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Comparing ROC Curves Derived From
Regression Models

Venkatraman E. Seshan, Mithat Gonen, and Colin B. Begg

Abstract

In constructing predictive models, investigators frequently assess the incremen-
tal value of a predictive marker by comparing the ROC curve generated from the
predictive model including the new marker with the ROC curve from the model
excluding the new marker. Many commentators have noticed empirically that a
test of the two ROC areas often produces a non-significant result when a corre-
sponding Wald test from the underlying regression model is significant. A recent
article showed using simulations that the widely-used ROC area test [1] produces
exceptionally conservative test size and extremely low power [2]. In this article
we show why the ROC area test is invalid in this context. We demonstrate how
a valid test of the ROC areas can be constructed that has comparable statistical
properties to the Wald test. We conclude that using the Wald test to assess the in-
cremental contribution of a marker remains the best strategy. We also examine the
use of derived markers from non-nested models and the use of validation samples.
We show that comparing ROC areas is invalid in these contexts as well.
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Comparing ROC Curves Derived From
Regression Models
V. E. Seshan, M. Gönen∗, C. B. Begg

In constructing predictive models, investigators frequently assess the incremental value of a predictive marker by
comparing the ROC curve generated from the predictive model including the new marker with the ROC curve from
the model excluding the new marker. Many commentators have noticed empirically that a test of the two ROC areas
[1] often produces a non-significant result when a corresponding Wald test from the underlying regression model
is significant. A recent article showed using simulations that the widely-used ROC area test produces exceptionally
conservative test size and extremely low power [2]. In this article we show why the ROC area test is invalid in
this context. We demonstrate how a valid test of the ROC areas can be constructed that has comparable statistical
properties to the Wald test. We conclude that using the Wald test to assess the incremental contribution of a marker
remains the best strategy for nested models. We also examine the use of derived markers from non-nested models
and the use of validation samples. We show that comparing ROC areas is invalid in these contexts as well. Copyright
c© 2012 John Wiley & Sons, Ltd.

Keywords: receiver operating characteristic curve, biomarker, predictive model, area under the ROC
curve, logistic regression, predictive accuracy, discrimination

1. Introduction

Receiver operating characteristic (ROC) curves provide a standard way of evaluating the ability of a continuous
marker to predict a binary outcome. The area under the ROC curve (AUC) is a frequently used summary measure of
diagnostic/predictive accuracy. Comparison of two or more ROC curves is usually based on a comparison of the area
measures. The standard method comparing AUCs is a non-parametric test [1], hereafter referred to as the “AUC test,”
although a method developed earlier is also used widely [3]. The AUC test uses the fact that the AUC is a U -statistic and
incorporates the dependencies caused by the fact that the markers are usually generated in the same patients, and are thus
“paired.”

Although the AUC test was originally developed in the context of comparing distinct diagnostic tests or markers, it
has increasingly been adopted for use in evaluating the incremental effect of an additional marker in predicting a binary
event via a regression model. Indeed authors of several methodological articles on predictive modeling have advocated

Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
∗Correspondence to: gonenm@mskcc.org

Contract/grant sponsor: National Cancer Institute Award CA 136783

Statist. Med. 2012, 00 1–11 Copyright c© 2012 John Wiley & Sons, Ltd.

Prepared using simauth.cls [Version: 2010/03/10 v3.00] Hosted by The Berkeley Electronic Press



Statistics
in Medicine V. E. Seshan, M. Gönen, C. B. Begg

the use of ROC curves for this purpose though these groups have generally not advocated statistical testing of the ROC
curves specifically [4, 5, 6, 7, 8]. In this setting investigators typically use the fitted values from the regression model
to construct an ROC curve and to compare this with the ROC curve derived similarly from the fitted values from the
regression excluding the new marker. However, a recent article provided several examples of the use of this strategy in the
literature, and demonstrated using simulations that the AUC test has exceptionally conservative test size in this setting,
and much lower power than the Wald test of the new marker in the underlying regression model [2] .

