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Semiparametric methods for the binormal
model with multiple biomarkers

Debashis Ghosh

Abstract

Abstract: In diagnostic medicine, there is great interest in developing strategies
for combining biomarkers in order to optimize classification accuracy. A popular
model that has been used when one biomarker is available is the binormal model.
Extension of the model to accommodate multiple biomarkers has not been consid-
ered in this literature. Here, we consider a multivariate binormal framework for
combining biomarkers using copula functions that leads to a natural multivariate
extension of the binormal model. Estimation in this model will be done using
rank-based procedures. We also discuss adjustment for covariates in this class of
models and provide a simple two-stage estimation procedure that can be fit us-
ing standard software packages. Some analytical comparisons between analyses
using the proposed model with univariate biomarker analyses are given. In addi-
tion, the techniques are applied to simulated data as well as data from two cancer
biomarker studies.
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1. Introduction

In most medical settings, it is becoming increasingly clear that one biomarker will not be
sufficient to serve as a screening device for early detection of many diseases. As an example,
we consider prostate cancer. Typically, prostate-specific antigen (PSA) has been used for
detection of the disease. If a man has a PSA measurement between 4 and 10 ng/mL, then
this leads to a prostate needle biopsy. While PSA is known for being a relatively sensitive
biomarker, it is not known as being a very specific measurement. As a result, many biopsies
yield negative results for tumor, even when the PSA is between 4-10 ng/mL. A current
estimate of the specificity of PSA is approximately 35% (Kawinski et al., 2002). Many
investigators believe that a combination of biomarkers will potentially lead to more sensitive
screening rules for detecting prostate cancer. How best to combine these measurements
remains an open question.

There has been much recent work in terms of developing methods for combining multiple
biomarkers. Su and Liu (1993) and Pepe and Thompson (2000) considered linear combina-
tions of biomarkers to optimize measures of diagnostic accuracy. McIntosh and Pepe (2002)
noted the optimality of the likelihood ratio, and by Bayes Theorem, the risk score, in terms
of developing sensitive screening rules. We outline some of their results in Section 2. In addi-
tion, Baker (2000) developed an algorithmic approach for finding combinations of biomarkers
using the likelihood ratio. His arguments were motivated more by results from decision theory
and cost-effectiveness analysis (Weinstein et al., 1980) than the Neyman-Pearson approach
of McIntosh and Pepe (2002). Recently, Etzioni et al. (2003) proposed developing screening
rules based on consideration of logical combinations of biomarker measurements.

In the case of one biomarker, there has been extensive work done on the development
of methodology for diagnostic testing and screening (Zhou et al., 2002; Pepe, 2003). An
important quantity in this area is the receiver operating characteristic (ROC) curve, which is
a plot of the true positive rate versus the false positive rate. A popular approach to modelling
the ROC curve for one biomarker is the binormal model (Swets, 1986; Pepe 2003, §4.4). The
model plays a central role in modelling of ROC curves. However, there currently exist no

multivariate versions of the binormal model. A multivariate binormal model, if available,
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would allow for an alternative method of combining biomarkers relative to the approaches
listed in the previous paragraph.

In this article, we develop a multivariate extension of the binormal model using copula
functions (Nelsen, 1999). While copulas have chiefly played a role in the analysis of correlated
survival data (e.g., Oakes, 1989), it turns out that they can be applied here as well. The
structure of this paper is as follows. In Section 2, we provide some background on ROC
curves, the binormal model and copula functions. We formulate the multivariate binormal
model in this framework and discuss estimation procedures for this model in Section 3. There,
we also consider strategies for covariate adjustment in this model and propose a new two-
stage estimation procedure for the multivariate binormal model. We also develop asymptotic
results of the proposed methods. In Section 4, we examine the potential gains in terms
of a multivariate analysis relative to a univariate biomarker analysis. There, the proposed
methodology is applied to simulated data as well as data from two cancer biomarker studies.

