du
are available through {Y(t;,u)} "N, (t;, du), Ny g1 (ti, du), (t;, dv)} [Yy, 00 { (tisu), (t;,v)}] " and
N o (b1 )| (85, 0)} [V (5, 0), (£, 0) 1], respectively.

To estimate quantities involving terms not dependent on analysis time, such as A(u) or S(u),
given data availability at both ¢; < ¢;, one may use information available at ¢;. For example,
Ay(ti,u) can be estimated using [° J(t;, y)Wowkm(ti, y)Sy(t;, y)dy, where Sy(t;,u) is the KM
estimator of S,(u) based on data collected at the latter analysis time ¢;. Note that the weighting
terms in this expression still use only information available at the earlier analysis time t;, since
they are analysis time-dependent terms. A consistent estimator of G,3_,{(t;, u), (t;, v) }dvdu can
be obtained based on estimators of its components and H,(t,u) is the K M estimator of H,(t, u).
Thus, an estimator of the covariance matrix X is now available.

3 Simulation Study

Simulations are conducted to assess the finite sample behavior of PEM AX as compared to
PWLR and PW KM, when pairing in data is accounted for, and separately when pairing is
ignored. In this latter case, we denote the statistics of interest by EM AX rather than PEMAX.
Both under the null and the alternative hypotheses, 1,000 Monte Carlo simulation runs consisting
of 100 pairs of correlated piecewise exponential survival times are generated with correlation of
approximately 0.25. We assume a common pair entry time to be uniform(0,0.25) years and
conduct interim analyses at 0.5, 1 and 2 years. We employ an O’Brien-Fleming error-spending
function, using calendar time as a surrogate for the total information accrued, to spend an overall
5% type I error. Under either hypothesis, the hazard rates in both groups change at 1 and 1.65
years, with dynamics of the hazards further described in Figure 1.

To the best of our knowledge, in paired censored survival settings, there is no theoretical
result to indicate a locally most powerful test. This particular formulation of stochastic ordering

gives approximately PH at the early interim analyses, ¢; and 5, and crossing hazards at the last

http://bi ostats.bepress.com/umichbiostat/paper43



interim analysis ¢3, where most of the type I error is spent (see Figure 1). We chose PY LS to
represent the PW K M family because of its simple interpretation as the number of years-of-life-
saved while on study, with the weighting of the area between the survival curves not involving
the distribution of the censoring times. With differential weighting of the area between curves
at analysis times, interpretation may be problematic, although the theory accommodates such
choices. Also of major interest is to understand how correctly accounting for the paired nature
of the data improves the operating characteristics of PEMAX.

Size and power simulation results are presented in Table 1. The PLR, PY LS and PEMAX
tests (those accounting for pairing) maintain size close to the nominal 0.05 level. Ignoring pairing
results in size levels diminished by almost 50%, implying over-conservativeness for all three tests.
In the example simulated, PY LS is expected to be more powerful than the PLR as the PH
feature is lost over time, so it will be used as the reference test in order to describe the power loss
percentages exhibited by the other tests. As expected, the paired versions of the tests observed
are all more powerful that any of the those that ignore pairing. Using PEM AX, a 3.79% power
gain over the disadvantaged test PLR is observed. In our experience, a similar phenomenon
occurs as the hazard rates remain more proportional across all interim analyses, favoring the
LR testing framework. That is, minimal losses of power using PEMAX as opposed to the
more powered test. Hence, the more robust PEM AX is close in power when compared to the
more powered of PLR and PY LS, when the alternative hypothesis is in doubt. Ignoring pairing
induces more serious power losses, with the largest loss of 15.83% associated with the unpaired
LR test as compared to the 8.69% loss when using the unpaired EMAX and the 6.35% loss
when using the unpaired Y LS test.

4 Example
Recall the ETDRS example described in the introduction. The 3711 patients enrolled between

April 1980 and July 1985 were followed in order to detect vision loss defined as visual acuity

10
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less than 5/200 at two consecutive visits, but due to either loss-to-follow-up or administrative
censoring, this primary end-point was not observed for everybody.