We show here that in the context of comparing AUCs from fitted values of two nested regression models the AUC test
is invalid. That is the nominal reference distribution does not approximate the distribution of the test statistic under the
null hypothesis of no difference between the models. Note that we use the term “compare” to refer to a significance test
and not the evaluation of of the incremental predictive ability by various summary measures developed for this purpose,
see, for example, Pencina et. al. [9] and the accompanying discussion articles. We show that comparing models using a
formal test of ROC areas is valid only if the reference distribution is constructed in recognition of the induced correlations
of the predictors from different patients from the fitted models, and also by recognizing an analytical artifact that is
invariably adopted in this setting. We also develop and present a procedure that produces the correct reference distribution
and remains valid in this context. It turns out, however, that the operating characteristics of the proposed procedure are
indistiguishable from those of the Wald test and there seems to be no particular advantage in its use. We use the Wald
test as a benchmark in recognition of the well-known result that Wald test is asymptotically equivalent to the likelihood
ratio test and the score test [10, Chapter 9]. We also consider the related problems of comparing derived predictors from
non-nested regression models and performing the comparison in vaildation samples. We show that the AUC test is invalid
in these cases as well.

2. AUC Test for Nested Binary Regression Models

2.1. A Review of the AUC Test

Consider first the comparison of the predictive accuracy of two independently generated predictive markers, denoted W1i

and W2i for cases i = 1, ..., n. We are interested in predicting a binary outcome Yi, where Yi = 1 or 0. The estimate of the
AUC for marker k can be written as a U-statistic:

Âk =
1

n0n1

n∑
i=1,Yi=1

n∑
j=1,Yj=0

I(Wki > Wkj) +
1

2
I(Wki =Wkj) (1)

where n0 =
∑n

j=1 I(Yj = 0), n1 =
∑n

i=1 I(Yi = 1) and I(.) is the indicator function. The AUC is equivalent to the Mann-
Whitney estimate of the probability that a randomly selected marker with a positive outcome is greater than a randomly
selected marker with a negative outcome.

It is important to note that (1) assumes that high marker values are more indicative of positive outcomes, Yi = 1 ,
than low marker values. This assumption, often relegated to small print or overlooked, is highly consequential for our
purposes. We will call it known directionality. Known directionality accompanies most single-marker analyses but this is
not the case for markers derived as predictions from multivariable regression models.

An estimate of the difference between A2 and A1 is given by δ̂ = Â2 − Â1. DeLong et. al. [1] derived a consistent
estimate for the variance V̂ =Var(δ̂) and proposed the test statistic T = δ̂/

√
V̂ which has an asymptotic standard normal

distribution under the null hypothesis that δ = 0. We heretofore refer to this as the AUC test.
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2.2. AUC test is invalid with nested binary regression models

The original derivation of the AUC test assumes that the two markers are to be compared head-to-head [1]. If the goal
is to evaluate the incremental value of a marker in the presence of another marker then the AUC test cannot be used
directly. Instead one needs to create a “composite” marker that captures the combined effect of the two markers, and then
compare this with the first marker. This aggregation of predictive information is usually accomplished using regression.
For example in the setting of logistic regression we would compare the first marker W1 = {W1i} with a composite marker
derived from the risk predictors from a logistic regression of Y = {Yi} onW1 andW2 = {W2i}. Frequently there are other
variables (Z) in the regression and so the comparison is between two composite predictors, derived from the following
two models:

M1 : logit(Yi) = β0 + β1W1i + θ′Zi (2)

M2 : logit(Yi) = β0 + β1W1i + β2W2i + θ′Zi. (3)

In this context we are interested in testing the null hypothesis that β2 = 0. One can then form the linear predictors using
the MLEs of the parameters

W ∗1i = β̂0 + β̂1W1i + θ̂′zi (4)

W ∗2i = β̃0 + β̃1W1i + β̃2W2i + θ̃′zi (5)

Let Â∗1 and Â∗2 denote the AUCs estimated from (1) using W ∗1 and W ∗2 in place of W1 and W2. Also let δ̂∗ = Â∗2 − Â∗1
and let T ∗ denote the test statistic corresponding to δ̂∗ calculated in the manner outlined in Section 2.1. We heretofore
refer to T ∗ as the AUC test statistic. As reasonable and straightforward as it seems, the comparison using the AUC test in
this manner is not valid for two reasons.

