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Semiparametric binary regression under
monotonicity constraints

Moulinath Banerjee, Pinaki Biswas, and Debashis Ghosh

Abstract

Summary: We study a binary regression model where the response variable $\Delta$
is the indicator of an event of interest (for example, the incidence of cancer) and
the set of covariates can be partitioned as $(X,Z)$ where $Z$ (real valued) is
the covariate of primary interest and $X$ (vector valued) denotes a set of control
variables. For any fixed $X$, the conditional probability of the event of interest
is assumed to be a monotonic function of $Z$. The effect of the control vari-
ables is captured by a regression parameter $\beta$. We show that the baseline
conditional probability function (corresponding to $X=0$) can be estimated by
isotonic regression procedures and develop a likelihood ratio based method for
constructing confidence intervals for this function that obviates the need to esti-
mate nuisance parameters from the data. We also show how confidence intervals
for the regression parameter can be constructed using asymptotically $\chî2$ like-
lihood ratio statistics. The confidence sets for the regression parameter and those
for the conditional probability function are combined using Bonferroni’s inequal-
ity to construct conservative confidence intervals for the conditional probability
of the event of interest at different fixed values of $X$ and $Z$. We present simu-
lation results to illustrate the theory and apply our results to a prostate cancer data
set.
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Abstract

We study a binary regression model where the response variable ∆ is the indicator of an event
of interest (for example, the incidence of cancer) and the set of covariates can be partitioned
as (X, Z) where Z (real valued) is the covariate of primary interest and X (vector valued)
denotes a set of control variables. For any fixed X, the conditional probability of the event
of interest is assumed to be a monotonic function of Z. The effect of the control variables
is captured by a regression parameter β. We show that the baseline conditional probability
function (corresponding to X = 0) can be estimated by isotonic regression procedures and
develop a likelihood ratio based method for constructing confidence intervals for this function
that obviates the need to estimate nuisance parameters from the data. We also show how
confidence intervals for the regression parameter can be constructed using asymptotically χ2

likelihood ratio statistics. The confidence sets for the regression parameter and those for
the conditional probability function are combined using Bonferroni’s inequality to construct
conservative confidence intervals for the conditional probability of the event of interest at
different fixed values of X and Z. We present simulation results to illustrate the theory and
apply our results to a prostate cancer data set.

Running Head: Binary Regression Under Monotonicity

1 INTRODUCTION

The study of shape-restricted functions arises extensively in statistical modeling. The nature of
the shape-restriction is generally dictated by the underlying science, or empirical evidence and is
generally useful in narrowing down the class of models that the statistician might want to consider.
This, on one hand, often makes the statistical analysis more tractable and on the other actually
leads to more informative results if the shape restriction is the right one imposed. Common

1Research supported in part by National Science Foundation grant DMS-0306235
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minorant, likelihood ratio statistic, nonregular problem, χ2 distribution
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examples of such shape restrictions are monotonicity, convexity or concavity, unimodality etc.
Monotonicity, in particular, is a shape-restriction that shows up very naturally in the analysis of
statistical data. The motivating example for this paper is a case in point. In screening studies
involving cancer biomarkers, it has been empirically observed that increasing levels of a biomarker
are often associated with elevated risk of cancer. For example, prostate-specific antigen (PSA)
has been used for detection of prostate cancer. If a man has a PSA measurement between 4 and
10 ng/mL, then this leads to a prostate needle biopsy. Higher levels of PSA are assumed to be
associated with increased disease risk. The question of scientific interest is the extent to which
PSA measurements are predictive of prostate cancer.

More generally, in many other biological and scientific contexts, monotonicity is a natural
assumption. One setting involves the study of height trajectories in adolescents (Ramsay and

Silverman (1997)). It seems reasonable that during this period of time, children’s heights are
increasing with age. Another example comes from rheumatology (Bloch and Silverman (1997)).
The goal in that work was to quantify the efficacy index and toxicity in two patient populations.
It was assumed that toleration of drug was an increasing function of treatment effectiveness and
a decreasing function of toxicity. Monotonicity has also played an important role is econometrics.
In modelling labor participation as a function of wage, for example, classical theory of supply and
demand implies that increased wages should be associated with increased labor force participation.
Another situation comes from options pricing theory, in which the price of a call option is assumed
to be a monotone decreasing function of the strike price.

Consequently, there has been a great deal of literature devoted to nonparametric estimation
with monotonicity constraints. A relatively recent summary of such work is found in Robertson

et.al.(1988). Since then, there has been substantial research on nonparametric isotonic regression
procedures. A rate of convergence for estimators of monotone regression functions was established
by Van der Geer (1990). Mammen (1991) analyzed rates of convergence for two-step estimators
involving kernel smoothing and isotonic regression. Alternative methodology for producing a
monotone estimate from an initial smooth was developed by Hall and Huang (2001). Hypothesis
testing procedures involving monotonicity have been proposed by Ghosal, Sen and Van der

Vaart (2000), Gijbels and Heckman (2000) and Hall and Heckman (2000). Procedures focusing
more on the algorithmic aspects of nonparametric regression with monotonicity constraints have
been given by Dykstra and Robertson (1982), Friedman and Tibshirani (1984), Villalobos

and Wahba (1987), He and Shi (1998), Ramsay (1998) and Mammen et. al. (2001).

The preceding literature deals with the problem of studying nonparametric regression models
with monotone constraints. In many applications, however, semiparametric modelling procedures
are more useful. Advantages of this approach include concise summaries of covariate effects in
the parametric component of the model. In contrast to the previous paragraph, semiparametric
modelling procedures with monotonicity constraints have been less studied. Hastie and Tibshirani

(1990) and Shiboski (1998) suggest combining backfitting procedures with isotonic regression
algorithms for estimation in some of these settings. However, the asymptotic results concerning such
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procedures are not available. On the other hand, Huang (2002) derives some asymptotic results in
a semiparametric model with a continuous response. However, no algorithmic characterizations are
presented in that article. In addition, generalizations to noncontinuous outcomes have not been
well–addressed in the literature. Regarding problems of inference involving semiparametric models,
Murphy and Van der Vaart (1997) have noted that inference based on Wald-type statistics
tends to be fairly unstable and have developed an elegant theory of semiparametric likelihood
ratio inference. However, their focus is on the finite-dimensional component in the model and not
on the infinite-dimensional component. In fact, in a later paper (Murphy and Van der Vaart

(2000)), inference for the parametric component of the model is made by profiling out the infinite
dimensional component (which is treated as a nuisance parameter) and the profile likelihood
function is shown to have some of the crucial properties of usual parametric likelihoods. However,
this approach does not suffice when interest focuses on both the parametric and nonparametric
components of the model.

Binary regression models are used frequently to model the effects of covariates on dichotomous
outcome variables. The most well known of these methods is logistic regression. In parametric
logistic regression, the log-odds of observing an event is modelled as a linear function of the
covariates. More generally, parametric binary regression models can be formulated as follows: If
∆ is the indicator of the outcome and X is a set of covariates believed to influence the outcome,
one can write

g(µ(X, Z)) = βT X (1.1)

where µ(X,Z) = P (∆ = 1 | X,Z) and g can be taken to be a smooth monotone increasing function
from (0, 1) to (−∞,∞) and is called the “link function”. Models of this kind are fairly well–studied
in the literature on generalized linear models (see, for example, McCullagh and Nelder (1989))
and algorithms for computing the vector of regression coefficients are well–known. Commonly used
link functions are the logit (logistic regression), the probit and the complementary log-log (cloglog).
Our interest is in situations where in addition to X, there is an additional covariate Z whose effect
on the outcome variable is known qualitatively. More specifically, it is known that higher values of
Z are associated with higher chances of an outcome (∆ = 1). To incorporate the effect of Z in the
model, and to ensure the monotonicity (monotone increasing) of the conditional probability of an
outcome in Z, we extend (1.1) in the following way. We write,

g(µ(X,Z)) = βT X + ξ(Z) , (1.2)

where ξ(z) is some monotone function of Z. Thus the nonparametric component affects the
conditional probability of a positive outcome additively on the scale of the link function. Also note
that this implies that µ(X, Z) is monotone increasing in Z for every fixed X.

Models of this kind are useful in a variety of settings and have been studied by various
authors. Dunson (2004) considers nonparametric estimation of ξ as in (1.2) above from a Bayesian
angle. More generally, binary regression models where the conditional mean of the outcome
variable is monotone in one of the regressors have been studied in econometric contexts by Magnac

and Maurin (2003) (see also Manski and Tamer (2002)). Freitag (2004) considers interval
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estimation for quantiles in monotone binary regression models with applications to current status
data. Our interest in models of this sort was triggered by some data involving biomarker and other
covariate measurements on a group of individuals being monitored for prostate cancer, obtained
from the CARET study (see Etzioni et. al. (1999)). In this example, the outcome variable ∆ is
the indicator of prostate cancer, while Z is an appropriate transform of free and bound PSA in the
serum and higher values of Z are believed to be associated with greater risk for cancer. Control
covariates (like age) also need to be adjusted for; we discuss these issues in greater detail in Section 5.

In this article, we consider the use of likelihood ratio inference-based methods in a semiparametric
binary regression model of the type described in (1.2). For the sake of concreteness we focus on a
particular link function – the cloglog link. Thus, (1.2) reduces to:

log (− log(1− µ(X))) = βT X + ξ(Z) ,

where ξ is a monotone increasing function diverging to −∞ as the argument converges to 0 and
diverging to ∞ as the argument diverges to ∞. The covariate Z, without loss of generality, can be
assumed to lie in a compact interval contained in the positive axis.

A question that may naturally arise is the use of the particular cloglog link. There are two
main reasons for this. Firstly, the use of the cloglog link ensures that the resulting likelihood
function for the data is suitably concave in both the finite dimensional and infinite dimensional
parameter. This makes the computation of MLE’s tractable and allows convenient characterizations
of these. However, other link functions (like the logit) also enjoy this property. Secondly, as will
be seen in Section 2, under our proposed modelling scheme, the likelihood for the data is identical
to the likelihood under the Cox Proportional Hazards Model with Current Status Data. This is
a problem that has been fairly well studied in the recent past (see, for example Huang (1994),
Huang (1996), Murphy and Van der Vaart (1997)); hence many of the techniques and results
from this model can be fairly easily adapted to our setting. Writing µ(Z,X) = g(β, Z,X) and
Λ(β, Z, X) = − log (1− g(β, Z, X)) and Λ(Z) = exp(ξ(Z)), the above model can easily be written
as:

Λ(β, Z, X) = exp(βT X) Λ(Z) .

