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On Comparing the Clustering of Regression
Models Method with K-means Clustering

Li-Xuan Qin and Steven G. Self

Abstract

Gene clustering is a common question addressed with microarray data. Previ-
ous methods, such as K-means clustering and hierarchical clustering, base gene
clustering directly on the observed measurements. A new model-based clustering
method, the clustering of regression models (CORM) method, bases the clustering
of genes on their relationship to covariates. It explicitly models different sources
of variations and bases gene clustering solely on the systematic variation. Both be-
ing partitional clustering, CORM is closely related to K-means clustering. In this
paper, we discuss the relationship between the two clustering methods in terms
of both model formulation and implications on other important aspects of cluster
analysis. We show that the two methods can both be considered as solutions to
a least squares problem with missing data but they each concern a different type
of least squares. We also show that CORM tends to provide stable clusters across
samples and is particularly useful if the cluster averages are used as predictors
for sample classification. Finally we illustrate the application of CORM to a set
of time course data measured on four yeast samples, which has a complicated
experimental design and is difficult for K-means to handle.



1. INTRODUCTION 
 

Advances in molecular technologies have led to an explosion of research to study how 

genomic alterations mediate disease etiology and progression. Gene expression 

microarrays allow simultaneous monitoring of thousands of genes at the mRNA level in 

tissue specimen from normal or disease samples. Clustering, a useful tool to look for 

unknown groupings of objects [1], has become an important part of the analysis of gene 

expression data, owing to the pioneering work of Eisen et al. [2]. The gene expression 

profile of a sample reflects a particular state of the sample, such as tissue type, disease 

status, and cell cycle phase [3-5]. By looking for clusters of genes that have similar 

expression levels across samples and sample states, researchers hope to better understand 

gene functions, genetic pathways, regulatory circuits, and ultimately disease etiology and 

treatment. Cluster analysis can also be used to cluster samples; we will focus on the 

problem of gene clustering in this paper.  

 

Several methods have been applied to the problem of gene clustering. They can largely 

be classified to two categories: (1) algorithmic clustering methods, such as K-means 

clustering and hierarchical clustering [2, 6]; and (2) model-based clustering methods, 

such as the multivariate normal mixture model [7, 8]. These methods generally do not 

take into account of the experimental design, such as cross-sectional (CS) design, 

longitudinal with no replication (LNR) design, and longitudinal with replications (LWR) 

design. 

 

A newly proposed clustering method, the clustering of regression models (CORM) 

method employs regression to model gene expression and clusters genes based on their 

relationship between expression levels and sample covariates [9]. Different from previous 

clustering methods, CORM partitions systematic variation from non-systematic variation 

and bases the clustering on systematic variation only. CORM is applicable to data 

collected under various designs for microarray experiments, including CS, LNR, and 

LWR designs. 
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K-means clustering is a commonly used clustering method for gene expression data [10]. 

In addition, K-means is a special case of a model-based clustering method – the 

multivariate normal mixture model, where the covariance matrix is diagonal (more 

precisely, scalar). Both K-means and CORM are partitional clustering methods, which 

concern the problem of the optimal partitioning of a given set of objects into a 

prespecified number of mutually exclusive and exhaustive clusters. In this paper we will 

investigate the relationship between K-means and CORM in terms of model formulation 

as well as other important but often overlooked aspects of cluster analysis, for example, 

selection of genes, characterization of clusters, and application of clusters. We will show 

that K-means and a special case of CORM can both be considered as solutions to a least 

squares problem, but they each concern a different type of sum of squares. Compared to 

K-means, CORM tends to find gene clusters that are stable across samples and thus 

provides a nice way to generate predictors for sample classification when averages of 

gene expression are used as predictors [11]. The rest of the paper is organized as follows. 

Section 2 briefly describes K-means and CORM. Section 3 discusses the relationship 

between K-means and CORM. Section 4 illustrates the application of CORM to a set of 

LWR data measured on four yeast samples, which has a complicated experimental design 

and is difficult for K-means to handle. Section 5 concludes the paper with some remarks. 