The first reason is that the variance estimate V̂ ∗ is based on the assumption that the observations from the patients are
mutually independent, i.e. (W ∗1i,W

∗
2i) ⊥ (W ∗1j ,W

∗
2j) for all i 6= j. With W ∗1i and W ∗2i defined as in (4-5) this assumption

is clearly violated. In fact, typically (W ∗1i,W
∗
2i) and (W ∗1j ,W

∗
2j) are strongly correlated, as we demonstrate later in Section

4.
The second reason concerns the construction of Â∗k as defined in (1). From the perspective of predictive accuracy of an

individual marker it should make a difference whether W1i is ranked from the smallest to the largest or from the largest
to the smallest. We know whether a high value of a diagnostic test should be associated with increased risk of disease.
That is, we know a priori how to order W with respect to Y . If we define U∗ki = −W ∗ki, ∀i, and the AUC for U∗ki to be
A∗−k then it is easily shown that A∗k +A∗−k = 1. With known directionality, an AUC estimate less than 0.5 is admissible,
though it would be recognized that the decrement from 0.5 is likely to be due to random variation. But in the context of
a regression model it is not possible to invoke known directionality. In this context the model is constrained to choose
the ordering that leads to an increase in the area estimate. That is, for M2 for example, if W2 is observed to be positively
associated with Yi after adjusting for W1 and Z then the sign of β̃2 will usually be positive. If, on the other hand W2 is
observed to be negatively associated with Y then the sign of β̃2 will usually be negative. Either way, the net effect will be
to increment the AUC estimate upwards. This is especially problematic when testing the null hypothesis that β2 = 0. The
reference distribution for the AUC test is constructed under the assumption that half the time the results should lead to a
decrement in AUC, but in fact this rarely happens. This creates a bias in T ∗ such that it no longer has zero mean under the
null hypothesis. However, as the true value of β2 increases the probability of observing a negative residual association of
W2 and Y by chance becomes less likely.

Statist. Med. 2012, 00 1–11 Copyright c© 2012 John Wiley & Sons, Ltd. www.sim.org 3
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3. A Valid Procedure Based on Projection and Permutation to test H : δ = 0

The previous section makes clear that the problems with the use of the AUC test stem from the artifacts related to the use
of regression in conjunction with the estimation of the AUCs. In this section we pursue a modification to the derivation of
the reference distribution for the AUC test to demonstrate that it is possible to construct a valid AUC test in this context.
We construct an orthogonal decomposition of W2:

W2 =W p
2 +W c

2 = PW2 + (I − P )W2,

where P = (X ′X)−1X and X = (1W1 Z). That is, W p
2 is the projection of W2 on to the vector space spanned by

(1 W1 Z) and W c
2 is the orthogonal complement of W p

2 . By definition W c
2 is uncorrelated with (W ∗1 Z) and hence all

the information in W2 that is incremental to (W1 Z) must be contained in W c
2 . Under the null hypothesis W c

2 forms an
exchangeable sequence. This suggests that permuting W c

2 and fitting the same logistic regression models as in Section 2
will generate a realization of the data generating mechanism under the null hypothesis. We have examined this conjecture
in Section 4 using a reference distribution for T ∗ in which the test statistic is calculated after repeated permutations of
W c

2 .

To summarize, the Projection-Permutation reference distribution is constructed as follows:

1. Compute the projection matrix P = (X ′X)−1X where X = (1W1Z).
2. Compute W p

2 = PW2 and W c
2 = (I − P )W2

3. Obtain a permutation of the vector {W c
2i}, call it W c

2,perm

4. Construct W2,perm =W p
2 +W c

2,perm

5. Fit models M1 and M2 replacing W2 with W2,perm from Step 4, and compute the area test statistic T ∗

6. Repeat 3-5 B times
7. Construct the reference distribution from the B values of the test statistic computed in step 6.

4. Comparison of the Tests in Nested Models

The extent and magnitude of the problem explained in Section 2 has been investigated in detail by Vickers et. al. [2] who
performed simulations to show that the use of the AUC test in nested regression contexts is problematic under several
scenarios. In the following we have reproduced simulations constructed in the same way as in [2] with the objective of
establishing the validity of the permutation procedure outlined in Section 3. Details of the data generation are provided
in [2], but briefly the simulations are constructed as follows. The outcomes {Yi} are generated as Bernoulli random
variables with probability 0.5. We note that Vickers et al [2] examined additional input probabilities and found extensive
bias regardless of this choice. Pairs of marker values {W1i,W2i} are generated as bivariate standard normal variates with
correlation ρ, conditional on {Yi}. The mean is (0, 0) when Yi = 0 and (µ1, µ2) when Yi = 1. Two logistic regressions
are then performed: logit(Yi) = β0 + β1W1i and logit(Yi) = β0 + β1W1i + β2W2i, and pairs of predictors {W ∗1i,W ∗2i}
generated as in Section 2.2. These are analyzed using the Wald test (for testing β2 = 0), the AUC test based in the statistic
T ∗ [1], and the Projection-Permutation test of the AUCs described in Section 3.