We conclude with some brief remarks in Section 5.
2. Data and Background

We will be assuming that we have data (D;,Y;,X;), i =1,...,n, a random sample from
(D,Y,X), where D denotes the disease status, Y = (Y7,...,Y}) is a p-dimensional biomarker

measurement, and X is a ¢-dimensional vector of covariates.
2.1 ROC curve and binormal curve for one biomarker

Suppose we have only biomarker Y. We will assume that higher values of the biomarker
correspond to a greater probability of having disease. One relevant quantity is the false
positive rate based on a cutoff ¢, defined to be FP(c) = P(Y > ¢|D = 0). Similarly, the
true positive rate is TP(c) = P(Y > ¢|D = 1). The true and false positive rates can
be summarized by the receiver operating characteristic (ROC) curve, which is a graphical
presentation of {T'P(c), FP(c) : —oo < ¢ < co}. The ROC curve shows the tradeoff between
increasing true positive and false positive rates. Tests that are have {TP(c), FP(c)} values

close to (0,1) indicate perfect discriminators, while those with {T'P(c), FP(c)} values close
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to the 45° degree line in the (0,1) x (0,1) plane are tests that are unable to discriminate
between the diseased and healthy populations.

Suppose that the biomarker distribution in the diseased population is assumed to be
normal with mean pp and variance a%, while that in the undiseased population is normal

with mean py and variance oZ. Then in Pepe (2003, p. 82), it is shown that for ¢ € [0,1],
ROC(t) = ®{a + b®~ (1)}, (1)

where a = (up — pv)/op and b = oy /op. Equation (1) is referred to as the binormal ROC
curve. Several authors (Swets, 1986; Hanley, 1988) have demonstrated that the binormal
ROC curve provides a good approximation to many empirical ROC curves that occur in
practice. As described in Pepe (2003, p. 81), “the binormal ROC curve plays a central role
in ROC analysis. In much the same way that the normal distribution is a classic model for
distribution functions, the binormal ROC curve is a classic model for ROC curves.”

It turns out that if A is a monotone transformation, then the ROC curve for the induced
biomarker measurement h(Y') is still (1). Thus, the binormal ROC curve model can be
equivalently formulated as there existing a monotone transformation h such that h(Y) has
normal distributions with mean pp and py and variance 0% and 02U in the diseased and
undiseased populations, respectively. Because the monotone transformation A is identifiable

only up to location and scale, we will assume without loss of generality that yup = 0 and

o2, = 1. It is this model that we generalize in §3.
2.2 Combining biomarkers

Suppose now we have more than one biomarker; we seek to combine information from multiple
biomarkers in order to discriminate between diseased and healthy populations. A justification
for combining biomarker measurements using the likelihood ratio from the ROC point of view
was recently put forward by McIntosh and Pepe (2002). They provide a reinterpretation of

the Neyman-Pearson lemma and show that the classification rule based on

LR(Y) = 5ig o= > clfo) )
4
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optimizes the sensitivity for a given false positive rate fy, where ¢(fy) is chosen such that
Pr{LR(Y) > c(fo)} = fo, and fo € [0,1]. McIntosh and Pepe (2002) refer to this op-
timality property as the uniformly most sensitive (UMS) sensitive screening test based on
Y = (Y3,...,Y),). They also mention two other optimality properties of screening tests based
on LR(Y). First, tests of the form (2), for a given fo, minimize the overall misclassification
rate. Second, tests of the form (2) minimize expected cost, where unequal costs are given to
false positives and false negatives.
By Bayes’ rule, McIntosh and Pepe (2002) show that

LR(Y)m
PO=1Y) = st
where 7 = P(D = 1)/P(D = 0) is the odds of disease in the population. This implies that (2)
can be written as P(D = 1Y) > ¢&(fo) for ¢(fo) = ¢(fo)m/{c(fo)m + 1}. Thus, as McIntosh
and Pepe (2002) argue, one can construct UMS rules based on the risk score P(D = 1|Y).

If one assumes that P(D = 1|Y) is of the form

exp(fo + A7Y)
1 +exp(fo +B7Y)’

then logistic regression can be used to estimate UMS rules. Another advantage is that the
regression models can be fit to case-control data in order to derive optimal screening rules.

There are two modelling issues that arise from this framework. If we attempt to develop
rules based on modelling P(Y|D), then this leads to specification of complex multivariate
distributions; incorporation of covariates is even more complex. If we instead choose to
model the risk score, P(D = 1|Y), then consideration of interactions and more generally,
model selection issues arise here. However, incorporating covariates is straightforward, as
one can specify a model for P(D = 1|Y,X).