 

2. METHOD 
 

2.1. K-means Clustering 

 

Given a set of objects, K-means clustering seeks a partition of all objects into K groups to 

minimize the total within group sum of squared Euclidean distance [12]. The minimum 

could, in theory, be found by searching over all possible clusterings; however, this 

approach is computationally prohibitive when the number of objects is large. An iterative 

procedure is instead adopted to search for the minimum. Specifically, K-means starts 

with an initial value for the cluster centers, then iterates between the cluster-assigning 

step (each object is assigned to the closest cluster center) and the cluster-center-

recalculating step (each cluster center is updated as the average of objects assigned to that 
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cluster), until convergence. It has been pointed out that K-means is equivalent to 

assuming a multivariate normal mixture model with component distributions having the 

same scalar covariance matrix and equal mixture proportion, and then fitting the model 

using an EM algorithm to maximize the classification likelihood [13]. Here notation is 

introduced for LWR data, including CS data and LNR data as special cases. Let ygi 

denote the vector of expression levels for gene g and sample i, yg = (yT
g1, . . . , yT

gm) T the 

vector of expression levels for gene g for sample 1 through sample m, G the number of 

genes, and K the number of clusters. Let ug denote the cluster membership for gene g. 

The model underlying K-means can be written as 

 

yg | (ug = k) = μk + εg 

εg ~ MVN(0, σ2I) 

 

where εg is the vector of measurement errors, I is an identity matrix, and ug is a random 

variable on (1, 2, . . . , K) with probabilities πk = 1/K. Cluster memberships are 

considered as missing data in the EM algorithm: cluster-assigning step corresponds to E-

step and cluster-center-recalculating step to M-step. 

 

There are two reasons that we chose to compare CORM with K-means but not MNM in 

this paper. One is that K-means is more commonly-used and is more familiar to 

researchers working with microarray data. The other is that MNM with diagonal 

covariance matrix is more appropriate for the purpose of clustering genes when the 

experimental design is cross sectional, where elements are samples and can be reasonably 

assumed to be independent of each other. 

 

2.2. The CORM Method 

 

For the problem of differential expression analysis, the regression modeling framework 

has been employed to characterize systematic variation in the expression profile of each 

gene and distinguish it from random variation. Differential expression is identified by 

contrasting expression levels measured under different experimental conditions or by 
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identifying dependencies on concomitantly measured covariates. The resulting estimated 

regression models can provide an accurate and precise description of expression profiles. 

Similarly, the regression model framework can be used for the problem of gene 

clustering: systematic variation is separated from random variation and gene clustering is 

based solely on the systematic part of the variation. We call this as the clustering of 

regression models method (CORM). 

 

Let Xgi (ngi × p) denote the design matrix for gene g and sample i, Fβk,ξk the conditional 

distribution of genes in cluster k given the covariates with parameters βk and ξk, βk (p × 1) 

the vector of regression coefficients, and μ(.; .) the regression function. The model 

underlying CORM can be written as 

 

ygi | (Xgi, ug = k) ~ Fβk,ξk 

E(ygi | Xgi, ug = k) = μ(Xgi; βk) 

 

where ug is a random variable on (1, 2, . . . ,K) with probabilities (π1, π2, . . . , πK). 

Complete specification of the CORM modeling framework requires identification of the 

error structure (parameterized by ξ), which depends on the form of the regression model. 

The specific form of the regression model used for CORM is flexible. For example, it can 

be the linear model, the linear mixed model, the nonlinear model, and the nonparametric 

regression model. Its choice should depend on the experimental design and the scientific 

question. The EM algorithm can be used to fit the CORM model [14, 15]. 

Implementation details can be found in [9] for the clustering of linear models (CLM) 

method and the clustering of linear mixed models (CLMM) method. 

 

3. COMPARISON 
 

3.1. Comparing K-means and CORM 

 

K-means and CORM are similar in that they both seek a partition of objects, as opposed 

to a hierarchical tree, and are both implemented through an iterative EM algorithm. 
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However, the two methods base clustering on different features of a gene. The feature of 

interest for K-means is the vector of sample-specific expectations for a gene. For each 

sample-specific expectation, sample size is 1 and genes in the same cluster are used as 

replicates for its estimation. K-means does not make any assumption on the relationship 

between the expected expression level and the covariates and is ‘model-free’ in this 

respect. The feature of interest for CORM is the vector of regression parameters shared 

by samples for a gene. It separates systematic variation from random variation and 

increases clustering precision especially when the sample size is large (Figure 1). Note 

that although CORM is ‘model-based’ in terms of modeling expression levels with 

covariates, the regression model itself can be either parametric or nonparametric (for 

example, use of spline basis for modeling longitudinal data). 