Setting Λ(Z) = − log (1− g(Z)), we can write:

P (∆ = 0 | Z,X) = 1− g(β, Z,X) = (1− g(Z))exp(βT X) ,

where g(·) is an increasing and continuously differentiable function defined on [0,∞) with g(0) = 0
and limz→∞ g(z) = 1. For each fixed X, g(β, ·, X) can be thought of as a distribution function on
the positive half–line. We call g(β, ·, 0) ≡ g(·) the baseline conditional probability function. The
function Λ(Z) is the cumulative hazard function corresponding to g(Z) whereas Λ(β, Z,X) is the
cumulative hazard function corresponding to g(β, Z,X).

The likelihood for a single observation and connections to the Proportional Hazards
Model: The density function of the vector (∆, Z, X) can be written as:

pβ,Λ(δ, z, x) = (1− exp(−Λ(z) exp(βT x)))δ (exp(−Λ(z) exp(βT x)))1−δ f(z, x) , (1.3)

4
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where f(z, x) is the joint density of (Z,X) with respect to Leb × µ where Leb denotes Lebesgue
measure on [0,∞) and µ is some measure defined on Rd where d is the dimension of X. But
the above joint density (1.3) is identical to that for the Cox Proportional Hazards Model with
current status data. To see this consider the following scenario: Let T denote the survival time
of an individual, Y denote the time they are observed at and W denote a vector of covariate
measurements on the individual. Suppose that T and Y are conditionally independent given W .
Further suppose that one only observes (D = 1(T ≤ Y ), Y,W ). Let Λ(t | w) denote the conditional
hazard function of the survival time T given W = w. Suppose that

Λ(t | w) = Λ(t) exp(βT w) .

This is the Cox Proportional Hazards assumption with Λ acting as the baseline hazard. Suppose
that the joint distribution of (Y, W ) is described by the density function f(·, ·). We can now write
down the joint density of (D, Y, W ) quite easily. Using the conditional independence of T and
Y given W , we find that the conditional distribution of D given (Y,W ) = (y, w) is Bernoulli
(F (y | w)). Here, F (· | w) is the conditional distribution of T given W = w. Thus, the conditional
density of D given (Y = y, W = w) is

p(d | y, w) = F (y | w)d (1− F (y | w))1−d .

Substituting
F (y | w) = 1− exp(−Λ(y | w)) = 1− exp(−Λ(y) exp(βT w))

into the previous display, we obtain the joint density of (D, T, W ) as,

p̃(d, y, w) = (1− exp(−Λ(y) exp(βT w)))δ (exp(−Λ(y) exp(βT w)))1−δ f(y, w) . (1.4)

Comparing (1.4) with (1.3), we find that they are identical. This implies that the joint distribution
of (I, Y, W ) is the same as the joint distribution of (∆, Z, X). Thus the sample {∆i, Zi, Xi}n

i=1 at
hand may be regarded as a sample from the Cox PH model with current status censoring (with ∆i

denoting the current status of the i’th observation, Zi denoting the observation time and Xi the
vector of control covariates).

Our main focus in this paper will be to make inferences on β, the regression parameter
and g (equivalently Λ), the baseline conditional probability function using likelihood ratios. This
will involve studying the likelihood ratio statistic for the following testing problems: (a) H0 : β = β0

and (b) H̃0 : Λ(z0) = θ0 for some fixed point z0 in the domain of Z. Note that (b) is equivalent
to testing for the value of g at a particular point. While inferences for β and g can be carried out
using the limit distributions of the corresponding maximum likelihood estimates, we do not adopt
this route, because the corresponding limit distributions involve nuisance parameters that can
be difficult to estimate. On the other hand, the likelihood ratio statistics, as will be shown, are
asymptotically pivotal quantities with fixed and known limit distributions and confidence intervals
may be readily constructed by inverting the acceptance region of the likelihood ratio tests with
thresholds determined by the quantiles of the limiting pivotal distributions. The superiority of
likelihood ratio based confidence intervals over Wald type ones (which the limit distribution theory

5

Hosted by The Berkeley Electronic Press



for the MLE’s would yield) is well known; see the discussion in the introduction of Murphy and

Van der Vaart (1997) and Chapter 1 of Banerjee (2000).

While the likelihood ratio statistic for testing H0 : β = β0 can be studied by applying the
theory of Murphy and Van der Vaart (1997), the likelihood ratio procedure for testing the value
of Λ at a fixed point (or multiple points) which we deal with in this paper has hitherto never been
studied. We will show that the likelihood ratio statistic for testing H̃0 : Λ(z0) = θ0 converges in
distribution to the random variable D, which is a very well characterized functional of standard
two–sided Brownian motion with parabolic drift. It can be thought of as an analogue of the χ2

1

distribution (from a likelihood ratio perspective) in nonregular statistical problems involving n1/3

rate of convergence for maximum likelihood estimators and non–Gaussian limit distributions.
Indeed the maximum likelihood estimator Λ̂n converges to the true Λ at rate n1/3 in this problem,
despite

√
n rate of convergence for β̂.

Our new result is a powerful one – it gives a simple and yet elegant way of estimating Λ
(equivalently g) without having to estimate limiting quantiles. Our result is equally applicable to
the problem of estimating the baseline survival function in the Cox PH model with current status
data (because of the correspondence between this model and ours, as illustrated above).

The rest of the paper is organized as follows. Maximum likelihood estimation and novel
likelihood ratio-based inferential procedures are discussed in Section 2. The associated asymptotic
results, which are also new, are given in Section 3. The finite-sample properties of the proposed
methods are assessed using simulation studies and with application to data from a prostate cancer
study in Section 4. We conclude with some discussion in Section 5. Proofs of some of the results
in Section 4 are collected in the Appendix (Section 6).

2 COMPUTING MLE’S AND LIKELIHOOD RATIOS

In what follows, we denote the true underlying values of the parameters (β, Λ) by (β0, Λ0). The
log–likelihood function for the sample, up to an additive factor that does not involve any of the
parameters of interest, is given by,

ln(β, Λ) =
n∑

i=1

[
∆i log (1− exp(−Λ(Zi) exp(βT Xi)))− (1−∆i) exp(βT Xi) Λ(Zi)

]
.

Let Z(1), Z(2), . . . , Z(n) denote the ordered values of the Zi’s; let ∆(i) and X(i) denote the indicator
and covariate values associated with biomarker value Z(i). Also, let Λi ≡ Λ(Z(i)) and Ri(β) =
exp(βT X(i)). For δ ∈ {0, 1} and r, u ≥ 0 set,

φ(δ, r, u) = −δ log(1− e−r u) + (1− δ) r u . (2.5)

It is easy to check that φ is convex in u; also,

−ln(β, Λ) ≡ Ψ(β, Λ) =
n∑

i=1

φ(∆(i), Ri(β), Λi) .

6

http://biostats.bepress.com/umichbiostat/paper49



The parameter set for β is taken to be a bounded subset C ⊂ Rd. Here d is the dimension of the
covariate X.

Minimizing Ψ with respect to β and Λ amounts to finding

(
β̂n, (Λ̂n,1, Λ̂n,2, . . . , Λ̂n,n)

)
= argminβ∈C , 0≤u1≤u2≤...≤un

n∑

i=1

φ(∆(i), Ri(β), ui) .

Thus the MLE of Λ is only identifiable up to its values at the Z(i)’s. This does not cause a problem
as far as the asymptotic results are concerned; however, for the sake of concreteness we take Λ̂n,
the MLE of Λ to be the (unique) right–continuous increasing step function that assumes the value
Λ̂n,i at the point Z(i) and has no jump points outside of the set {Z(i)}n

i=1.

Let Λ̂(β)
n = argminΛ Ψ(β,Λ). As above, we can compute Λ̂(β)

n uniquely only up to its values at the
Z(i)’s and indeed, we identify it with this vector. Thus,

β̂n = argminβ Ψ(β, Λ̂(β)
n ) and Λ̂n = Λ̂(β̂n)

n .

The likelihood ratio statistic for testing H0 : β = β0 is given by:

lrtbetan = 2 (ln(β̂n, Λ̂n)− ln(β0, Λ̂(β0)
n )) . (2.6)

We next discuss the computation of the constrained maximizers of β and Λ, say (β̂n,0, Λ̂n,0) under
H̃0 : Λ(z0) = θ0 with 0 < θ0 < ∞. As in the unconstrained case, this maximization can be achieved
in two steps. For each β, one can compute

Λ̂(β)
n,0 = argminΛ:Λ(z0)=θ0

Ψ(β, Λ) .

Then,

β̂n,0 = argminβ Ψ(β, Λ̂(β)
n,0) and Λ̂n,0 = Λ̂(β̂n,0)

n,0 .

The likelihood ratio statistic for testing H̃0 : Λ(z0) = θ0 is given by:

lrtgn = 2 (ln(β̂n, Λ̂n)− ln(β̂n,0, Λ̂n,0)) . (2.7)

One way of computing the MLE’s of β and Λ in practice is to vary β on a sufficiently fine grid
over its domain, compute Ψ(β, Λ̂(β)

n ) for each β on the grid and select that value on the grid for
which this quantity is minimized. This is in fact what Huang (1996) does. The MLE’s of β and
Λ under H̃0 can be computed similarly. The main disadvantages of the grid search procedure are
computational intensity (especially in higher dimensions) and the discretization bias. The latter
can of course be reduced by refining the grid but only at the expense of increased computational
intensity. While we did implement the grid search procedure in our simulation studies, some
alternative methods of computing β were also investigated. While there is a heuristic aspect to the
alternative procedures, we found them to work extremely well on simulated data sets, producing
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results in conformity with those produced by grid–search. The main advantage of these alternative
methods is that they are much faster.