Copula functions offer advantages relative to these two approaches. In particular, these
functions allow for flexible modelling of univariate biomarkers and covariate adjustment on
disease outcome, which is a well-characterized area. The dependence between biomarkers
is specified parametrically in copula functions. In most situations, there is sufficient data
available to characterize marginal distributions of variables but less information on estimat-

ing interrelationships between them. Copula models are attractive in that nonparametric
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modelling procedures can be considered for the marginal distribution while the interactions
between biomarkers are modelled in a parametric fashion. Thus, copula models are a natural
way of modelling multivariate data. Before describing the extension of the binormal model

using copula functions, we provide some background on them.

2.8 Copula functions

For the sake of exposition, we assume that there are no covariates and only two available
biomarkers, Y7 and Y2. A copula model links the joint distribution of Y; and Y, conditional

on disease status, to the marginal conditional distributions:
Pr(Y1,Ys|D) = Co{Pr(Y1|D), Pr(Y,|D)}, (3)

where Cp is a function that maps from [0, 1] x [0, 1] to [0, 1], and € is a dependence parameter.
Copula functions have been utilized with success in the analysis of censored survival data
(Oakes, 1989, Hsu and Prentice, 1995). The most popular copula model in that area is based
on the Clayton-Oakes frailty model (Clayton, 1978; Oakes, 1986):

Pr(Yy,Y3|D) = {Pr(Y1|D)~% + Pr(Yy| D)~ —1}-1/9 (4)

In (4), 6 is a dependence parameter that takes values [—1, 00), although the joint distribution
of Y7 and Y> is absolutely continuous for § > —1/2. This parameter has an interpretation
as a cross-ratio function (Oakes, 1989). Other choices of copula functions are available; a
comprehensive summary of such models is available in §4.1 of Nelsen (1999).

Although the copula specification may appear unfamiliar at first glance, there are in
fact many methods of analysis that either implicitly or explicitly involve copula functions
or related quantities (e.g., Dale, 1986; Molenberghs and Lesaffre, 1994; Heagerty and Zeger,
1996).

3. Proposed Methodology

3.1 Model and estimation: no covariates
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We now extend the binormal model from §2.1 to accommodate multiple markers. Gen-
eralizing the model discussed there, we assume that there exist monotone transformations
G1, ..., Gy such that the vector G(Y) = {G1(Y1),...,Gp(Yp)} has a multivariate normal dis-
tribution with mean pp = (up1, ..., upp) and variance-covariance matrix 3 p among the dis-
eased population and mean pp = (py,---,p,) and variance-covariance matrix X 5 among
the nondiseased population. Thus, after monotone transformations performed marginally on
the Y values, multivariate normality is assumed in both populations. This model was stud-
ied by Lin and Jeon (2003) as a semiparametric competitor to classical linear and quadratic
discriminant analysis methods. We are providing an alternative motivation of this model
using ROC ideas. In addition, we will cast this model into the copula framework described
in §2.3 and will discuss covariate adjustment in this model in §3.2. Note that the monotone
transformations will be unique up to scale and shift, so there will be no loss of generality in
taking the marginal distributions for the biomarker measurements for the diseased population
to have zero mean and variance one. Before discussing estimation, we cast the multivariate
binormal model into the copula framework.

Let F' denote the joint distribution of Y. We assume that there exist monotone transfor-

mations G, ..., G)p such that

F(y|D) = Co,p[®{G1(y1)},---, 2{Gp(vp)}] (5)
and
PID) = Gy p | 0 {Gl(y;)D: kD1 } s {Gp(ypa)D— KDy }] , (6)
p

where ®(z) represents the cumulative distribution function for a standard normal random
variable and Cy is a multivariate extension of the 2-dimensional copula function described in
§2.3. The extension of the univariate binormal model mentioned in §2.1 involves use of the
p-dimensional normal or Gaussian copula function Cg(u); for u € [0,1]P, the joint density

corresponding to the copula function is given by
1
coulR) =[R2 exp { - s (R * - D}, )
where s = {®7}(u1),...,® ! (uy)}T and @71 is the inverse function of ®. The R is a cor-

7
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relation matrix where the off-diagonal elements specify the dependence between biomarkers.