 

[Figure 1 about here.] 

 

The different gene features considered by K-means and CORM also have implications on 

other important issues of cluster analysis. We will comment on three such issues here, 

one for before gene clustering and two for after gene clustering. 

 

(a) Selection of genes. A microarray provides measurements on thousands of genes, but it 

is common to select a small subset (tens to hundreds) of genes to cluster, especially for 

partitional clustering. One reason to select a subset is to keep the computation 

manageable and fast. Another reason is to try to exclude the uninformative genes to 

prevent them from deteriorating the clustering. For K-means, however, ‘uninformative’ is 

not well defined. One might select the most variable genes. However, on one hand, it 

does not distinguish genes with large signal and genes with large noise when including 

genes; on another hand, it does not distinguish genes with small signal and genes with 

small noise when excluding genes. For CORM, one could first select informative genes 

using a per-gene regression model and a significance cutoff appropriately adjusted for 

multiplicity [16], and then cluster genes with significant systematic variation to find those 

that are similarly associated to the covariates. CORM and regression-based differential 
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expression analysis can thus form an integrated framework for the analysis of microarray 

data. 

 

(b) Characterization and interpretation of clusters. After clustering genes, it is useful to 

determine the cluster signatures for the identified clusters. Often they are set to be the 

cluster centers. CORM clusters can be identified by their regression coefficients and have 

a specific interpretation depending on the experimental design. For example, we can tell 

whether a gene cluster tends to be up-regulated or down-regulated comparing diseased 

samples to normal samples. The interpretability of CORM clusters allows a more 

interpretable comparison of genes clusters identified in different data sets with similar 

experimental designs – not only the clustering of genes can be compared but also the 

characteristics of the clusters. 

 

(c) Application of clusters. Average of genes in the same cluster has been proposed to act 

as predictors for sample classification [11]. CORM tends to find clusters that more stable 

across samples, as we will show later. In addition, CORM, but not K-means, provides an 

explicit prediction rule for new genes that are measured on a new set of samples.  

 

CORM provides an alternative clustering method for scenarios when K-means has 

limitations. For example, while applicable to both CS data and LNR data, K-means does 

not distinguish the two experimental designs. K-means cannot naturally handle LWR data 

– profiles of a gene need to be averaged or connected first. K-means might not use all 

information in the data; for example, in a longitudinal study, it considers time points to be 

exchangeable and ignores their ordering and correlation. Unlike K-means, CORM can 

naturally deal with missing value on any gene or sample (under the assumption of 

missing at random) as well as imbalanced experimental design (for example, different 

sampling times for different samples in a longitudinal study). Moreover, CORM can 

easily incorporate technical replicates together with biological replicates in a hierarchical 

manner. 
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The gains of CORM depend on the truth of the regression model and its robustness to 

model misspecification. Ideally, the design of an experiment determines the gene-related 

feature available for clustering and hence informs parameterization of the regression 

model for CORM. Experimental design should be chosen to produce the feature that most 

likely reflects biological clusters of interest. For example, a longitudinal design can be 

used to find clusters of genes that behave similarly across time, while a cross-sectional 

design can be used to find clusters of genes that behave similarly across different levels 

of covariate (for example, disease stage). 

 

3.2. Comparing K-means and CLM 

 

The CLM method can be applied to CS data to find genes that have similar expression 

levels across a set of, homogeneous or heterogeneous, samples. In CS data, a single 

expression value is measured for a gene on a sample; hence, ygi reduces to ygi and Xgi to 

xgi. The underlying model for K-means and CLM can be written, respectively, as 

 

 ygi | (ug = k) = μki + εgi 

εgi ~ N(0, σ2) 

and 

ygi | (xi, ug = k) = xT
iβk + εgi 

εgi ~ N(0, σ2
k) 

 

K-means is closest to CLM when CLM assumes a common variance for measurement 

errors (σ2
k = σ2) and a common mixture proportion (πk = 1/K) for all clusters, as well as 

uses the classification likelihood for the EM algorithm. Under this specific scenario, the 

only difference between the two models is that, for each cluster, K-means assumes a 

different mean for each sample, while CLM assumes the same mean for samples at the 

same covariate level.  