The alternative methods are based on l̇n,β(β, Λ) ≡ (∂/∂ β) ln(β, Λ), the score function for
β. We have

∂

∂ β
Ψ(β, Λ) = −l̇n,β(β, Λ) = −

n∑

i=1

(
∆(i)

exp(−Λ(Z(i)) Ri(β))
1− exp(−Λ(Z(i))Ri(β))

− (1−∆(i))
)
×Λ(Z(i)) Ri(β) X(i) .

Now, (β̂n, Λ̂n) clearly solve
∂

∂ β
Ψ(β, Λ) = 0 . (2.8)

However, this is not the unique solution. If we define β̂n(Λ) to be the minimizer of Ψ(β, Λ) for
a fixed Λ, then clearly (β̂n(Λ), Λ) satisfies (2.8). However, one can try to find a zero of (2.8) in
the set {(β, Λ̂(β)

n ) : β ∈ C)}. Since β̂n(Λ̂(β)
n ) is not guaranteed to be equal to β, a pair of the type

(β, Λ̂n(β)) will not satsify (2.8) in general. However, β̂n(Λ̂n) = β̂n, so we are guaranteed at least
one solution, namely the MLE’s of β and Λ. Though we were not able to establish that any root of
(2.8) of the form (β, Λ̂(β)

n ) must necessarily be the MLE, this did turn out to be the case for fairly
extensive simulation studies. We solve

∂

∂ β
Ψ(β, Λ̂(β)

n ) = 0

in the following manner.

(0) Choose an intial value β(0) and a small number ε.

(1) Set β = β(0). Compute Λ̂(β)
n .

(2) Solve,
∂

∂ γ
Ψ(γ, Λ̂(β)

n ) = 0 .

Set β(0) to be equal to the solution. If | β(0) − β |< ε, stop. Otherwise go to Step (1).

The above method can be adapted in a straightforward manner for computing the MLE’s
under H̃0. We omit a discussion. The method proposed above is similar to that in Zhang (2002)

for computing maximum likelihood estimates in a semiparametric model involving panel count data.

We focus now on the computation of Λ̂(β)
n and Λ̂(β)

n,0.

Characterizing Λ̂(β)
n : This is characterized by the vector 0 ≤ Λ̂(β)

n,1 ≤ . . . ≤ Λ̂(β)
n,n that

minimizes the expression,

ψ (β, u) =
n∑

i=1

φ(∆(i), Ri(β), ui)

8
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over all 0 ≤ u1 ≤ u2 ≤ . . . ≤ un. Without loss of generality one can assume that ∆(1) = 1 and
∆(n) = 0. If not, the effective sample size for the estimation of the parameters is k2 − k1 + 1
where k1 is the first index i such that ∆(i) = 1 and k2 is the last index such that ∆(i) = 0. It is

not difficult to see that one can set Λ̂(β)
n,i = 0 for all i < k1 and Λ̂(β)

n,i = ∞ for all i > k2 without
imposing any constraints on the other components of the mininimizing vector.

The function ψ(β, u) which for brevity we will denote by ψ can be minimized using standard
methods from convex optimization theory. Using the Kuhn–Tucker theorem for minimizing a
convex function subject to linear constraints, we obtain a set of necessary and sufficient conditions
(Fenchel conditions) which are as follows:

n∑

j=i

∂ φ(∆(j), Rj(β), uj)
∂ uj

(ûj) ≥ 0 for i = 1, 2, . . . , n (2.9)

and
n∑

j=1

ûj

∂ φ(∆(j), Rj(β), uj)
∂ uj

(ûj) = 0 . (2.10)

Let B1, B2, . . . , Bk be the blocks of indices on which the solution û is constant (these are called
level blocks) and let wi be the common value on block Bi. Under our assumption that ∆(1) > 0 it
must be the case that w1 > 0. Then, on each Bi, we have that

∑

j∈Bi

∂ φ(∆(j), Rj(β), uj)
∂ uj

(wi) = 0 .

Thus wi is the unique solution to the equation

∑

j∈Bi

∂ φ(∆(j), Rj(β), uj)
∂ uj

(w) = 0 .

The solution û can be viewed as the slope of the greatest convex minorant (slogcm) of a
cumulative sum diagram. This characterization is needed for the asymptotic theory. The basic
idea is to use the Fenchel conditions above to formulate a quadratic optimization problem under
monotonicity constraints whose solution still remains û and then appeal to standard results from
the theory of isotonic regression. Details of this procedure can be found in Banerjee (2004). We
omit the details here but provide the “self–consistency” characterization of û. For 1 ≤ i ≤ n, set
di = 5ii ψ(û). Define the function ξ as follows:

ξ(u) =
n∑

i=1

[
ui − ûi +5i ψ(û) d−1

i

]2
di

=
n∑

i=1

[
ui −

(
ûi −5i ψ(û) d−1

i

)]2
di .

9
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It can be shown that û minimizes ξ subject to the constraints that 0 ≤ u1 ≤ u2 ≤ . . . ≤ un and
hence furnishes the isotonic regression of the function

g(i) = ûi −5i ψ(û) d−1
i

on the ordered set {1, 2, . . . , n} with weight function di ≡ 5ii ψ(û). It is well known that the
solution

(û1, û2, . . . , ûn) = slogcm





i∑

j=1

di ,
i∑

j=1

g(i) di





n

i=0

.

See, for example Theorem 1.2.1 of Robertson et.al.(1988).

Since û is unknown, we need to iterate. Thus, we pick an initial guess for û, say u(0) and
satisfying the monotonicity constraints, compute u(1) by solving the isotonic regression problem
discussed above, plug in u(1) as an updated guess for û, obtain u(2) and proceed thus, until
convergence. However there are convergence issues with a simple minded iterative scheme of the
above type, since the algorithm could hit inadmissible regions in the search space. Jongbloed
(1998) addresses this issue by using a modified iterated convex minorant (MICM) algorithm; see
Section 2.4 for a discussion of the practical issues and a description of the relevant algorithm which
incorporates a line search procedure to guarantee convergence to the desired value. We provide
explicit forms for the points di and gi in the current situation. We have

di =
∂2

∂ u2
i

ψ(u) =
∆(i) Ri(β)2 e−Ri(β) ui

(1− e−Ri(β) ui)2

and
g(i) = ui −5i ψ(u) d−1

i

, with

5i ψ(u) = −∆(i) e−Ri(β) ui Ri(β)
1− e−Ri(β) ui

+ (1−∆(i)) Ri(β) .

The algorithm stops when the Fenchel conditions (2.9) and (2.10) are satisfied to a pre-specified
degree of tolerance.

An important consequence of the above self–consistency characterization is the fact that on
each block (of indices) Bi where û is constant, the common solution can be written as a weighted
average of the gj ’s for the j’s in that block, with the weights given by the dj ’s. We now introduce
some notation that will prove useful later. Denote φ(∆(i), Ri(β), t) by φi,β(t) and its first and
second derivatives with respect to t by φ′i,β(t) and φ′′i,β(t). Then we can write

Λ̂(β)
n ≡ slogcm

{
k∑

i=1

φ′′i,β(Λ̂(β)
n (Z(i))) ,

k∑

i=1

[
Λ̂(β)

n (Z(i))−
φ′i,β(Λ̂(β)

n (Z(i)))

φ′′i,β(Λ̂β
n(Z(i)))

]
φ′′i,β(Λ̂(β)

n (Z(i)))

}n

k=0

.
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Hence, we can write wi, the common value of the solution Λ̂(β)
n on the block Bi, as

Λ̂(β)
n (Z(j)) =

∑
k∈Bi

{Λ̂(β)
n (Z(k))φ′′k,β(Λ̂(β)

n (Z(k)))− φ′k,β(Λ̂(β)
n (Z(k)))}∑

k∈Bi
φ′′k,β(Λ̂(β)

n (Z(k)))
for j ∈ Bi . (2.11)

Characterizing Λ̂(β)
n,0: Let m be the number of biomarker values that are less than or

equal to z0. Finding Λ̂(β)
n,0 amounts to minimizing

ψ(β, u) =
n∑

i=1

φ(∆(i), Ri(β), ui)

over all 0 ≤ u1 ≤ u2 . . . ≤ um ≤ θ0 ≤ um+1 ≤ . . . ≤ un. This can be reduced to solving two separate
optimization problems. These are:

(1) Minimize
m∑

i=1

φ(∆(i), Ri(β), ui) over 0 ≤ u1 ≤ u2 ≤ . . . ≤ um ≤ θ0.

(2) Minimize
n∑

i=m+1

φ(∆(i), Ri(β), ui) over θ0 ≤ um+1 ≤ um+2 ≤ . . . ≤ un.

Consider (1) first. As in the unconstrained minimization problem one can write down the
Kuhn–Tucker conditions characterizing the minimizer. It is then easy to see that the solution
(û(0)

1 , û
(0)
2 , . . . , û

(0)
m ) can be obtained through the following recipe. Minimize

∑m
i=1 φ(∆(i), Ri(β), ui)

over 0 ≤ u1 ≤ u2 ≤ . . . ≤ um to get (ũ1, ũ2, . . . , ũm). Then,

(û(0)
1 , û

(0)
2 , . . . , û(0)

m ) = (ũ1 ∧ θ0, ũ2 ∧ θ0, . . . , ũm ∧ θ0) .

The solution vector to (2), say (û(0)
m+1, û

(0)
m+2, . . . , û

(0)
n ) is similarly given by

(û(0)
m+1, û

(0)
m+2, . . . , û

(0)
n ) = (ũm+1 ∨ θ0, ũm+2 ∨ θ0, . . . , ũn ∨ θ0) ,

where

(ũm+1, ũm+2, . . . , ũn) = argminum+1≤um+2≤...≤un

n∑

i=m+1

φ(∆(i), Ri(β), ui) .

A careful examination of the relationship of the unconstrained solution to the constrained solution
reveals that:

Λ̂(β)
n (z) 6= Λ̂(β)

n,0(z) ⇒ Λ̂(β)
n,0(z0) = θ0 or Λ̂(β)

n (z) = Λ̂(β)
n (z0) . (2.12)

The constrained solution also has a “self–consistent” characterization in terms of the slope of
the greatest convex minorant of a cumulative sum diagram. This follows in the same way as
for the unconstrained solution by using the Kuhn–Tucker theorem and formulating a quadratic
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optimization problem based on the Fenchel conditions given by this theorem. We skip the details
but give the self-consistent characterization.