The model is semiparametric because G1,...,G), are unspecified infinite-dimensional nui-
sance parameters while the components of x5, 0'2D = (0%1, 01252, ... ,a%p) and R are the finite

dimensional parameters. Note that there will be a separate R, Rp and R p, for the diseased

and nondiseased populations, respectively. Estimation of the models (5) and (6) requires

2

estimation of 1, the marginal variances o7,

and the correlation matrices Rp and Rp.
Suppose that G1,. .., G)p were known. Then if Y; denotes the jth biomarker (j =1,...,p),
G,(Y;) is marginally distributed as a N(0,1) random variable in the diseased population,
j =1,...,p. We can then estimate G; (j = 1,...,p) as éj = ¢! OFJ-D, where h o f is
the composition of two functions h and f and ﬁij is the empirical cumulative distribution
of Y} in the diseased population, j = 1,...,p. Based on this result, we can then develop

the following simple method of moments estimator of up; (j = 1,...,p) following arguments

similar to those in Lin and Jeon (2003):

_ Y G(Yi) I(D; = 0)

fip; ;

! Zi:l I(D; =0)
where Y;; is the jth component of Y;, ¢ = 1,...,n. Similarly, the marginal variance for the
jth biomarker (j =1,...,p), U%j, can be estimated using method of moments:

~2 Z?:l(éj(yij) - ﬂDj)QI(Di = 0).

b Yis I(Di=0)—1
In practice, we will use trimmed estimators of these quantities so that they are more robust
and do not depend heavily on the amount of overlap in the biomarker distributions between
diseased and undiseased individuals. We follow the recommendations of Lin and Jeon (2003)
for trimming.
It now remains to estimate the correlation matrices. For 4,7 = 1,...,p, the estimate of
the (j,k)th element of Rp, pﬁc, is given by
> i1 G (Yin) G5 (Vi) I(Ds = 1)
o Gk (Vi) I(Di = 1)}V [0 {65 (Vi I(Di = 1)}2]1/2
Similarly, the estimator of the (j, k)th element of Ry is given by
31 {Gk(Yik) — i H{Gi (Vig) — fup; H(Di = 0)
S G (Vik) — fipi P2 I(Ds = 0)2V2[31 {G4(Yeg) — fip; }21(D; = 0)2]1/2

~D __
Pk =

(9)

~D
8
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The formulae (8) and (9) is referred to as the Van der Waerden normal scores rank
correlation coefficient (Klaassen and Wellner, 1997). In the case of p = 1 for one population,
they show that n'/?(p — p) has a limiting normal distribution with mean zero and variance

(1 — p)?, which is the semiparametric efficiency bound.

3.2 Model and estimation: covariates

In practice, the distributions of the biomarkers in the diseased and nondiseased popu-
lations will depend on other covariates. For example, if a longitudinal series of biomarkers
is used for screening for disease, then one might need to adjust for time of measurement
for diseased populations while not adjust for it in undiseased populations. In addition, if
severity of disease is associated with the discriminative ability of the biomarker, then we
will want to adjust for stage of disease in the diseased subjects but not in the undiseased
populations. Thus, we will want to consider multivariate binormal models in which we adjust
for covariates.

We model the effect of covariates on the biomarkers can be using Box-Cox regression

models; for the jth biomarker (j =1,...,p), for D; =1,

A _q
Z]T = X7 Bp; + €pij, (10)
J
where ¢ = 1,...,n, Bp; is a vector of unknown regression coefficients for the jth biomarker,
Aj € (0,00) and ep;; are iid error terms with mean zero, given j. However, giveni=1,...,n,
(€Dit, - - - »€Dip) come from the normal copula model in §3.1. An analogous model exists for
the undiseased population:
A.
Y7 —1
i T
])\7j =X Bp; + €pij (11)

where B, is a vector of unknown regression coefficients for the jth biomarker, A; € (0, 00)
and €p,; are iid error terms with mean zero, given j. Similarly, given 4, the distribution of
(€pi1; - - -»€Dip) 18 given by a normal copula model.

Note that fitting models (10) and (11) for each of the biomarkers allows for flexible
incorporation of covariates. Although we have included the same covariates in the two models

for each biomarker, this formulation can allow for different covariates for each individual
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biomarker. In addition, we can include different covariates for the diseased and nondiseased
subject populations. We will assume that A is treated as fixed, although we can generalize
to allow for a separate (A1,...,),) for the diseased and nondiseased populations. By fitting
separate models, we are also implicitly making the assumption that disease status interacts
with X. It should be noted that (10) and (11) are semiparametric models because other than
having mean zero, the marginal distributions of the error terms remain unspecified.