Results are displayed in Table 1 for different combinations of ρ, µ1, µ2, and for two different sample sizes. Note that
µ2 represents the unconditional predictive strength of W2, with the null hypothesis equivalently represented by µ2 = 0

and β2 = 0. The parameter µ1 represents the underlying predictive strength of W1. These results indicate clearly that the
AUC test is extremely insensitive with exceptionally conservative test size and low power. Under the null hypothesis, i.e.
when µ2 = 0, the AUC test is significant typically only once in 5000 simulations (at the nominal 5% significance level)
whereas the Wald test has approximately the correct size. As µ2 moves away from 0, the AUC test is substantially inferior

4 www.sim.org Copyright c© 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 00 1–11

Prepared using simauth.cls http://biostats.bepress.com/mskccbiostat/paper20



V. E. Seshan, M. Gönen, C. B. Begg

Statistics
in Medicine

Table 1. Size (µ2 = 0) and power (µ2 > 0) of the tests for n=250 and 500.

n=250 n=500
µ1 0 0.3 0 0.3

µ2 ρ 0 0.5 0 0.5 0 0.5 0 0.5
Wald Test 0.04 0.05 0.06 0.05 0.05 0.05 0.06 0.05

0 Standard AUC Test 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
Projection AUC Test 0.04 0.05 0.06 0.04 0.05 0.05 0.06 0.05

Wald Test 0.12 0.14 0.12 0.16 0.19 0.24 0.18 0.25
0.1 Standard AUC Test 0.01 0.02 0.00 0.02 0.02 0.04 0.01 0.01

Projection AUC Test 0.11 0.15 0.11 0.15 0.17 0.23 0.18 0.22
Wald Test 0.36 0.44 0.36 0.43 0.59 0.75 0.60 0.70

0.2 Standard AUC Test 0.08 0.11 0.04 0.06 0.18 0.29 0.11 0.17
Projection AUC Test 0.36 0.42 0.32 0.41 0.57 0.72 0.53 0.68

Wald Test 0.66 0.76 0.67 0.75 0.93 0.96 0.91 0.96
0.3 Standard AUC Test 0.22 0.33 0.13 0.22 0.56 0.73 0.39 0.54

Projection AUC Test 0.63 0.75 0.65 0.72 0.91 0.95 0.88 0.95

−3 −2 −1 0 1 2 3

0.0

0.2

0.4

0.6

0.8

Standardized test statistic
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Figure 1. Distribution of the AUC test statistic under the null hypothesis. The solid curve depicts the density of the observed test statistic from 5000 simulations and the dashed
curve is a standard normal, the presumed asymptotic distriution of the test statistic under the null hypothesis. Data are generated using µ1 = 0.3, µ2 = 0, ρ = 0 and n = 500.

to the Wald test in terms of power, due to the same factors that make it extremely conservative in the case of µ2 = 0. We
also see that doubling the sample size from 250 to 500 does not remedy the problem. This is expected because the bias
involved in the estimation of the mean and the variance of the AUC test statistic does not diminish with increasing sample
sizes. On the other hand the Projection-Permutation test has the correct size and comparable power to the Wald test. Poor
performance of the AUC test is largely unaffected by the degree of correlation between the markers (represented by ρ).

To better illustrate the biases in using the AUC test we display in Figure 1 results from a specific run of simulations
(µ1 = 0.3, µ2 = 0 and ρ = 0 with n = 500). The horizontal axis is the standardized AUC test statistic T ∗ which should
have zero mean and unit variance. The solid line is the kernel density estimate of the observed test statistic over 5000
simulations; it has mean 0.353 and variance 0.232. The dotted line is a standard normal density which is the reference

Statist. Med. 2012, 00 1–11 Copyright c© 2012 John Wiley & Sons, Ltd. www.sim.org 5
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Figure 2. Wald statistic and the AUC test statistic under the null (left panel) and alternative (right panel) hypotheses. Both graphics are generated using 5000 draws fromM2 with
µ1 = 0.3 and n = 500 for both panels, µ2 = 0 for the left panel and 0.2 for the right panel (ρ = 0 for both panels).

distribution of the AUC test statistic calculated in the conventional way [1]. Clearly, the difference between the two
densities is substantial, both with respect to mean and variance.