In order to make the analysis more interesting, we restrict to about 25% of the data consisting
of 999 patients enrolled prior to 15 February 1983 who were taking a placebo pill in a separate
randomization process. Since the causes that may ultimately lead to vision loss are common,
there tends to exist a mild to moderate positive correlation between the loss of visual acuity in
the left and right eye of an individual. The staggered entry feature, the presence of censoring
and the ethical reasons requiring a periodic examination of the data make this example suitable
for analysis using group sequential methods and PEM AX will be employed. A number of 9
interim analyses are planned, proceeding after the first 50 events have occurred and continuing
every 6 months thereafter and the overall 1% type I error is spent using an O’Brien-Fleming
error spending function. The proportion of deaths observed at each analysis time is used as a
surrogate for the proportion of total information in the spending function. Strategies for error
spending are discussed in O’Brien and Fleming (1979), Lan and DeMets (1983) and summarized
in Jennison and Turnbull (2000).

The GSSB for paired PEM AX are then obtained via the algorithm described in Section 2.2,
by producing 30,000 replications of an 18-dimensional zero-mean normal random vector, whose
covariance matrix is that of the standardized PLR and PY LS tests computed at each of the
9 interim analyses. Similarly, the GSSB for the unpaired EM AX are obtained based on the
standardized unpaired LR and Y LS tests instead.

For the 999 placebo patients, the results in Table 2 show that the PEMAX rejects at
the eighth interim analysis, where the standardized PY LS exceeds the PEM AX sequential
boundary. Interestingly, PLR and PY LS take turns in getting closer to statistical significance
as the monitoring process unfolds, making it attractive to monitor both throughout the study.

When data pairing is ignored, not one of the tests employed detects significant survival differences
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between the two treatment groups. Using PEM AX to repeat the same testing procedure for the
1010 patients that receive an aspirin pill instead of placebo results in the detection of significant
survival differences at the sixth analysis time, when PLR exceeds the corresponding PEM AX
boundary, while PY LS does not (see Table 3). Hence, under a very similar study design,
PEMAX detects survival differences driven this time by PLR.

This example illustrates how the favored design choice is not always obvious since the only
protocol difference between the two patient cohorts was the assignment to placebo or aspirin in
addition to the paired design for studying early versus delayed photocoagulation. In each case
PEMAX tracked well with the more favored design, detecting the difference of interest.

5 Discussion

Unlike with independent groups, once correlation is involved it is hard to know which test is
most powerful under PH or non-PH alternatives. One approach is to consider several tests
simultaneously, thus covering more situations. Work by Oakes and Feng (2003) that combines
stratified and unstratified PLR tests, suggests that the strength of within pair correlation, rather
than the form of the alternative, may sometimes determine the more powerful test.

The newly proposed test, PEM AX, has several features that distinguish it from the individ-
ual tests. Although rank-based tests are generally favored when a PH situation is anticipated,
Pepe and Fleming (1989) have shown a lack of sensitivity to the magnitude of the difference
between the survival curves and have proposed W K M statistics. PEM AX is set to balance the
advantages and disadvantages associated with these families of tests in the paired censored sur-
vival data setting. Thus, it should not be surprising that it might provide a degree of robustness
to detect ordered survival curves, when dealing with PH or crossing hazards situations.

Associated with PEM AX come the advantages of being able to: (1) account for correlation
between paired outcomes, (2) account for correlation between PW LR and PWKM and (3)

control type I error within the group sequential monitoring framework. Testing frameworks that
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fail to account for the source of correlation in (1) are generally inefficient. Frameworks that
ignore repeated testing in (2) and (3) will have inflated size. Although the focus is on PEM AX,
other tests built upon functionals of PW LR and PW K M, such as linear combinations of these,
could be devised as seen fit. Their sequential limiting behavior is readily available, given the
closed-form expressions for the joint limiting distribution of the PW LR and PW K M.

This methodology adds to the literature available for the analysis of clinical trials involving
paired survival outcomes. With over-conservativeness being an issue when paired structures
are overlooked, using PEM AX would account for the true nature of the data and give the
benefits of using the correlation in the data. Although statistical literature has been rapidly
advancing in broadening the ability to monitor different types of test statistics with different
forms of alternatives in the independent setting, this availability is still in its infancy in the
paired setting. This procedure reduces the temptation to use methods designed for independent

settings when the censored survival data is paired.
ACKNOWLEDGEMENT
The authors would like to thank the Early Treatment Diabetic Retinopathy Study Research

Group and particularly Marian R. Fisher for the data used in writing this manuscript.