We now describe our estimation approach. For purposes of exposition, we focus on the
diseased population, the case for the nondiseased would follow similarly. First, we estimate

the regression coefficients in (10) and (11) using least squares. Next, the residuals

YA -1 .
rDij = —— T X] Bpi
and
YA -1 R
Thij = ”T — X7 B

are utilized for the estimation procedure described in Section 3.1. It turns out that the resid-
uals in the diseased and undiseased populations do not involve the nonparametric component
of the model. We prove this fact in the Appendix. In principle, this allows for easy develop-
ment of the asymptotic properties of the estimators using the theory of U-statistics (Van der
Vaart, 2000). Note that with this two-stage procedure, we seek to determine if there is any

discriminatory power of the biomarker after adjusting for covariates.
3.3 Relationship with ROC methodology

An implication of the copula model (7) is that it preserves the marginal structure of the
binormal model in §2.1. Thus, for the jth biomarker (j = 1,...,p), the corresponding

marginal ROC curve is binormal, i.e. for ¢ € [0, 1],
ROC,(t) = ®{a; + b;2 (1)}, (12)

where a; = —pp,; and b; = op;, for the jth biomarker, j = 1,...,p. Note that the ROC
curve for the jth biomarker, summarized in (12) is of the same form as the ROC curve given

by equation (1), where up; = 0 and op; = 1 by assumption here. This shows how the
10
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multivariate normal copula model presented here generalizes the univariate binormal model
given in §2.1.

It is fruitful to consider the relationship of the proposed methodology with other methods
for modelling the ROC curve. Let us consider p = 1 biomarker. Suppose we have the
same covariates in the models (11) and (10) for the diseased and nondiseased populations,

respectively. Recall the definition of the ROC curve, conditional on covariates (Pepe, 2000):
ROCzy,2,(t) = P(Yp > Yy|Fy(Yu) = t,Zy, Zp), (13)

where Yp is the biomarker measurement for a diseased individual, Y7 is the biomarker
measurement for an undiseased individual, Fyy is the cumulative distribution function for
biomarker measurements in the undiseased population, and Zp and Zy are the covariate
vectors for diseased and undiseased individuals. Then by algebraic manipulations, formula-

tion of models (11) and (10) implies the following regression model for (13):
ROCz,2,(t) = ®{@7'(t) + (Zp — Zu)" B}, (14)

which is the class of models considered by Pepe (2000) in the case of one biomarker. Extending
this argument, we have that for the multivariate version of the binormal model presented in
§3.2, the ROC curve for the jth biomarker (5 = 1,...,p) will be of the form (14). Thus, the
model presented here presents a method of extending the work of Pepe (2000) to accommodate
multiple biomarkers.

Note that model (14) is more parsimonious in that effects of covariates are specified
directly on the ROC curve. An alternative approach to modelling multivariate biomarkers is
to specify the effects of covariates on the marginal ROC curve for each biomarker separately.

We address this issue further in Section 5.
3.4 Combining biomarkers, classification and model evaluation

One way of conceptualizing the method proposed here is that after estimating the trans-
formations Gf1,...,G)p, we perform a discriminant analysis in order to build a classification
rule. The estimated rule is based on the linear discriminant function

A ~ ~ A

LDF(Y) = -5 G(Y) RpG(Y) + {G(Y) ~ ip} $pRp{G(Y) ~ fip),  (15)
11
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where S p is a pxp diagonal matrix with &2[) on the diagonal. The linear discriminant function
is the method by which biomarkers are combined in the multivariate binormal model. This
then provides a rule for classifying a subject as diseased or not diseased based on a multivariate
biomarker profile. To assess the discriminatory power of the rule, it is useful to construct a
ROC curve. Based on all possible cutpoints ¢* for LDF', we can calculate the following two

quantities:
izt {LDF(Y;) > c*,D; = 1}
2?21 I(Dz‘ = 1)

TPR(c*) = 2

and
Yist {LDF(Y;) > ¢*, D; = 0}
> ie1 1(Di = 0)
A plot of {T?R(c*), F?R(c*)} then provides an ROC curve for the classification rule from

FPR(c*) =

the estimated multivariate binormal model.