The constrained solution û(0) minimizes,

A(u1, u2, . . . , un) =
n∑

i=1

[
ui −

(
û

(0)
i −5i ψ(û(0))d−1

i

)]2
di

subject to the constraints that 0 ≤ u1 ≤ u2 ≤ . . . ≤ um ≤ θ0 ≤ um+1 ≤ . . . ≤ un and hence
furnishes the isotonic regression of the function

g(i) = û
(0)
i −5i ψ(û(0)) d−1

i

on the ordered set {1, 2, . . . , n} with weight function di ≡ 5ii ψ(û(0)). Here ψ ≡ ψ(β, u) as before.
The constrained solution can be found, as in the unconstrained case, by using the MICM. An
important consequence of the “self–consistent” characterization is that on each block B̃ of indices
on which û(0) is constant and not equal to θ0, it can be written as

∑
i∈B̃ g(i) di /

∑
i∈B̃ di. Let

B̃1, B̃2, . . . , B̃p denote the blocks of indices on which û(0) is constant and let {w̃i}p
i=1 denote the

corresponding set of values. Thus, as long as w̃i 6= θ0, it can be written as

w̃i ≡ Λ̂(β)
n,0(Z(j)) =

∑
k∈B̃i

{Λ̂(β)
n,0(Z(k)) φ′′k,β(Λ̂(β)

n,0(Z(k)))− φ′k,β(Λ̂(β)
n,0(Z(k)))}∑

k∈B̃i
φ′′k,β(Λ̂(β)

n,0(Z(k)))
for j ∈ B̃i . (2.13)

This representation will prove useful later on.

3 ASYMPTOTIC RESULTS

In this section we present asymptotic results for the estimation of β and g. The parameter space
for β is taken to be an open bounded subset of Rd. We denote it by C. The parameter space for
Λ is the space of all nondecreasing cadlag (i.e., right-continuous with left-hand limits) functions
from [0, τ ] to [0,M ] where M is some large positive constant. Let (β0,Λ0) denote the true model
parameters. We make the following assumptions:

(A.1) The true regression parameter β0 is an interior point of C.
(A.2) The covariate X has bounded support. Hence, there exists x0 such that P (‖X‖ ≤ x0) = 1.

Also E(Var(X | Z)) is positive definite with probability one.

(A.3) Let g0 denote the true baseline conditional probability function. Then g0(0) = 0. Let τg0 =
inf{z : g0(z) = 1}. The support of Z is an interval [σ, τ ] with 0 < σ < τ < τg0 .

Remarks: The boundedness of C along with assumptions (A.1)–(A.3) are imposed to deduce
the consistency and rates of convergence of the maximum likelihood estimators (see page 546 of
Huang (1996)) of β and Λ. In particular, the boundedness of the covariate X does not cause
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a problem with applications. The utility of the assumption that the conditional dispersion of X
given Z is poistive definite is explained below. Further assumptions follow; of these (A.4) and (A.5)
are fairly weak regularity conditions on the true baseline conditional probability function and the
distribution of the biomarker. The assumption (A.6) is a very technical assumption and is require
to ensure that one can define appropriate approximately least favorable submodels as in Murphy

and Van der Vaart (1997) (pages 1483–1484). These are crucial for deriving the limit distribution
of the likelihood ratio statistic for testing for the regression parameter.

(A.4) Let Λ0 = − log (1− g0). We assume that 0 < Λ0(σ−) < Λ(τ) < M . Also, Λ0 is continuously
differentiable on [σ, τ ] with derivative λ0 bounded away from 0 (and automatically from ∞).

(A.5) The marginal density of Z is continuous and positive on [σ, τ ].

(A.6) The function h? ? given by (3.14) has a version which is differentiable componentwise with
each component possessing a bounded derivative on [σ, τ ].

We now introduce the efficient score function for β in this model. Recall that the joint density
of the vector (∆, Z, X) is given by:

pβ,Λ(δ, z, x) = (1− exp(−Λ(z) exp(βT x)))δ (exp(−Λ(z) exp(βT x)))1−δ f(z, x) .

The ordinary score function for β in this model is:

l̇β(β, Λ)(δ, z, x) = (∂/∂ β) log pβ,Λ(δ, x, z) = xΛ(z) Q((δ, z, x); θ,Λ) ,

where

Q((δ, z, x); θ, Λ) = eβT x

[
δ

exp(−eβT x Λ(z))
1− exp(−eβT x Λ(z))

− (1− δ)

]
.

The score function for Λ is a linear operator acting on the space of functions of bounded variation
on [σ, τ ] and has the form:

l̇Λ(β, Λ)(h(·))(δ, z, x) = h(z) Q((δ, z, x); θ,Λ) .

Here h is a function of bounded variation on [σ, τ ]. The efficient score function for β at the true
parameter values (β0, Λ0), which we will denote by l̃ for brevity, is defined as

l̃ = l̇β(β0, Λ0)− l̇Λ(β0,Λ0)h?

for functions h? = (h?
1, h

?
2, . . . , h

?
d) of bounded variation, such that h?

i minimizes the distance

Eβ0,Λ0(l̇β,i(β0, Λ0)− l̇Λ(β0, Λ0) h(·))2 ,

for h varying in the space of functions of bounded variation on [σ, τ ]. Here

l̇β,i(β0, Λ0) = xi Λ(z)Q((δ, z, x);β0, Λ0)
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is the i’th component of the ordinary score function for β. The problem of finding h?
i for each i is

a weighted least squares problem and the solution to h? can be easily seen to be given by:

h?(Z) = Λ0(Z) h? ?(Z) = Λ0(Z)
Eβ0,Λ0(Z Q2((∆, Z, X);β0,Λ0 | Z))
Eβ0,Λ0(Q2((∆, Z, X);β0, Λ0 | Z))

. (3.14)

The assumption that E(Var(X | Z)) is positive definite (A.2) ensures that l̃ the efficient score
function for β is not identically zero, whence the efficient information Ĩ0 = Disp(l̃) ≡ Eβ0,Λ0(l̃ l̃

T )
is positive definite (Note that Eβ0,Λ0(l̃) = 0). This entails that the MLE of β will converge at

√
n

rate to the true value and have an asymptotically normal distribution with a finite dispersion matrix.

Now consider the problem of testing H0 : β = β0 based on our data, but under the (true)
constraint that Λ(z0) = θ0. Thus, we define:

lrtbeta0
n = 2 log

argmaxΛ(z0)=θ0
ln(β, Λ)

argmaxβ=β0,Λ(z0)=θ0
ln(β, Λ)

. (3.15)

Thus,
lrtbeta0

n = 2 ln(β̂n,0, Λ̂n,0)− 2 ln(β0, Λ̂
(β0)
n,0 ) .

We now state a theorem describing the asymptotic behavior of β̂n and β̂n,0 (which we subsequently
denote by β̃n) and the likelihood ratio statistics lrtbetan as defined in (2.6) and lrtbeta0

n above.

Theorem 3.1 Under Conditions (A.1) – (A.7), both β̂n and β̃n are asymptotically linear in the
efficient score function and have the following representation:

√
n (β̂n − β0) =

1√
n

Ĩ−1
0

n∑

i=1

l̃(∆i, Zi, Xi) + rn

and
√

n (β̃n − β0) =
1√
n

Ĩ−1
0

n∑

i=1

l̃(∆i, Zi, Xi) + sn

where rn and sn are op(1). Hence both
√

n (β̂n − β0) and
√

n (β̃n − β0) converge in distribution to
N(0, Ĩ−1

0 ).

Furthermore,
lrtbetan = n(β̂n − β0)T Ĩ0 (β̂n − β0) + op(1) , (3.16)

while
lrtbeta0

n = n(β̃n − β0)T Ĩ0 (β̃n − β0) + op(1) . (3.17)

It follows that both lrtbetan and lrtbeta0
n are asympotically distributed like χ2

d.
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We do not provide a detailed proof of this theorem in this paper. The properties of β̂n and lrtbetan

stated in the theorem can be deduced by arguments similar to those in Theorem 3.4 of Huang

(1996) and the treatment of the Cox Proportional Hazards Model with Current Status Data in
Murphy and Van der Vaart (1997). The derivation in Murphy and Van der Vaart (1997) is
done for a one–dimensional β but the proof extends easily to higher dimensions. An alternative
route to the asymptotic distribution of β̂n is to adapt the arguments in Section A.3 of Murphy

and Van der Vaart (1997). The asymptotically linear representation for β̃n and the limiting χ2

distribution for lrtbeta0
n follows in analogous fashion. Some additional care needs to be exercised,

since the parameter space for Λ is now restricted by fixing the value at the point z0. Roughly the
intuition is the following: β̂n, the unconstrained MLE of β, is

√
n–consistent and asymptotically

efficient for the given model. The unconstrained likelihood ratio statistic for testing β = β0, which
we denote by lrtbetan, is asymptotically χ2. These properties will be preserved even when we
compute the above statistics under the single (true) constraint that Λ(z0) = θ0. In fact, the same
asymptotic representations for the above statistics will continue to hold when we constrain Λ
at finitely many points. Note however, that the limit distribution of the MLE will generally be
affected under infinitely many constraints on Λ. This is easily seen when we constrain Λ on the
support of Z. In this case Λ is completely known and the asymptotic variance of β is the inverse
of the ordinary information for θ as opposed to the efficient information.