REFERENCES
Chi, Y., Tsai, M. H. (2001). Some versatile tests based on the simultaneous use of weighted lo-

grank and weighted Kaplan-Meier statistics. Communications in Statistics, Part B — Simulation

and Computation 30, 743-759.
Dabrowska, D. M. (1986). Rank tests for independence for bivariate censored data. Annals of

Statistics 14, 250-264.
Dabrowska, D. M. (1990). Signed-rank tests for censored matched pairs. Journal of the American

Statistical Association 85, 478-485.
Early Treatment Diabetic Retinopathy Study Research Group (1991a). Early Treatment Dia-

betic Retinopathy Study design and baseline patient characteristics: ETDRS report number 7.
Ophthalmology 98, T41-756.

13

http://bi ostats.bepress.com/umichbiostat/paper43



Early Treatment Diabetic Retinopathy Study Research Group (1991b). Early Photocoagulation

for Diabetic Retinopathy: ETDRS report number 9. Ophthalmology 98, 766-785.
Gehan, E. A. (1965). A generalized Wilcoxon test for comparing arbitrarily single-censored

samples. Biometrika 52, 203-223.
Gill, R. D. (1980). Censoring and Stochastic Integrals. Mathematical Centre Tracts 124, Math-

ematisch Centrum, Amsterdam.

Gill, R. D. (1983). Large sample behavior of the product-limit estimator on the whole line.

Annals of Statistics 11, 49-58.
Gu, M. G., Lai, T. L. (1991). Weak convergence of time-sequential censored rank statistics with

applications to sequential testing in clinical trials. Annals of Statistics 19, 1403-1433.
Jennison, C., Turnbull, B.W. (2000). Group sequential methods with applications to clinical

trials. CRC Press Inc. (Boca Raton, FL)
Kosorok, M. R., Lin, C. Y. (1999). Versatility of Function-Indexed Weighted Log-Rank Statistics.

Journal of the American Statistical Association 94, 320-332.
Lan, K. K. G., DeMets, D. L. (1983). Discrete sequential boundaries for clinical trials. Biometrika

70, 659-663.
Lee, E. W., Wei, L. J., Ying, Z. (1993). Linear regression analysis for highly stratified failure

time data. Journal of the American Statistical Association 88, 557-565.

Murray, S., Tsiatis, A. A. (1999). Sequential methods for comparing years of life saved in the

two-sample censored data problem. Biometrics 55, 1085-1092.

Mantel, N. (1996). Evaluation of survival data and two new rank order statistics arising in its

consideration. Cancer Chemotherapy Reports 50, 163-170.

Murray, S. (2000). Nonparametric rank-based methods for group sequential monitoring of paired

censored survival data. Biometrics 56, 984-990.

Murray, S. (2001). Using Weighted Kaplan-Meier Statistics in Nonparametric Comparisons of

Paired Censored Survival Outcomes. Biometrics 57, 361-368.

14

Hosted by The Berkeley Electronic Press



Murray, S. (2002). Group sequential monitoring of years of life saved with paired censored

survival data. Statistics in Medicine 21, 177-189.

Oakes, D. (1989). Bivariate survival models induced by frailties. Journal of the American

Statistical Association 84, 487-493.
Oakes, D., Jeong, J. H. (1998). Frailty models and rank tests. Lifetime Data Analysis 4, 209-228.

Oakes, D., Feng, C. (2003). Combining Stratified and Unstratified Log-Rank Tests for Matched
Pairs Survival Data. International Conference on Reliability and Survival Analysis 2008 (ICRSA

2008) Abstracts Booklet, 7-8, University of South Carolina, Columbia, SC.
O’Brien, P. C., Fleming, T. R. (1979). A multiple testing procedure for clinical trials. Biometrics

35, 549-556.
O’Brien, P. C., Fleming, T. R. (1987). A paired Prentice-Wilcoxon test for censored paired data.