Note that the ROC curve will be overoptimistic in that the predictions for TPR and
FPR were based on the estimated multivariate binormal model, the parameter estimates of
which were computed using the entire dataset. To reduce this overfitting, an alternative is to
construct a leave-one-out cross-validation estimate of the ROC curve. Let LDF ® (Y;) denote
the estimate of LDF with the ith observation held out, : = 1,...,n. Then a cross-validated
estimate of the ROC curve is given by {TPR(c*), FPR(c*)}, where
n HIDF"(Y:) > ¢, Di =1}

Z?:l I(D; =1)

TPR(c") = 2

and .
" I{LDF(’) (Y;) > ¢*,D; = 0}
Z?:1 I(Di = O)

FPR(c") =
4. Numerical Comparisons
4.1. Analytical Results and Simulation Studies

In this section, we consider a comparison of the multivariate binormal normal relative to a
univariate biomarker analysis. First, an analytical comparison is performed. We consider the

case of p = 2 biomarkers and no covariates and where G; and G5 are the identity functions.

12
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This leads to a simple bivariate normal model in which Y|D = 1 is distributed bivariate

normal with mean zero vector and correlation matrix

EDE (1 plD)
PD

while Y|D = 0 is distributed bivariate normal with mean vector up = (upi, 4pe) and

covariance matrix

2 I

ED:< TpH1 UD10D2pD>
= o 2
9p19p2PD Tho-

Suppose we use the area under the ROC curve for assessing discriminatory power for compar-

ing an analysis based on the first biomarker versus the multivariate binormal model. Some

straightforward algebra yields that the area under the ROC curve for the univariate analysis

2 1/2
1+0p

is

while the corresponding quantity for the multivariate binormal model is
_ 1/2
AUCH = @ [{uh(Sp + Bp) " up}’]

Given values of yp, pp, (0%1,0%2) and pp, we can explicitly calculate AUC, and AUC),.
Some values of AUCY and AUC); are given in Table 1. What we find is that as the difference
in correlations between biomarkers in the diseased and nondiseased populations increases,
there are always gains in using a multivariate analysis relative to a univariate analysis. While
AUC)y is always greater than AUC, based on the settings shown here, the mean has greater
effect on the difference than the correlation. In limited settings not reported, we found the
multivariate analysis to lead to even greater potential gains in classification accuracy when
considering p > 3 biomarkers.

We next performed a simulation study in which a subset of the settings in Table 1 was
considered. For simplification, o was taken to be (1,1). The goal here was to assess the
finite-sample properties of the proposed estimation procedures. We focused on estimation of
AUC);. We considered sample sizes n = 100,200 and 500. For each setting, 500 simulation
samples were generated. The proportion of diseased subjects was taken to be 50%. The

estimation procedure in §3.1 was utilized. Variance estimation of AUC); was done using
13
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the bootstrap; 500 bootstrap simulations were performed within each step of the simulation.
The simulation results are summarized in Table 2. We find that the procedure is practically
unbiased for all sample sizes considered. While the standard error estimates based on the
bootstrap tend to be slightly negatively biased for smaller sample sizes, this bias diminishes

with larger sample sizes.

4.2. Cancer Biomarker Datasets

We consider two real-life applications of the proposed approach. The first is to data
from Wieand et al. (1989). Two carbohydrate antigen proteins, CA125 and CA19-9, were
measured on 90 subjects with pancreatic cancer and 51 controls free of disease. Thus, there
are p = 2 biomarkers. We expect both of these biomarkers to be higher in diseased individuals
than in undiseased individuals. We fit the binormal model without covariates to these data.
The results are summarized in Table 3. The estimated leave-one-out cross-validated curves for
the univariate biomarkers, compared with that based on the estimated multivariate binormal
model, are given in Figure 1. Based on the curve, we find that combining biomarkers leads
to an increase in classification accuracy, although the gain is small relative to using the
biomarker CA19-9 alone. For low values of the false positive rate (e.g. 0 — 0.2), we find
that the cross-validated ROC curve based on the multivariate binormal model yields better
discrimination than either biomaker. The biomarker CA125 does not appear to discriminate
between cases and controls well.