The occasional negative values of the AUC test statistic in Figure 2 reveal another source of discrepancy between the
AUC and Wald tests. This is due to dissonance between the maximum likelihood and AUC estimates. Since parameter
estimates are based on maximizing the likelihood, there will be some data sets where the residual association between
W ∗2 and Y is positive yet the corresponding the AUC estimate is less than 0.5. In other words, the parameter values that
maximize the likelihood result in a positive Wald test statistic but a decrement in the AUC. In our simulations under the
null we observed a negative AUC test statistic approximately 20% of the time. This phenomenon becomes less common
when W2 has incremental information, since the estimated coefficient is not only positive but also distant from 0 in most
circumstances.

Figure 3 illustrates the validity of the Projection-Permutation test graphically for n = 250 and ρ = 0.5. The empirical
density of the difference in areas (δ̂∗) under the null hypothesis (i.e., when µ2 = 0) is given by the black curve and the
density of the reference distribution of the Projection-Permutation test is given by the red curve. The two are almost
exactly the same, establishing the validity of the test. Further, the blue curve depicting the reference distribution under
the alternative hypothesis, i.e. when µ2 = 0.3 is virtually identical to the black and red curves, showing that the null
distribution is computed correctly when the data are generated under the alternative hypothesis. The green curve represents
the distribution of δ̂∗ under this alternative.

It is instructive to examine graphically the way the bias in the mean of the AUC test statistic operates. Figure 2 plots
the standardized Wald test statistic against the AUC test statistic for two scenarios: no incremental information in W2 (left
panel) and strong incremental information in W2 (right panel). In both cases the statistics should exhibit strong positive
correlation. For the left panel, since there is no incremental information, the residual association between W2 and Y is
negative approximately half of the time. For the right panel, as indicated in Section 2.2, the resulting MLE of β̂2 will
typically be positive in these cases indicating a positive impact on prediction, and the AUC statistic is correspondingly
positive. Hence the V-shaped pattern on the left and this V-shape is the source of the bias described in Section 2.2. The
magnitude of the problem becomes smaller as the signal increases; the figure on the right exhibits the positive correlation
between the two tests that we would expect. This is because it is increasingly unlikely that the residual association between
W2 and Y is negative in these circumstances.

Figure 2 explains the source of the discrepancy with respect to the location of the two densities in Figure 1. An
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Figure 3. Distribution of δ̂ for ρ = 0.5. The black (µ2 = 0) and green (µ2 = 0.3) curves are estimated from the data over 10000 simulations. The red (µ2 = 0) and blue
(µ2 = 0.3) curves are estimated from the reference distribution of the Projection-Permutation test.

explanation of the scale discrepancy is elusive graphically but possible by examining the following between subject
correlations: ρ∗1 = Cor(W ∗1i,W

∗
1j), ρ

∗
2 = Cor(W ∗2i,W

∗
2j) and ρ∗12 = Cor(W ∗1i,W

∗
2j) all of which are induced by the derived

nature of W ∗s. The variance of the asymptotic reference distribution in Figure 1 is computed under the assumption that
ρ∗1 = ρ∗2 = ρ∗12 = 0. Estimates of these correlations obtained from our simulations indicate that these are consistently, and
frequently strongly, positive, making clear the source of scale discrepancy. For example for the configurations used in
Figures 1 and 2 with µ1 = 0.3, µ2 = 0 and ρ = 0, we obtained ρ̂∗1 = 0.50, ρ̂∗2 = 0.41 and ρ̂∗12 = 0.35.

Construction of Figure 3 deserves some explanation. For each simulated data set δ̂∗ is computed and the values over
10000 simulations are used to construct the density estimates depicted by the black (null) and the green (alternative)
curves. Each simulated data set is also used to construct the reference distribution of the Projection-Permutation test as
described in Section 3. To obtain a single reference distribution from these 10000 reference distributions we randomly
sampled one permutation for each data set and then used those samples to construct the reference distributions shown in
the figure.