 

Both K-means and CLM can be considered as solutions to a least squares problem. Take 

CS data on a group of homogeneous samples as an example. Given the data, the sum of 
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squared distance between individual expression levels, ygi, and the global average across 

genes and samples, y, is fixed. This sum of squares can be decomposed into three 

components: 

 

∑g,i(ygi − y)2 =∑g,i(ygi − yki)2 + ∑g,i(yki − yk)2 + ∑g,i(yk − y)2  (1) 

 

where yki stands for the sample-specific cluster mean for sample i and cluster k and yk for 

the cluster mean averaged across samples for cluster k. K-means seeks a partition of 

genes to minimize the first component, while CLM seeks a partition to minimize the sum 

of the first and second components. The second component measures the variability of 

sample-specific cluster centers among samples, which suggests that CLM seeks a 

partition that has stable cluster centers across samples. Stable cluster centers are 

particularly desired if they are further used to form sample classifiers [11]. 

 

Alternatively, the sum of squares can be decomposed into another three components: 

 

∑g,i(ygi − y)2 = ∑g,i(ygi − yg)2 + ∑g,i(yg − yk)2 + ∑g,i(yk − y)2  (2) 

 

where yg stands for the gene-specific mean averaged across samples for gene g. The sum 

of the first two components in equation (1) is equivalent to the sum of the first two 

components in equation (2). The first component in equation (2) measures the non-

systematic variation, while the second component measures the systematic variation. The 

first component is independent of gene clustering (that is, variation unrelated to 

clustering); hence, CLM bases the clustering only on the second component – the 

systematic variation between genes (that is, variation related to clustering). 

 

4. APPLICATION 
 

To study the regulation of cell cycle in yeast, the Breeden Lab at Fred Hutchinson Cancer 

Research Center studied gene expression of cell cycle for both wild type (WT) yeast and 

a single mutant (SM) yeast with Yox1 knocked out. They used α factor for cell 
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synchronization and measured 6,227 ORFs at 5-min intervals for 120 min. cDNA 

microarray was used with a common reference mRNA and log ratios are used to measure 

expression levels. Replicate measurements were obtained for both WT yeast and SM 

yeast. We are interested in the co-expression behavior of cell cycle dependent genes. 

Using the three microarray data sets on yeast cell cycle published by [5], Zhao et al. 

(2001) identified a set of 256 genes to be cell cycle dependent in at least two out of the 

three data sets using a per-gene regression modeling approach [17]. We focused on these 

256 periodic genes in our analysis. 

 

The primary goal of our analysis is to cluster genes that have similar expression patterns 

among WT yeast. As a secondary goal, we also clustered genes using both WT yeast and 

SM yeast to identify genes whose expression patterns are changed by the mutation. 

Unlike K-means clustering, CLMM can explicitly accommodate both the replication and 

the sample covariate (mutation status). In addition, CLMM can naturally deal with the 

imbalanced experimental design: WT had one bad time point at 105 min and SM had 

three at 25 min, 40 min, and 55 min, where bad time points were assessed by the Breeden 

Lab based on technical considerations and were removed from the cluster analysis. There 

was also missing data: 41 measures belonging to 17 genes for WT data and 17 measures 

belonging to 17 genes for SM data were clearly outliers based on judgments from the 

Breeden Lab and were most likely due to technical failures of the measurement procedure 

rather than reflecting true biological variation that should be modeled. See supplementary 

materials for details. 

 

4.1. Cluster WT Data 

 

The CLMM method was applied to cluster the 256 genes using WT data. The design 

matrix for fixed effects was the B-spline basis for time 0-120 min with 7 equally spaced 

knots. The number of knots was set to be 7 to allow a flexible modeling of the expression 

profiles and at the same time to avoid overfitting. Within a reasonable range, the 

clustering results were not sensitive to the number of knots for the B-spline basis. The 

number of samples is small in this data and does not allow the application of 
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bootstrapping-based methods, such as the bootstrapped maximum volume measure [9]; 

hence we fit the CLMM model for several numbers of clusters, including K=6, K=7, and 

K=8. As K increased from 6 to 7, a group of 17 genes was separated from a loose cluster 

and formed a new cluster. According to the clustering estimated in [5] based on the time 

to the first peak, all 17 genes belong to the G2/M cluster. When K increased from 7 to 8, 

the major change in gene clustering was that cluster 1 for K=7 was split into two smaller 

clusters. The clustering for K=8 (Figure 2) seemed to describe the data better than that for 

K=6 and K=7. We will focus on the clustering for K=8 in the following discussion. 