We now consider the data from a recent study reported by Etzioni et al. (1999). The
data come from the Beta-Carotene and Retinol Efficacy Trial, a randomized trial that enrolled
12,025 men at elevated risk of lung cancer due to smoking or occupational exposure. While
the primary disease outcome in the study was lung cancer, we focus on a subgroup in which
prostate cancer was assessed. We consider data here on 71 subjects with prostate cancer
and 68 control subjects. For these individuals, retrospective blood samples were available, so
they were assayed for PSA (prostate-specific antigen). To simplify the discussion, we focus
on the last sample before diagnosis for each subject so that each individual has only one

measurement. In this situation, we focus on combining total PSA and the ratio of free to
14

http://bi ostats.bepress.com/umichbiostat/paperd7



total PSA, both of which have been suggested to have diagnostic utility in prostate cancer
(Etzioni et al., 1999). It is assumed here that higher values of both correspond to greater risk
of prostate cancer. Throughout this example, we have taken logarithmic transformations of
both types of PSA measurements.

First, we compute the leave-one-out cross-validated ROC curves based on the unadjusted
total PSA and PSA ratio; the plots are given in Figure 2. There, we find that while total
PSA is a good discriminator of cases and controls, PSA ratio is not and that combining them
leads to a deterioriation in classification accuracy. Next, we adjusted the two types of PSA
measurements (corresponding to A = 0 in (10) and (11) for age. Then the estimation proce-
dure in §3.2 is applied to the residuals, and the multivariate binormal parameter estimates
are computed. The numerical estimates of the multivariate binormal model parameters are
given in Table 4; the cross-validated curves are given in Figure 3. Based on the plots, we find
that there is not much discriminatory power using either total PSA or ratio of free to total
PSA. Thus, the difference in classification accuracy in Figure 2 can be primarily attributed
to the effect of age. Note that this analysis is much different than that done by Etzioni et
al. (1999). There were interested in determining if longitudinal PSA profiles were capable of
discriminating cases from controls. How to incorporate longitudinal data in the multivariate

binormal proposed here remains a topic for future research.

5. Discussion

In this article, we have developed an approach to extending the binormal model for ROC
curve estimation to accommodate multiple biomarkers. There is a lot of interest in new
biomarkers found through gene expression and protein expression technologies (Sidransky,
2002); a pivotal issue then becomes how to combine information from multiple biomarkers.
Our approach is complementary to previously described ones from the literature.

There are several potential extensions of the proposed methodology. In section 3.2.1,
we treated A, the transformation parameter, as a fixed constant. If we were to treat A as
unknown, then we could perform estimation in the model using a combination of the methods

in Foster et al. (2001) and the Van der Warden correlation coefficient estimation procedure.
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Our main motivation for treating A\ as fixed is because such a model is easy to fit using
standard statistical software packages, such as SAS, STATA or S-Plus.

While we have estimated correlations in the two-stage procedure in §3.2 using the Van
der Warden procedure. We could formulate regression models for the correlations as well;
this would correspond to a GEE2-type approach (Zhao and Prentice, 1990).

An advantage of the proposed approach is that it allows for incorporation of covariates
in a very flexible manner. However, the effect of covariates on the biomarkers and their dis-
criminatory power is multidimensional. An alternative approach would be to model covariate
effects directly on the ROC curve (Pepe, 2000). One could then envision marginal models

for ROC curves for multiple biomarkers. This is an area that needs further study.
Acknowledgments
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Appendix
Justification of two-stage estimation procedures

To make results concrete, we consider the case where p = 2 and consider only the diseased

population. Suppose we consider the following joint model:

h(Y) =X"Bp1 + e

ho(Y) = X' Bps + €2

where h; is a monotonic function (j = 1,2) and (€1, €2) is distributed with marginal distribu-
tion functions F; and F, and copula function (7). Define U;(y,z) = hj(y) — 2' Bp;, j = 1,2.
At the true hj and Bp; (j = 1,2), ¥;(Y,X) does not depend on the distribution of (€1, €2).
This fact was also utilized by Fine and Jiang (2000) in a survival analysis setting. For the
model (10), this means that (Yj)‘ —1)/A = XTBp; (j = 1,2) does not depend on the joint