5. Performance of the Area Test in Non-Nested Models and Validation Samples

5.1. Non-Nested Models

Our primary objective is to compare the incremental value of a new marker which inherently gives rise to the nested
regression model. It is, however, logical to ask if the AUC test is valid if the comparison is between the distinct incremental
contributions of two different markers. That is we wish to compare non-nested models. In this case the models M1 and
M2 (2-3) are replaced with

M1 : logit(Yi) = β0 + β1W1i + β2W2i

M2 : logit(Yi) = β0 + β1W1i + β3W3i

Statist. Med. 2012, 00 1–11 Copyright c© 2012 John Wiley & Sons, Ltd. www.sim.org 7
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Table 2. Size of the AUC test in non-nested models for n=250 and 500.

n=250 n=500
µ1 0 0.3 0 0.3
ρ 0 0.5 0 0.5 0 0.5 0 0.5

µ2 = µ3

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.1 0.01 0.01 0.00 0.01 0.02 0.01 0.01 0.00
0.2 0.03 0.02 0.01 0.02 0.05 0.04 0.03 0.04
0.3 0.04 0.04 0.03 0.04 0.06 0.06 0.04 0.03

and the linear predictors (4-5) now become

W ∗1i = β̂0 + β̂1W1i + β̂2W2i

W ∗2i = β̃0 + β̃1W1i + β̃3W3i

As before, the AUC test is used to compare W ∗1 and W ∗2 .
Table 2 reports the results of simulations conducted under this scenario. Here µ2 = E(W2), µ3 = E(W3) and ρ =

Cor(W2,W3). It is evident that the test size remains extremely conservative, especially when the diagnostic value of each
of the markers being compared is zero (i.e. µ2 = µ3 = 0). This appears to be due to the known directionality issue as
well as the correlation between {(W ∗1i,W ∗2i)} and {(W ∗1j ,W ∗2j)} described in Section 2. As the common signal of the two
markers being compared strengthens the size approaches the nominal level. Overall, however, it is clear that the AUC test
is not valid for comparing markers derived from non-nested regression models.

5.2. Validation Samples

The scenarios we have considered so far have been limited to the case where estimation of regression parameters and
comparison of the ROC curves were performed on the same data set. It is not uncommon for marker studies to employ
validation samples where coefficients are estimated in a training set and derived predictors are constructed and compared
only on a test set. Using independent validation samples is considered to be the gold standard method for marker studies
since it can eliminate optimistic bias. Intuition suggests that it should be possible to apply this logic also to formal
comparisons based on the AUC test.

To study the characteristics of the AUC test in this scenario we conducted a set of simulations in which the data
are generated in exactly the same way as in Section 4. Each simulated data set is then split into training and test sets.
Two logistic regressions are estimated using only the training set: logit(Yi) = β̂0 + β̂1W1i and logit(Yi) = β̃0 + β̃1W1i +

β̃2W2i. Following this, pairs of predictors {W ∗1i,W ∗2i} are calculated using solely the test data but with β̂s and β̃s obtained
from the training set. The data are analyzed only using the the AUC test since the Wald test and the Projection-Permutation
test are not applicable in validation samples.

Results are reported in Table 3. These show that the size of the test is close to the nominal level when µ1 = µ2 = 0

but seems to display erratic behavior as µ1 increases. It is easily shown that (W ∗1i,W
∗
2i) ⊥ (W ∗1j ,W

∗
2j) for all i 6= j in

this setting, and so dependence between the observations is not the problem. The problem is that the manner in which
the derived markers are calculated corrupts the null hypothesis being tested that the AUCs are equivalent. To see this
we recognize that the AUC test is a rank test and that the ranks are invariant under a location and scale (up to sign)
shift. Consequently a comparison of {W ∗1i} versus {W ∗2i} is equivalent to a comparison of {W †1i} versus {W †2i} where
W †1i =W1i and W †2i =W1i + β̃2W2i/β̃1. Since E(β̃2) = 0 under the null we are in effect comparing a single marker
{W1i}with the same marker with additional noise. Added noise inevitably reduces the AUC and so the AUC corresponding
to {W †1i} is necessarily larger than the AUC corresponding to {W †2i}. However, this decrement is zero when µ1 = µ2 = 0
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Table 3. Size of the AUC test with validation samples

µ1 0 0.3
NTrain NTest µ2 ρ = 0 ρ = 0.5 ρ = 0 ρ = 0.5

250 250 0 0.04 0.05 0.07 0.06
500 500 0 0.05 0.05 0.09 0.07

10000 250 0 0.05 0.04 0.03 0.03
10000 500 0 0.05 0.05 0.03 0.02

since both AUCs are 0.5 in this scenario. Thus, even though the test sizes in Table 3 are fairly close to the nominal level
we conclude that a test constructed in this fashion is fundamentally invalid.