We next state asymptotic results concerning the nonparametric component of the model.
In order to do so, we introduce the following processes. For positive constants c and d define the
process Xc,d(z) := c W (z) + d z2, where W (z) is standard two-sided Brownian motion starting
from 0. Let Gc,d(z) denote the GCM (greatest convex minorant) of Xc,d(z). Then gc,d(z) is the
right derivative of Gc,d and can be shown to be a piecewise constant (increasing) function, with
finitely many jumps in any compact interval. Next, let Gc,d,L(h) denote the GCM of Xc,d(h) on
the set h ≤ 0 and gc,d,L(h) denote its right–derivative process. For h > 0, let Gc,d,R(h) denote the
GCM of Xc,d(h) on the set h > 0 and gc,d,R(h) denote its right–derivative process. Define g0

c,d(h)
as gc,d,L(h) ∧ 0 for h ≤ 0 and as gc,d,R(h) ∨ 0 for h > 0. Then g0

c,d(h), like gc,d(h), is a piecewise
constant (increasing) function, with finitely many jumps in any compact interval and differing
(almost surely) from gc,d(h) on a finite interval containing 0. In fact, with probability 1, g0

c,d(h)
is identically 0 in some (random) neighborhood of 0, whereas gc,d(h) is almost surely non-zero in
some (random) neighborhood of 0. Also, the interval Dc,d on which gc,d and g0

c,d differ is Op(1).
For more detailed descriptions of the processes gc,d and g0

c,d, see Banerjee (2000), Banerjee and

Wellner (2001) and Wellner (2001). Thus, g1,1 and g0
1,1 are the unconstrained and constrained

versions of the slope processes associated with the canonical process X1,1(z). By Brownian scaling,
the slope processes gc,d and g0

c,d can be related in distribution to the canonical slope processes g1,1

and g0
1,1. This is the content of the following proposition.

Lemma 3.1 For any M > 0, the following distributional equality holds in the space L2[−M,M ]×
L2[−M,M ]:

(
gc,d(h), g0

c,d(h)
) D=

(
c (d/c)1/3g1,1

(
(d/c)2/3h

)
, c (d/c)1/3g0

1,1

(
(d/c)2/3h

))
.
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Here L2[−M, M ] denotes the space of real–valued functions on [−M,M ] with finite L2 norm (with
respect to Lebesgue measure).

This is proved in Banerjee (2000), Chapter 3.

Let z0 be an interior point of the support of Z. Now, define the (localized) slope processes
Un and Vn as follows:

Un(h) = n1/3 (Λ̂(β0)
n (z0 + hn−1/3)− Λ0(z0)) and Vn(h) = n1/3 (Λ̂(β0)

n,0 (z0 + h n−1/3)− Λ0(z0)) .

The following theorem describes the limiting distribution of the slope processes above.

Theorem 3.2 Define,

C(z0) =
∫

e2 βT
0 x exp(−eβT

0 x Λ0(z0))

1− exp(−eβT
0 x Λ0(z0))

f(z0, x) dµ(x) .

Assume that 0 < C(z0) < ∞. Let

a =

√
1

C(z0)
and b =

1
2

λ0(z0) ,

where λ0 is the derivative of Λ0. The processes (Un(h), Vn(h)) converge finite dimensionally to
the processes (ga,b(h), g0

a,b(h)). Furthermore, using the monotonicity of the processes Un and Vn, it
follows that the convergence holds in the space L2[−K, K]× L2[−K, K] for any K > 0.

We now describe the limiting behavior of the likelihood ratio statistic for testing (the true) H̃0 :
Λ(z0) = θ0.

Theorem 3.3 The likelihood ratio statistic for testing H̃0 : Λ(z0) = θ0 as defined in (2.7) converges
in distribution to D where

D =
∫ (

(g1,1(z))2 − (g0
1,1(z))2

)
dz .

We end this section with the statement and discussion of a conjecture which has been supported
very well by simulation experiments.

Conjecture: The likelihood ratio statistic for testing H0 : β = β0, Λ(z0) = θ0 converges in
distribution to the convolution of D and χ2

d.

Denote the likelihood ratio statistic for testing H0 by Ln. The conjecture is motivated by
the fact that

Ln = lrtbetan + 2 (ln(β0, Λ̂(β0)
n )− ln(β0, Λ̂

(β0)
n,0 )) .

The first term on the right side of the above display is asymptotically distributed like χ2
d and

the second term, by the proof of Theorem 3.3, is distributed asymptotically like D. Thus, for the
conjecture to hold, we need the asymptotic independence of the first and the second term. This fact
still remains to be established; however, numerical simulations strongly support the above result.

16

http://biostats.bepress.com/umichbiostat/paper49



0.6 0.8 1.0 1.2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Biomarker

E
st

im
at

e

Unconstrained Estimator
Estimator constrained at 1.0

Figure 1: Constrained and unconstrained nonparametric estimators of Λ0(t).

4 NUMERICAL COMPARISONS

In this section we report results from simulation studies and data analysis.

4.1 SIMULATION STUDIES

In an attempt to assess the performance of the techniques described above, extensive simulation
studies were conducted, of which only a fraction are reported here.

Data were generated as {(∆i, Zi, Xi) : i = 1, 2, . . . , n} from pβ,Λ(·), as defined in Section 1,
for fixed values of the parameters β and Λ(·). For simplicity, Xi was assumed to be univariate.

Two choices were considered for the joint distribution of (Zi, Xi). In the first, we assumed
independence of Zi and Xi with Xi being normally distributed with mean 0 and variance 1
truncated to lie in [-2, 2], whereas Zi has an Exponential distribution with mean 1 and truncated
to [0.5, 1.5]. In the second case, Xi has the same distribution as in the first case but conditional
on Xi, Zi has a truncated Exponential distribution on [0.5, 1.5] with mean 8/(8 + Xi). The
conditional distribution of ∆i is thus Bernoulli with probability pi = 1 − exp{−Λ(Zi)eβXi}. This
set–up can be verified to satisfy assumptions (A.1) – (A.6) of Section 3.

Sample sizes n = 200, 500 and 1000 were considered. We took β = −0.5,−0.25, 0.0, 0.25
and 0.5. The choice for Λ(t) was taken as Λ(t) = t4. Simulations for a linear and concave
shaped Λ(t) were also carried out; the estimators performed similarly to that reported here.
Likelihood ratio tests of hypotheses of the form H0 : β = β0 and H̃0 : Λ(z0) = θ0 were carried out
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resulting in confidence intervals for β and Λ(z0). For a fixed value of x0, a confidence interval for
p0 = 1 − exp{−Λ(z0)eβx0}, was also constructed using the confidence intervals for β and Λ(z0)
simultaneously, using the Bonferroni procedure to adjust for the overall coverage probability.
The target coverage for the individual intervals for β and Λ(z0) was taken as 97.5% so that one
expects to have a coverage of at least 95% for p0. Coverage probabilities and average lengths were
estimated from 1000 replications.

Tables 1 and 2 demonstrate the performance of the confidence intervals, where for each
fixed value of β and a combination of (z0, x0), the first row refers to the coverage probability, with
the second row showing the average length of the interval. As expected, the intervals get narrower
with increasing sample size. The coverage for Λ(z0) is not affected by changes in β or (z0, x0),
although the coverage for β gets affected as it moves farther from zero. The coverage for p0 turns
out to be conservative in almost all of the cases.

Figure 1 demonstrates the performance of the unconstrained and constrained nonparametric
estimators of Λ(t) for a single sample of size 1000 and z0 = 1.0. The estimators are doing
quite well, and differing only in a neighborhood of z0 = 1.0, as expected. Figure 2 displays the
quantile-quantile plot for the likelihood ratio statistic for testing H̃0 and it can be seen that the
statistic is performing well. Finally, Table 3 demonstrates the fact that the likelihood ratio statistic
approaches the limit earlier than

√
n(β̂ − β), the centered and scaled MLE β̂, in finite samples.

This is carried out by regressing the quantiles of the likelihood ratio statistic on that of the χ2
1

distribution and by regressing the quantiles of
√

n(β̂ − β) on that of the N(0, 1) distribution.
There is a significant intercept in the latter case, indicative of a bias, whereas the intercept and
slope from the former case reflect the true values more closely. The true value of β in Table 3 was
chosen as 0.25.

4.2 PROSTATE CANCER DATA

The procedures in the paper were motivated by and implemented on a prostate cancer data set
obtained from the CARET study (for the details, see Etzioni et. al. (1999)). Prostate specific
antigen (PSA) measured in serum is currently used as a biomarker for prostate cancer. Free and
bound levels of PSA were measured in 71 subjects who developed prostate cancer (∆ = 1) and
71 age-matched controls (∆ = 0), all of whom participated in the study. The 71 prostate cancer
cases were diagnosed between September 1988 and September 1995. Each case was assigned a
matched control, namely, a study subject who had not been diagnosed as having prostate cancer
by the time of analysis. Subjects who participated had serum drawn and stored at entry into
the study and at 2 year intervals thereafter. The inspection times for PSA were measured with
reference to the time of diagnosis. For the purpose of our analyses, we considered only the most
recent PSA measurement relative to diagnosis for each subject. We considered Z = − log(free
PSA / total PSA) as the biomarker. A typical assumption in biomarker studies is that increasing
levels of the biomarker is associated with increased risk of developing the disease. Therefore, in
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the semiparametric model, we modelled the effect of Z on disease risk as a monotonic function.
The covariates included in the parametric component of the model included age and time relative
to diagnosis.

Maximum likelihood estimates for the regression parameter β were obtained and likelihood
ratio tests were conducted for testing H0 : β = 0 using the methods of Section 2. Based on the
parameter estimates, the parametric component is highly significant; the p-value for H0 : β = 0 is
less than 1.1 × 10−16). The estimated coefficient for age is numerically very small (β̂2 = 0.015),
due to the fact that age had been adjusted for in the design of the study by enrolling age-matched
controls. The coefficient for time relative to diagnosis is negative (β̂1 = −3.562), thereby implying
that smaller time to diagnosis is associated with larger probability of prostate cancer. Figure
3 displays the joint confidence set obtained for β in two dimensions and Figure 4 displays the
estimate of Λ(z) as discussed in Section 2.

Confidence intervals for Λ(z0) and the disease probability p0 were also obtained for some
choices of z0 and x0 = (x01, x02)′. The choice for z0 was taken as the median value of the
biomarker at 1.46. The graph of Λ (the cumulative hazard corresponding to the baseline
conditional probability function) also indicates that there is a change in the curve around the
median value; to the left, the cumulative hazard is almost flat whereas it starts rising fairly quickly
to the right. A number of choices were made for x0 and are summarized in Table 4. The target
confidence level for p0 was taken at 95%. It is clear from Table 4 that the disease probability
increases with increasing age and decreases with increasing time relative to diagnosis. However,
the data do not seem to carry much information about disease incidence for smaller values of times
relative to diagnosis (the first three rows of the table are not very informative).
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Figure 4: Estimate of Λ(z).