distribution of (€1, €2) and similarly for (11).
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Figure 1: Comparison of cross-validated ROC curves for combined and univariate biomarkers
(CA125 and CA19-9) for pancreatic cancer data. The solid line represents the ROC from the
multivariate binormal model estimation procedure in §?7. The dashed line is the ROC curve
for CA19-9, while the dotted line is for CA125.
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Figure 2: Cross-validated ROC curves, using multivariate binormal model (solid line) and
univariate binormal model for log(free PSA) (dashed line) and log(free PSA/total PSA)
(dashed line).
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Figure 3: Cross-validated ROC curves, adjusting for age, using multivariate binormal model
(solid line) and univariate binormal model for log(free PSA) (dashed line) and log(free
PSA/total PSA) (dashed line).
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Table 1. Analytical comparisons of AUC, and AUC )y,

Lp oh pp pp AUC, AUCy
(-0.5,—-0.5) (1,1) 0.2 0.2 0.638 0.676
(—0.5,-0.5) (1,1) 0.3 0.2 0638 0.673
(-0.5,-0.5) (1,1) 0.2 0.8 0.638 0.658
(-1.5,—-0.5) (1,1) 02 0.2 0856 0.858
(-1.5,-0.5) (1,1) 0.3 0.2 0856 0.856
(-1.5,—-0.5) (1,1) 0.2 0.8 0.856 0.859
(—0.5,—-15) (1,1) 0.2 0.2 0638 0857
(-0.5,—1.5) (1,1) 0.3 0.2 0.638 0.856
(—0.5,—-1.5) (1,1) 0.2 0.8 0.638 0.860
(-0.5,-0.5) (1,0.5) 0.2 0.2 0.638 0.700
(=0.5,—0.5) (1,0.5) 0.3 0.2 0.638  0.698
(-0.5,-0.5) (1,0.5) 0.2 0.8 0.638 0.678
(-1.5,-0.5) (1,0.5) 0.2 0.2 0.856 0.862
(-1.5,-0.5) (1,0.5) 0.3 0.2 0.856 0.861
(—1.5,-0.5) (1,0.5) 0.2 0.8 0.856 0.859
(—0.5,—1.5) (1,0.5) 0.2 0.2 0.638 0.911
(-0.5,-1.5) (1,0.5) 0.3 0.2 0.638 0.910
(—0.5,—1.5) (1,0.5) 0.2 0.8 0.638 0.924

Table 2. Summary of simulation results for AUCy

n i pp pp bias(AUC)y) SE(AUCy) SEE(AUC))
100 (—0.5,-05) 0.2 0.2 0.0l 0.220 0.201
(-1.5,-0.5) 0.3 0.2 0.00 0.207 0.189
(—0.5,-1.5) 02 0.8 ~0.01 0211 0.193
200 (-0.5,—-0.5) 0.2 0.2 0.01 0.155 0.148
(—1.5,-0.5) 0.3 0.2 0.00  0.147 0.141
(—0.5,-1.5) 0.2 0.8 0.00  0.159 0.149
500 (-0.5,—0.5) 0.2 0.2 —0.01 0.098 0.096
(-1.5,-0.5) 0.3 0.2 ~0.01  0.093 0.091
(-0.5,—1.5) 0.2 0.8 —0.01 0.094 0.092

Note: SE(A/U\C u) is the empirical standard error of AUC),, while SEE(A/U\C M) is the

estimated standard error based on bootstrap distribution of AUC M-
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Table 3. Multivariate binormal parameter estimates for Wieand et al. (1989) pancreatic

cancer data

Biomarker bu oy pU PD
CA19-9 —1.199 0437 -0.121 0.134
CA125 —-0.737 0.992

Note: py denotes correlation between CA19-9 and CA-125 in undiseased population; pp

denotes correlation between CA19-9 and CA-125 in diseased population.

Table 4. Multivariate binormal parameter estimates for Etzioni et al. (1999) prostate

cancer data

Biomarker 7558 oy pU PD
total PSA 0.076 0.612 —-0.430 —0.505
PSA ratio 0.010 0.594

Note: Both markers have been adjusted for age. PSA ratio is ratio of free to total PSA; py
denotes correlation between total PSA and PSA ratio in undiseased population; pp denotes

correlation between total PSA and PSA ratio in diseased population.
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