Biometrics 43, 169-180.
Pepe, M., Fleming, T. R. (1989). Weighted Kaplan-Meier Statistics: A Class of Distance Tests

for Censored Survival Data. Biometrics 45, 497-507.

Sellke, T., Siegmund, D. (1983). Sequential analysis of the proportional hazards model. Biometrika
70, 315-326.

Slud, E. V. (1984). Sequential linear rank tests for two-sample censored survival data. Annals

of Statistics 12, 551-571.
Tsiatis, A. A. (1981). The asymptotic joint distribution of the efficient scores test for the pro-

portional hazards model calculated over time. Biometrika 68, 311-315.

Tsiatis, A. A. (1982). Group sequential methods for survival analysis with staggered entry.
Survival Analysis, eds. Crowley, J. and Johnson, R.A., Vol. 2, 257-268.

15

http://bi ostats.bepress.com/umichbiostat/paper43



Table 1
Size and power simulation results for paired and unpaired Y LS, LR and EMAX based on
1,000 replications with an overall type I error o = 0.05. Power loss results (in percentages) are
relative to the paired PY LS, which is more powered in this case.

Paired Unpaired
Test PYLS PLR PEMAX | YLS LR EMAX
Size 0.047  0.047 0.046 0.026  0.025 0.019
Power 0.897 0.848 0.882 0.840 0.755 0.819
Power Loss | 0% 546%  1.67% 6.35% 15.83% 8.69%

Table 2
Paired and unpaired versions of (P)Y LS and (P)LR tests together with the O’Brien-Fleming
(P)EMAXYDb stopping boundaries of the corresponding (P)EM AX test for the 999 patients
enrolled prior to 15 February 1983 that are taking a placebo pill

Paired Unpaired
Analysis Time Error spent | PYLS PLR PEMAXb | YLS LR EMAXb
1 2.85%107° | -2.119 1.900 4.453 -1.169 1.441 4.051
2 1.42%107* | -2.530 2.340 4.031 -1.970 1.810 3.663
3 5.74%107* | -3.060 3.006 3.517 -2.453  2.437 3.287
4 1.18 x 1073 | -2.846  3.006 3.320 -2.272  2.472 3.106
5 1.31% 1072 | -2.482 2.674 3.197 -1.928 2.165 2.940
6 2.34%107% | -2.700  2.653 2.988 -2.095 2.140 2.722
7 1.33% 1072 | -2.716 2.423 2.996 -2.074  1.909 2.715
8 2.27+1073 | -3.106 2.828 2.892 -2.412 2.284 2.590
9 829%107* |-3.179 2.886 2.918 -2.490 2.348 2.585
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Hosted by The Berkeley Electronic Press



Table 3
Puaired and unpaired versions of (P)LR and (P)Y LS tests together with the O’Brien-Fleming
(P)EMAXDb stopping boundaries of the corresponding (P)EMAX test for the 1010 patients
enrolled prior to 15 February 1983 that are taking an aspirin pill

Paired Unpaired
Analysis Time Error spent | PYLS PLR PEMAXb | YLS LR EMAXb
1 2.85%107° | -0.518 0.660 3.847 -0.405 0.512 4.318
2 1.42%107* | -0.742 1.058 3.661 -0.587 0.828 3.769
3 5.74%10~% | -1.271 1.218 3.501 -1.050 0.982 3.795
4 1.18 1073 | -2.458 2.806 3.179 -2.023  2.305 3.177
5 1.31 %1073 | -2.097 2.630 3.103 -1.670 2.124 3.106
6 «— 2.34%107% | -2.528 3.155 2.933 -2.021 2.531 2.939
7 1.33% 107 | -2.556 3.166 2.896 -2.047  2.539 2.981
8 2.27+1073 |-2.483 2.965 2.834 -1.997 2.394 2.823
9 8.29%107* |-2.583 3.046 3.112 -2.077 2.453 3.185
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Figure 1: Null and alternative hypothesis simulation scenarios survival curves with superimposed
hazard rates, where ¢; indicates the configuration of the hazards likely to be observed prior to ¢;
at interim analysis ¢ = 1, 2, 3, respectively.
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