5 DISCUSSION

In this paper, we have studied a semiparametric binary regression model and applied it to
studying the association between biomarker levels and prostate cancer in the presence of auxiliary
covariates. The effect of the auxiliary covariates is captured by a finite–dimensional regression
parameter, whereas that of the biomarker is specified through a monotone increasing function.
While we have used the complementary log log link in our modelling scheme our results are by
no means restricted to the use of this specific link function. Link functions that preserve the
concavity of the log–likelihood function in Λ and are adequately differentiable will typically work.
The complementary log log link has the nice property that it relates the regression model to the
Cox PH model under interval censoring.

The use of likelihood ratios for estimating both the finite and infinite dimensional components of
the model proves advantageous, since nuisance parameters need no longer be estimated. Because
of the natural connection to the Cox PH model, as discussed in Section 1, this work also provides
a means for estimating the baseline hazard function in the Cox model under interval censoring.

Some issues remain. Firstly, the likelihood (and likelihood ratio) based approach uses step
estimates of the underlying monotone function Λ. However, since the true function is smooth,
it is conceivable that a smooth isotonic estimate of Λ may lead to better finite sample inference
than the likelihood based method. Such smoothness constraints are typically imposed through
penalized likelihood or penalized least squares criteria. This seems to be a direction for further
research. Secondly, the plot of the NPMLE of Λ (Figure 4) indicates that there is a fairly marked
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Table 3: Performance of the Likelihood Ratio Statistic versus the centered ML statistic.

Linear Regression of LRT(β) quantiles on χ2
1 quantiles

Effect Estimate Std. Error t value P-Value
Intercept -0.0002 0.0092 -0.03 0.98

Slope 1.1628 0.0069 168.26 <2e-16

Linear Regression of
√

n(β̂ − β) quantiles on N (0 , 1 ) quantiles

Effect Estimate Std. Error t value P-Value
Intercept 0.5940 0.0122 48.54 <2e-16

Slope 2.2243 0.0142 157.03 <2e-16

Table 4: Confidence intervals for disease probability.

Age
Time 57.31 63.32 67.50 71.38 75.86
-0.131 [0, 1] [0, 1] [0, 1] [0, 1] [0, 1]
3.162 [0, 0.99] [0, 1] [0, 1] [0, 1] [0, 1]
3.992 [0, 0.91] [0, 0.99] [0, 0.99] [0, 0.99] [0, 1]
5.164 [0, 0.25] [0, 0.43] [0, 0.60] [0, 0.76] [0, 0.91]
5.777 [0, 0.09] [0, 0.17] [0, 0.26] [0, 0.38] [0, 0.54]

24

http://biostats.bepress.com/umichbiostat/paper49



change in the behavior of the function around 1.5 (close to the median value of the biomarker).
The function is reasonably flat to the left of 1.5 and takes off rapidly to its right. This suggests
that instead of estimating the function pointwise, it might be of interest to estimate a threshold
value for the biomarker. Determining thresholds through split– point estimation techniques
have been recently studied by Banerjee and McKeague (2003) in the context of fairly general
nonparametric regression problems. A semiparametric generalization of their approach to discrete
outcome variables may prove fruitful for determining such a threshold value.

Finally, while the likelihood ratio method has natural advantages as illustrated in this paper,
one problem with implementing it to construct confidence sets for the regression parameter β
(especially in higher dimensions) is the “inversion” itself. For one dimensional β, the convexity of
the log–likelihood ratio in β dictates that the confidence set be an interval and a bisection method
can be resorted to. For higher dimensions however, determining the level sets of the likelihood
ratio can be a tricky affair. For the data analyzed in this paper (with two–dimensional β), we used
grid–search, but this is not really a feasible option in high dimensions. Apart from prohibitive
computational complexity, the grid–search method only gives us a grid–based approximation
to the true convex set and the possibility of obtaining better approximations to the true set
through advanced computational techniques suggests itself. Such techniques, if developed fairly
generically, would be useful for obtaining likelihood ratio based confidence sets in a wide variety
of semiparametric problems.

6 APPENDIX

Proof–sketch of Theorem 3.2: The proof of this theorem relies on extensive use of “switching
relationships” which allow us to translate the behavior of the slope of the convex minorant of a
random cumulative sum diagram (this is how the estimators Λ̂(β0)

n and Λ̂(β0)
n,0 are characterized)

in terms of the minimizer of a stochastic process. The limiting behavior of the slope process can
then be studied in terms of the limiting behavior of the minimizer of this stochastic process by
applying argmin continuous mapping theorems. Switching relationships on the limit process then
allow interpretation of the behavior of the minimizer of the limit process in terms of the slope
of the convex minorant of the limiting versions of the cumulative sum diagrams (appropriately
normalized).

The first step is to establish finite–dimensional convergence of the processes (Un(h), Vn(h))
to (ga,b(h), g0

a,b(h)). Thus, it is shown that for any (h1, h2, . . . , hk), the random vector
(
{Un(hi)}k

i=1, {Vn(hi)}k
i=1

)
→d

(
{ga,b(hi)}k

i=1, {g0
a,b(hi)}k

i=1

)
,

in the space R2k. Next, to deduce the convergence in L2[−K, K]×L2[−K, K] note firstly that Un(h)
and Vn(h) are monotone functions. Now, given a sequence (ψn, φn) in L2[−K, K]×L2[−K, K] such
that ψn and φn are monotone functions and for all vectors (h1, h2, . . . , hk) ,

(ψn(h), φn(h)) |h=h1,h2,...,hk
→ (ψ(h), φ(h)) |h=h1,h2,...,hk
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where (ψ, φ) is in L2[−K, K] × L2[−K,K] it is the case that (ψn, φn) → (ψ, φ) in L2[−K, K] ×
L2[−K, K] . It then immediately follows, in the wake of convergence of all the finite - dimensional
marginals of (Un, Vn) to those of (ga,b(h), g0

a,b(h)), that

(Un(h), Vn(h)) →d (ga,b(h), g0
a,b(h))

in L2[−K, K]× L2[−K,K] (this parallels the result of Corollary 2 following Theorem 3 of Huang

and Zhang (1994)). 2

In the remainder of this proof we will sketch the proof of convergence of Un(h) to ga,b(h)
for any h; the general proof of finite–dimensional convergence is cumbersome to write out and
contains minor extensions of the ideas expounded here. In what follows, we denote Λ̂(β0)

n by Λ̃.
For a fixed Λ we define the following processes:

Wn,Λ(r) = Pn

[
eβT

0 X

(
∆exp(−eβT

0 X Λ(Z))

1− exp(−eβT
0 X Λ(Z))

− (1−∆)

)
1(Z ≤ r)

]
,

Gn,Λ(r) = Pn

[
∆

e2 βT
0 X exp(−eβT

0 X Λ(Z))

(1− exp(−eβT
0 X Λ(Z)))2

1(Z ≤ r)

]
,

and
Bn,Λ(r) = Wn(r) +

∫ r

0
Λ(z) dGn,Λ(z) .

We will denote by Wn, Gn, Bn the above processes when Λ = Λ̃.

We can now use “the switching relationship” for the unconstrained MLE Λ̃(z) to get:

Λ̃(z) ≤ a ⇔ argminr≥0 [Bn(r)− aGn(r)] ≥ Zz (6.18)

where Zz is the largest biomarker value not exceeding z. By argmin we denote the largest element
in the set of minimizers. This can be chosen to be one of the Zi’s. The above equivalence is a direct
characterization of the fact that the vector {Λ̃(Z(i))}n

i=1 is the vector of slopes (left–derivatives) of
the cumulative sum diagram formed by the points {Gn(Z(i)), Bn(Z(i))}n

i=0, computed at the points
{Gn(Z(i))}n

i=1. The easiest way to verify this is by drawing a picture.

Now, Un(h0) = n1/3 (Λ̃(z0 + h0 n−1/3)− Λ0(z0)). We want to find

limn→∞ P (n1/3 (Λ̃(z0 + h0 n−1/3)− Λ0(z0)) ≤ x) .

Now, define
An = {n1/3 (Λ̃(z0 + h0 n−1/3)− Λ0(z0)) ≤ x} .
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Consider the event An. We have

n1/3 (Λ̃(z0 + h0 n−1/3)− Λ0(z0)) ≤ x ⇔ Λ̃(z0 + h0 n−1/3) ≤ Λ0(z0) + xn−1/3

⇔ argminr

[
Bn(r)− (Λ0(z0) + xn−1/3) Gn(r)

]
≥ Z(z0+h0 n−1/3)

⇔ argminr

[
Vn(r)− xn−1/3 Gn(r)

]
≥ Z(z0+h0 n−1/3) ,

where the second step in the above display follows from the first on using (6.18), and Vn(r) =
Bn(r)− Λ0(z0) Gn(r). Thus,

An =
{

n1/3
(
argminr

[
Vn(r)− xn−1/3 Gn(r)

]
− z0

)
≥ n1/3 (Z(z0+h0 n−1/3) − z0)

}

=
{

argminh Vn(z0 + hn−1/3)− xn−1/3 Gn(z0 + hn−1/3) ≥ h0 + op(1)
}

= {argminhMn(h)− xGn(h) ≥ h0 + op(1)} ,

where
Mn(h) = n2/3

[
Vn(z0 + hn−1/3)− Vn(z0)

]

and
Gn(h) = n1/3

[
Gn(z0 + hn−1/3)−Gn(z0)

]
.