6. Discussion

In this article we have provided an explanation to the baffling observation that use of the AUC test to compare nested
binary regression models is invalid [2]. We found that the validity problems of the AUC test in this context are due to
two principal reasons. The first reason is that the test is based on the assumption that the data from individual subjects
(W1i,W2i) and (W1j ,W2j) are mutually independent. This is grossly violated when using predictors from a regression
model. This leads to an incorrect variance estimate of the test statistic as described in Section 4 and illustrated in Figure
1. The second major problem is that in its proper construction the AUC test is fundamentally one-sided in that we know
in advance the anticipated directionality of the relationship between predictor and outcome, allowing the possibility of
negative effects by chance. In the regression context the methodology does not distinguish any such “known directionality”
of the markers and instead constructs predictors to maximize the likelihood. In most cases this results in an optimized ROC
curve. Consequently both ROC curves are optimized in the same direction. Both of these phenomena lead to bias in the
test statistic. The effect of these two factors is to greatly reduce the sensitivity of the AUC test.

We have also established that using an independent validation sample does not lead to a valid AUC test. This is due to
the fact that the null hypothesis of no incremental value does not correspond to the null hypothesis of equal areas under
the ROC curves, except for the largely concocted case of no discriminatory power in either of the markers. We also found
that the AUC test is invalid when the comparison is between two predictors drawn from non-nested regression models.

Since ROC curves are widely used for assessing the discriminatory ability of predictive models, comparing the ROC
curves derived from predictive models is commonplace. In the first four months of 2011 alone, we easily identified seven
articles in clinical journals that used the AUC test to compare nested logistic regression models [11, 12, 13, 14, 15, 16, 17]
which speaks to the prevalence of the problem in applications of biostatistics. A recent feature in PROC LOGISTIC of
SAS (ROCCONTRAST statement in version 9.2) enables users to specify nested logistic regression models, estimate
their ROC curves and compare them using the AUC test. Availability of this feature in one of the most commonly used
statistical packages is likely to increase the use of this invalid procedure.

We have shown that it is possible to construct a valid reference distribution for the AUC test using permutation. In so
doing we have shown that the problem is not due to the AUC test statistic but is instead a consequence of the fact that the
standard asymptotic reference distribution is inappropriate in the context of modelled predictors. Nevertheless comparison
of two nested models using the AUC test statistic and its valid reference distribution (from Section 3) seems unncessary
since its operating characteristics are very similar to those of the Wald test, which is widely available in standard statistical
software.

In all of our simulations we generated marker values and other covariates from the multivariate normal distribution. This
represents a framework in which the logistic regression is fully valid. Given that the derived AUC test is grossly invalid
in these circumstances in which the data generation is a perfect fit for the assumed model, we consider it unnecessary
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to investigate alternative sampling models for which observed biases may be caused either by inappropriate modeling
assumptions or the phenomena we have described.

The performance of the AUC test has perplexed other investigators, including Demler et. al. [18] who assumed
multivariate normality of the markers and employed linear discriminant analysis to construct the risk prediction tool.
While these authors also seem to be motivated with the underperformance of the AUC test, they show that the AUCs of
M1 and M2 are the same if and only if α2 = 0, where α2 is the coefficient of the second marker from a linear discriminant
analysis. They show that the F -test for testing α2 = 0 has the correct size for comparing the AUCs. These authors did not
use the empirical estimate of the AUC nor did they consider the AUC test of DeLong et. al. [1], the most commonly used
method of comparing the AUCs. Our results specifically explain the poor performance observed in Vickers et. al. [2] by
showing that the AUC test is biased and its variance is incorrect in this specific setting. We have also demonstrated that a
test comparing the AUCs using an appropriate reference distribution has very similar properties to those of the Wald test
under general conditions that do not require distributional assumptions of the markers.

Finally, we clarify that the tests we have investigated are designed to test whether or not a new marker has any
incremental value in predicting the outcome. Even if the marker is found to have significant incremental value, it is
important to gauge the magnitude of the incremental information to determine if the marker has pratical clinical utility.
ROC curves and the change in ROC area in particular have often been used for this purpose, although various other
measures and approaches have been proposed [9, 19].
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