 

We did model checking by plotting the model residuals and the BLUPs (see 

supplementary materials). Estimated variance of the residuals is fairly constant across 

time for each of the clusters. Also there is no obvious pattern across time in the residuals, 

except clusters 3 and 4. Estimated variance of the BLUPs is also reasonably constant 

across elements of the random effects for each of the clusters. To further explore how the 

clusters are located to each other and how tight each cluster is, we calculated the 

eigenvalues for the observed expression data and used the two eigenvectors 

corresponding to the largest two eigenvalues to display the observed data and the 

estimated cluster centers with genes in the same cluster highlighted in the same color. 

The two vectors explain 64.11% of the total variation in the observed data. Figure 3 

shows that the clusters partition the samples well, except that cluster 8 overlaps several 

others and is relatively loose itself. 

 

[Figure 2 about here.] 

[Figure 3 about here.] 

 

4.2 Cluster Both WT Data and SM Data 

 

CLMM was also applied to cluster genes using both WT data and SM data. Figures 4 and 

5 show the clustering result when CLMM is fit with eight clusters. To gain more insights 

into the underlying biology, the estimated profiles are compared between WT yeast and 

SM yeast for each cluster (Figure 6). For example, in cluster 1, periodicity is maintained 
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in SM yeast but with a smaller magnitude, which suggests that the mutation may have 

turned off a repressor for genes in this cluster. 

 

[Figure 4 about here.] 

[Figure 5 about here.] 

[Figure 6 about here.] 

 

To identify genes whose clustering status is changed by the mutation (that is, 

‘differentially clustered’ genes), we compared the clustering using both WT and SM data 

and that using WT data only (table 1). This is an empirical approach to identify 

differentially clustered genes and we would like to further rigorously address this 

problem in the future. The two clusterings differ mostly in their clusters 1 and 2 and their 

detailed GO annotation is provided in supplementary materials. 

 

[Table 1 about here.] 

 

5. REMARKS 
 

Both K-means and CORM are useful tools for clustering genes using expression data. K-

means makes no assumption about the relationship between expression levels and sample 

covariates. It is intuitive and has produced reasonable results in applications [6,10]. K-

means is especially useful to explore the data when no prior knowledge is available on 

genes’ relationship to covariates. CORM assumes a regression relationship between gene 

expression and covariate. When the assumption holds, CORM is able to provide more 

precise clustering and cluster center estimates. Moreover, CORM is capable of naturally 

handling data with complicated experimental design, for example, longitudinal with 

replications design, unbalanced time points, and missing data.  
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Table 1. Compare the clustering using both WT and SM data and that using WT data. 

 Both 1 Both 2 Both 3 Both 4 Both 5 Both 6 Both 7 Both 8 
WT 1 13 1 3 2 3 
WT 2 21 33  
WT 3 3  22 1 
WT 4   11  
WT 5  2 30 2  
WT 6  1 4 50  
WT 7   17  
WT 8  4 2 8 23 
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Figure 1. Compare K-means and CLM. Data is simulated for eight genes and 100 

samples. Eight genes belong to two clusters. Each of the ten levels of covariate X has ten 

samples. Left panel plots gene expression versus sample index. Middle panel plots gene 

expression versus covariate X. Right panel plots average gene expression for samples at 

the same X level versus covariate X. Symbols represent genes and colors represent gene 

clusters. 
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Figure 2. Cluster the 256 genes using WT data. Genes were clustered to eight clusters. 

Each panel plots the fitted profile (colored line) of one cluster and the observed profiles 

(black line) of genes in that cluster averaged across the two WT samples versus time in 

minutes. The number of genes in each fitted cluster is labeled at the lower right corner of 

each panel. 
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Figure 3. Display the CLMM-based clustering for WT data. X axis and Y axis are the top 

two eigenvectors. Panel one plots all genes with genes in the same cluster plotted in the 

same color. Numbers 1-8 indicate the eight cluster centers. The other eight panels plot 

genes by cluster. 
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Figure 4. Cluster the 256 genes using both WT and SM data: WT profiles. 
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Figure 5. Cluster the 256 genes using both WT and SM data: SM profiles. 
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Figure 6. Cluster the 256 genes using both WT and SM data: compare the fitted WT 

profiles (solid line) and the fitted SM profiles (dotted line). 
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