The process Mn(h) − xGn(h) converges in the space Bloc(R) (here Bloc(R) is the space of real–
valued functions on the real line that are bounded on every compact set and equipped with the
topology of uniform convergence on compact sets) to the process L(h) ≡ ã W (h)+ b̃ h2−xC(z0) h .
Here ã =

√
C(z0), b̃ = λ0(t0) C(z0)/2 and W (h) is a fixed two-sided Brownian motion process

starting from 0. This result is obtained by using the fact that the process Mn(h) converges to the
limiting process ã W (h) + b̃ h2 under the topology of uniform convergence on compact sets. The
convergence of Mn(h) can be deduced from the convergence of the process

P̃n,Λ0(h) = n2/3
[
Bn,Λ0(z0 + hn−1/3)−Bn,Λ0(z0)− Λ0(z0) (Gn,Λ0(z0 + h n−1/3)−Gn,Λ0(z0))

]

to ãW (h) + b̃ h2 (by arguments similar to those in Lemma 2.3 of Banerjee (2004)) along
with the fact that suph∈[−M,M ] | Λ̃(z0 + hn−1/3) − Λ0(z0) |= Op(n−1/3) which entails that
suph∈[−K,K] | Pn,Λ0(h)−Mn(h) |→p 0, for every K > 0. Furthermore, the process Gn(h) converges
uniformly in probability on every [−K, K] to the deterministic process C(z0) h.

The convergence in distribution of argminhMn(h) − xGn(h) to argminh L(h) is accomplished by
appealing to an appropriate argmin continuous mapping theorem. The key facts that guarantee
the convergence of the minimizers are (i) the fact that the limiting process possesses a unique
minimizer almost surely and (ii) the minimizers of the finite sample processes are tight. This
involves application of an appropriate “rate theorem” for minimizers of stochastic processes
(for example Theorem 3.2.5 or Theorem 3.4.1 of Van der Vaart and Wellner (1996)). The
computations are tedious but straightforward and skipped here. For a flavor of the key steps
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involved in establishing tightness, we refer the reader to Section 3.2.3 of Van der Vaart and

Wellner (1996) and in particular Example 3.2.15 (current status data) which is naturally related
to binary regression and pages 212 – 216 of Banerjee (2000).

It follows that

limn→∞ P (n1/3 (Λ̃(z0 + h0 n−1/3)− Λ0(z0)) ≤ x) = P (argminR ãW (h) + b̃ h2 − xC(z0) h ≥ h0) .
(6.19)

We now use the switching relationships on the limit process. From the work of Groeneboom (1989)
it follows that

argminR ãW (h) + b̃ h2 − xC(z0)h > h0 ⇔ gã,b̃(h0) < xC(z0) ,

with probability one. Therefore,

limn→∞ P (n1/3 (Λ̃(z0 + h0 n−1/3)− Λ0(z0)) ≤ x) = P (gã,b̃(h0) < xC(z0)) .

On noting that:
1

C(z0)

(
gã,b̃(·), g0

ã,b̃
(·)

)
≡d (ga,b(·), g0

a,b(·)) ,

with a and b as defined in the statement of the theorem, (this follows readily from Lemma 3.1)
our proof is complete. 2

Proof of Theorem 3.3: The likelihood ratio statistic of interest can be written as

lrtgn = 2 (ln(β̂n, Λ̂n)− ln(β̂n,0, Λ̂n,0))

= 2 (ln(β0, Λ̂(β0)
n )− ln(β0, Λ̂

(β0)
n,0 )) + 2 (ln(β̂n, Λ̂n)− ln(β0, Λ̂(β0)

n ))− 2(ln(β̂n,0, Λ̂n,0)− ln(β0, Λ̂
(β0)
n,0 )) .

It will follow from Theorem 3.1 that

R̃n ≡ 2 (ln(β̂n, Λ̂n)− ln(β0, Λ̂(β0)
n ))− 2(ln(βn,0, Λ̂n,0)− ln(β0, Λ̂

(β0)
n,0 ))

is op(1) whence it suffices to find the asymptotic distribution of

Cn = 2 (ln(β0, Λ̂(β0)
n )− ln(β0, Λ̂

(β0)
n,0 )) .

This is precisely the likelihood ratio statistic for testing Λ0(z0) = θ0 holding β fixed at its true
value β0. We can write Cn as,

Cn = 2

[
n∑

i=1

φ(∆(i), Ri(β0), Λ̂
(β0)
n,0 (Z(i)))−

n∑

i=1

φ(∆(i), Ri(β0), Λ̂(β0)
n (Z(i)))

]

where φ is as defined in (2.5). For the sake of notational compactness, in the remainder of the
proof, we will write Λ̂(β0)

n (Z(i)) as Λ̃(Z(i)), Λ̂(β0)
n,0 (Z(i)) as Λ̃0(Z(i)), and φ(∆(i), Ri(β0), t) as φi(t).
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Furthermore ∂/∂ t φ(∆(i), Ri(β0), t) will be written as φ′i(t) and so on. The set of indices i on which
Λ̃(Z(i) and Λ̃0(Z(i)) differ is denoted by Jn. Now, Cn = −2Tn where

Tn =
n∑

i=1

φi(Λ̃(Z(i)))−
n∑

i=1

φi(Λ̃0(Z(i)))

=
∑

i∈Jn

φi(Λ̃(Z(i)))−
∑

i∈Jn

φi(Λ̃0(Z(i)))

=
∑

i∈Jn

φ
′
i(Λ0(z0)) [(Λ̃(Z(i))− Λ0(z0))− (Λ̃0(Z(i))− Λ0(z0))]

+
∑

i∈Jn

1
2

φ
′′
i (Λ0(z0))

[
(Λ̃(Z(i))− Λ0(z0))2 − (Λ̃0(Z(i))− Λ0(z0))2

]
+ Rn

≡ Tn,1 + Tn,2 + Rn ,

by Taylor–expanding φi(t) around Λ0(z0). Here,

Rn =
∑

i∈Jn

1
6

φ
′′′
i (Λ̃(Z(i))

?)
(
Λ̃(Z(i))− Λ0(z0)

)3
−

∑

i∈Jn

1
6

φ
′′′
i (Λ̃0(Z(i))

?)
(
Λ̃0(Z(i))− Λ0(z0)

)3

(where Λ̃(Z(i))? is some point between Λ̃(Z(i)) and Λ0(z0) and Λ̃0(Z(i))? is some point between
Λ̃0(Z(i)) and Λ0(z0)) and can be shown to converge to 0 in probability by using the facts that (a)
supi∈Jn

| φ′′′i (Λ̃(Z(i))?) | and supi∈Jn
| φ′′′i (Λ̃0(Z(i))?) | are Op(1), (b) supz∈Dn

| Λ̃(z)−Λ0(z0) | and
supz∈Dn

| Λ̃(z)−Λ0(z0) | are Op(n−1/3) where Dn is the set on which Λ̃ and Λ̃0 differ, and (c) the
length of Dn is Op(n−1/3). Now consider Tn,2. Once again, by Taylor expansion, we have

Tn,2 =
∑

i∈Jn

1
2

φ
′′
i (Λ0(z0))

[
(Λ̃(Z(i))− Λ0(z0))2 − (Λ̃0(Z(i))− Λ0(z0))2

]

=
∑

i∈Jn

1
2
φ
′′
i (Λ̃(Z(i)))[Λ̃(Z(i))− Λ0(z0)]2 −

∑

i∈Jn

1
2
φ
′′
i (Λ̃0(Z(i)))[Λ̃0(Z(i))− Λ0(z0)]2

+op(1) . (6.20)

Now consider,

Tn,1 =
∑

i∈Jn

φ
′
i(Λ0(z0))(Λ̃(Z(i))− Λ0(z0))−

∑

i∈Jn

φ
′
i(Λ0(z0)) (Λ̃0(Z(i))− Λ0(z0)) ≡ S1 − S2 .

Consider the term S2. Note that for each i ∈ Jn, we can write:

φ
′
i(Λ0(z0)) = φ

′
i(Λ̃0(Z(i)))+ (Λ0(z0)− Λ̃0(Z(i)))φ

′′
i (Λ̃0(Z(i)))+

1
2

φ
′′′
i (Λ̃0(Z(i))

? ?)(Λ0(z0)− Λ̃0(Z(i)))
2
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where Λ̃0(Z(i))? ? is a point between Λ̃0(Z(i)) and Λ0(z0). We then have,

S2 =
∑

i∈Jn

[
φ
′
i(Λ̃0(Z(i))) + (Λ0(z0)− Λ̃0(Z(i))) φ

′′
i (Λ̃0(Z(i))) +

1
2

φ
′′′
i (Λ̃0(Z(i))

? ?)(Λ0(z0)− Λ̃0(Z(i)))
2

]

= ×(Λ̃0(Z(i))− Λ0(z0))

=
∑

i∈Jn

[
φ
′
i(Λ̃0(Z(i))) + (Λ0(z0)− Λ̃0(Z(i)))φ

′′
i (Λ̃0(Z(i)))

]
(Λ̃0(Z(i))− Λ0(z0)) + op(1)

= −
∑

i∈Jn

φ
′′
i (Λ̃0(Z(i)))

[
Λ̃0(Z(i))−

φ
′
i(Λ̃0(Z(i)))

φ
′′
i (Λ̃0(Z(i)))

− Λ0(z0)

]
(Λ̃0(Z(i))− Λ0(z0)) + op(1) ,

where the fact that the term involving φ
′′′
i is op(1) is deduced by arguments similar to those needed

to show that Rn is op(1). Now, let B0
1 , B0

2 , . . . , B0
r denote the level blocks for Λ̃0(Z(i)) that constitute

Jn, with level values w0
1, w

0
2, . . . , w

0
r and suppose that w0

l = Λ0(z0) ≡ θ0. Then,

S2 + op(1) = −
r∑

j=1

∑

i∈Bj

[
φ
′′
i (Λ̃0(Z(i)))

(
Λ̃0(Z(i)))−

φ
′
i(Λ̃0(Z(i)))

φ
′′′
i (Λ̃0(Z(i)))

)
− Λ0(z0)φ

′′
i (Λ̃0(Z(i)))

]

×(Λ̃0(Z(i))− Λ0(z0))

= −
r∑

j=1

∑

i∈Bj

[
φ
′′
i (w0

j )

(
w0

j −
φ
′
i(w

0
j )

φ
′′
i (w0

j )

)
− Λ0(z0) φ

′′
(w0

j )

]
(w0

j − Λ0(z0))

= −
∑

j 6=l

(w0
j − Λ0(z0))


∑

i∈Bj

(φ
′′
i (w0

j ) w0
j − φ

′
i(w

0
j ))− Λ0(z0)

∑

i∈Bj

φ
′′
i (w0

j )




= −
∑

j 6=l

(w0
j − Λ0(z0))





∑

i∈Bj

φ
′′
i (w0

j )




[∑
i∈Bj

(φ
′′
i (w0

j ) w0
j − φ

′
i(w

0
j ))∑

i∈Bj
φ
′′
i (w0

j )
− Λ0(z0)

]


= −
∑

j 6=l

∑

i∈Bj

φ
′′
i (w0

j ) (w0
j − Λ0(z0))2 ,

where this last step follows from the following observation: If B′ is a level block for Λ̃0 contained
in Jn with level value w0, then

w(0) =
∑

k∈B′ (w
(0) φ

′′
k(w(0))− φ

′
k(w

(0)))∑
k∈B′ φ

′′
k(w(0)) .
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provided w(0) 6= θ0. This is a direct consequence of the representation (2.13). It follows that

S2 + op(1) = −
∑

j 6=l

∑

i∈Bj

φ
′′
i (w0

j ) (w0
j − Λ0(z0))2

= −
r∑

j=1

∑

i∈Bj

φ
′′
i (w0

j ) (w0
j − Λ0(z0))2

= −
r∑

j=1

∑

i∈Bj

φ
′′
i (Λ̃0(Z(i))) (Λ̃0(Z(i))− Λ0(z0))2

= −
∑

i∈Jn

φ
′′
i (Λ̃0(Z(i))) (Λ̃0(Z(i))− Λ0(z0))2 .

It is similarly established (using (2.11)) that

S1 + op(1) = −
∑

i∈Jn

φ
′′
i (Λ̃(Z(i))) (Λ̃(Z(i))− Λ0(z0))2 .

It follows that

Tn,1 = −
∑

i∈Jn

φ
′′
i (Λ̃(Z(i))) (Λ̃(Z(i))− Λ0(z0))2 +

∑

i∈Jn

φ
′′
i (Λ̃0(Z(i))) (Λ̃0(Z(i))− Λ0(z0))2 + op(1) .

Now, on using (6.20) and the fact that Rn is op(1) we get

Tn = Tn,1 + Tn,2 + op(1)

= −1
2

∑

i∈Jn

φ
′′
i (Λ̃(Z(i))) (Λ̃(Z(i))− Λ0(z0))2 +

1
2

∑

i∈Jn

φ
′′
i (Λ̃0(Z(i))) (Λ̃0(Z(i))− Λ0(z0))2 + op(1) ,

whence

Cn = −2 Tn =
∑

i∈Jn

φ
′′
i (Λ̃(Z(i))) (Λ̃(Z(i))− Λ0(z0))2 −

∑

i∈Jn

φ
′′
i (Λ̃0(Z(i))) (Λ̃0(Z(i))− Λ0(z0))2 + op(1)

=
∑

i∈Jn

φ
′′
i (Λ0(Z(i))) (Λ̃(Z(i))− Λ0(z0))2 −

∑

i∈Jn

φ
′′
i (Λ0(Z(i))) (Λ̃0(Z(i))− Λ0(z0))2 + op(1) .

Now,

φ
′′
i (Λ0(Z(i))) =

∆(i) exp
[
−eβT

0 X(i) Λ0(Z(i))
]

e2 βT
0 X(i)

(
1− exp

[
−eβT

0 X(i) Λ0(Z(i))
])2 ,

whence

Cn =
∑

i∈Jn

∆(i) exp
[
−eβT

0 X(i) Λ0(Z(i))
]

e2 βT
0 X(i)

(
1− exp

[
−eβT

0 X(i) Λ0(Z(i))
])2

[
(Λ̃(Z(i))− Λ0(z0))2 − (Λ̃0(Z(i))− Λ0(z0))2

]
+ op(1)

= n1/3 (Pn − P )Ψn(δ, z, x) + n1/3 P Ψn(δ, z, x) + op(1)
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where Pn is the empirical measure of the observations {∆i, Zi, Xi}n
i=1, P denotes the true underlying

distribution of (∆, Z, X), Ψn is the random function given by

Ψn(δ, z, x) =
δ exp

[
−eβT

0 x Λ(z)
]

e2 βT
0 x

(
1− exp

[
−eβT

0 x Λ(z)
])2

[
(n1/3(Λ̃(z)− Λ0(z0)))2 − (n1/3 (Λ̃0(z)− Λ0(z0)))2

]
1(z ∈ Dn) .

We are using operator notation here for expectations; thus Pn g denotes the expectation of g under
the measure Pn and P g denotes the expectation of g under the measure P . The function g is
allowed to be a random function. Now,

n1/3 (Pn − P )Ψn(δ, z, x) = n−1/6√n (Pn − P )Ψn(δ, z, x) .

Using the facts that (i) Dn is eventually contained in a set of the form [z0−M n−1/3, z0 +M n−1/3]
with arbirtrarily high preassigned probability (ii) the processes Un and Vn are Op(1) on compacts
and monotone increasing, along with standard preservation properties of Donsker classes of
functions, it can be argued that with arbitrarily high preassigned probability, the function
Ψn(δ, x, z) lies in a Donsker class, whence it follows that

√
n (Pn − P )Ψn(δ, z, x) is Op(1);

consequently n1/3 (Pn − P )Ψn(δ, z, x) is Op(n−1/6) and hence op(1).

To find the asymptotic distribution of Cn we can therefore concentrate on the asymptotic
distribution of

n1/3 P Ψn(δ, z, x) = n1/3 P




∆exp
[
−eβT

0 X Λ0(Z)
]

e2 βT
0 X

(
1− exp

[
−eβT

0 X Λ0(Z)
])2 Kn(Z)




where
Kn(Z) =

[
(n1/3(Λ̃(Z)− Λ0(z0)))2 − (n1/3(Λ̃0(Z)− Λ0(z0)))2

]
1(Z ∈ Dn) .

We can then write,

n1/3 P Ψn(δ, z, x) = n1/3 P


Kn(Z) EZ,X




∆exp
[
−eβT

0 X Λ0(Z)
]

e2 βT
0 X

(
1− exp

[
−eβT

0 X Λ0(Z)
])2





 .

Using the fact that
E(∆ | Z,X) = 1− exp

[
−eβT

0 X Λ0(Z)
]

we have

n1/3 P Ψn(δ, z, x) = n1/3 P


Kn(Z)


exp

[
−eβT

0 X Λ0(Z)
]

e2 βT
0 X

(
1− exp

[
−eβT

0 X Λ0(Z)
])





 ≡ n1/3 P [Kn(Z) ξ(Z, X)] ,
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where

ξ(Z,X) =
exp

[
−eβT

0 X Λ0(Z)
]

e2 βT
0 X

(
1− exp

[
−eβT

0 X Λ0(Z)
]) .

Thus,

n1/3 P Ψn(δ, z, x) = n1/3 P [Kn(Z) ξ(Z,X)]

= n1/3

∫

Dn

Kn(z) E(ξ(Z,X) | Z = z) fZ(z) dz

= n1/3

∫

D̃n

Kn(z0 + hn−1/3) w(z0 + hn−1/3) fZ(z0 + hn−1/3) dh

where h = n1/3 (z − z0), D̃n = n1/3 (Dn − z0) and w(z) = E(ξ(Z,X) | Z = z). Now note that,

Kn(z0 + hn−1/3) = (U2
n(h)− V 2

n (h)) 1 (h ∈ D̃n)

where D̃n is the set on which Un and Vn differ. Now, note that w is continuous in z and is given
by:

w(z) =
∫ exp

[
−eβT

0 x Λ0(z)
]

e2 βT
0 x

(
1− exp

[
−eβT

0 x Λ0(z)
]) f(z, x)

fZ(z)
dµ(x) .

On using the facts that D̃n is eventually contained with arbitrarily high probability in a compact
set and the boundedness in probability of the processes Un and Vn on compacts along with the
continuity of the functions w and fZ , we get,

n1/3 P Ψn(δ, z, x) =
∫

w(z0) fZ(z0) (U2
n(h)− V 2

n (h)) dh + op(1) .

But C(z0) = w(z0) fZ(z0) = 1/a2 where a is as defined in Theorem 3.2. An application of Theorem
3.2 and Slutsky’s theorem yields

n1/3 P Ψn(δ, z, x) →d
1
a2

∫ (
(ga,b(h))2 − (g0

a,b(z))2
)

dh ,

and the fact that

1
a2

∫ (
(ga,b(h))2 − (g0

a,b(z))2
)

dh ≡d

∫ (
(g1,1(h))2 − (g0

1,1(z))2
)

dh ≡ D

follows as a direct application of Lemma 3.1 followed by the change of variable theorem from
calculus.

It remains to show that

R̃n ≡ 2 (ln(β̂0n, Λ̂n)− ln(β0, Λ̂β0
n ))− 2(ln(βn,0, Λ̂n,0)− ln(β0, Λ̂

β0
n,0))
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is op(1). This is precisely lrtbetan − lrtbeta0
n. From Theorem 3.1 we get:

lrtbetan − lrtbeta0
n = n (β̂n − β0)T Ĩ0 (β̂n − β0)− n (β̃n − β0)T Ĩ0 (β̃n − β0) + op(1)

= n (β̂n − β̃n)T Ĩ0 (β̂n − β̃n) + 2 n (β̃n − β0)T Ĩ0 (β̂n − β̃n) + op(1)

=
√

n (β̂n − β̃n)T Ĩ0

√
n (β̂n − β̃n) + 2

√
n (β̃n − β0)T Ĩ0

√
n(β̂n − β̃n) + op(1)

≡ In + IIn + op(1) .

The fact that In is op(1) follows from the observation that
√

n (β̂n − β̃n) = rn − sn, which is op(1)
(by Theorem 3.1). The fact that IIn is op(1) follows on using the facts that

√
n (β̂n − β̃n) is op(1)

and that
√

n (β̃n − β0) is Op(1). 2
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