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A Hybrid Bayesian Laplacian Approach for
Generalized Linear Mixed Models

Marinela Capanu, Mithat Gonen, and Colin B. Begg

Abstract

The analytical intractability of generalized linear mixed models (GLMMs) has
generated a lot of research in the past two decades. Applied statisticians rou-
tinely face the frustrating prospect of widely disparate results produced by the
methods that are currently implemented in commercially available software. This
article is motivated by this frustration and develops guidance as well as new meth-
ods that are computationally efficient and statistically reliable. Two main classes
of approximations have been developed: likelihood-based methods and Bayesian
methods. Likelihood-based methods such as the penalized quasi-likelihood ap-
proach of Breslow and Clayton (1993) have been shown to produce biased esti-
mates especially for binary clustered data with small clusters sizes. More recent
methods such as the adaptive Gaussian quadrature approach perform well but can
be overwhelmed by problems with large numbers of random effects, and efficient
algorithms to better handle these situations have not yet been integrated in stan-
dard statistical packages. Similarly, Bayesian methods, though they have good
frequentist properties when the model is correct, are known to be computationally
intensive and also require specialized code, limiting their use in practice. In this
article we build on our previous method (Capanu and Begg 2010) and propose a
hybrid approach that provides a bridge between the likelihood-based and Bayesian
approaches by employing Bayesian estimation for the variance compo- nents fol-
lowed by Laplacian estimation for the regression coefficients with the goal of
obtaining good statistical properties, with relatively good computing speed, and
using widely available software. The hybrid approach is shown to perform well
against the other competitors considered. Another impor- tant finding of this re-
search is the surprisingly good performance of the Laplacian approximation in
the difficult case of binary clustered data with small clusters sizes. We apply the
methods to a real study of head and neck squamous cell carcinoma and illustrate



their properties using simulations based on a widely-analyzed salamander mating
dataset and on another important dataset involving the Guatemalan Child Health
survey.
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Abstract

The analytical intractability of generalized linear mixed models (GLMMs) has generated a lot of

research in the past two decades. Applied statisticians routinely face the frustrating prospect of widely

disparate results produced by the methods that are currently implemented in commercially available

software. This article is motivated by this frustration and develops guidance as well as new methods

that are computationally ef�cient and statistically reliable. Two main classes of approximations have

been developed: likelihood-based methods and Bayesian methods. Likelihood-based methods such as

the penalized quasi-likelihood approach of Breslow and Clayton (1993) have been shown to produce

biased estimates especially for binary clustered data with small clusters sizes. More recent methods

such as the adaptive Gaussian quadrature approach perform well but can be overwhelmed by problems

with large numbers of random effects, and ef�cient algorithms to better handle these situations have

not yet been integrated in standard statistical packages. Similarly, Bayesian methods, though they have

good frequentist properties when the model is correct, are known to be computationally intensive and

also require specialized code, limiting their use in practice. In this article we build on our previous

method (Capanu and Begg 2010) and propose a hybrid approach that provides a bridge between the

likelihood-based and Bayesian approaches by employing Bayesian estimation for the variance compo-

nents followed by Laplacian estimation for the regression coef�cients with the goal of obtaining good

statistical properties, with relatively good computing speed, and using widely available software. The

hybrid approach is shown to perform well against the other competitors considered. Another impor-

tant �nding of this research is the surprisingly good performance of the Laplacian approximation in the

dif�cult case of binary clustered data with small clusters sizes. We apply the methods to a real study

of head and neck squamous cell carcinoma and illustrate their properties using simulations based on a

widely-analyzed salamander mating dataset and on another important dataset involving the Guatemalan

Child Health survey.

KEYWORDS: PQL; generalized linear mixed models; pseudo-likelihood; Bayesian; Laplace; binary clus-

tered data.
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1 Introduction

Generalized linear mixed models (GLMM) have generated a lot of research in the past two decades. Un-

like linear mixed models for which the likelihood function can be expressed in closed form, thus making

(restricted) maximum likelihood estimates readily available, GLMMs' likelihood function is expressed as

an integral with respect to the random effects and does not have a closed form. As a result, numerous

approximation methods have been proposed with different degrees of accuracy, complexity of implementa-

tion, and computational time. Breslow and Clayton (1993) used Laplace approximations and Wol�nger and

O'Connell (1993) used Taylor expansions to reduce the estimation of GLMM to that of an approximated lin-

ear mixed model which can be analyzed in the usual way. Though arrived at through difference expansions,

the penalized quasi-likelihood (PQL) introduced by Breslow and Clayton (1993) and the pseudo-likelihood

of Wol�nger and O'Connell (1993) are equivalent and have been shown to be biased especially in the case

of clustered binary data with few observations per cluster. The bias in the PQL estimates has led to the

development of a series of modi�cations and proposals: correction of PQL (Breslow and Lin 1995; Lin

and Breslow 1996), modi�ed Laplace approximation (Shun and McCullagh 1995; Shun 1997), adaptive

Gaussian quadrature (Pinheiro and Bates 1995), higher order Laplace approximations (Raudenbush et al.

2000). The list is long and thorough reviews of these developments can be found in McCullagh and Searle

(2001), Demidenko (2004), Hedeker and Gibbons (2006), and Lee et al. (2006).

To tackle the analytical intractability of GLMMs, an alternative to likelihood-based approximations is

to pursue a Bayesian approach in which Markov chain Monte Carlo methods are used to make inferences

based on the posterior distribution of the parameters. Zeger and Karim (1991) investigated the use of

Gibbs sampling to �t GLMMs. Other implementations that involved Monte Carlo methods were adopted

by Gamerman (1997), Booth and Hobert (1999), and Natarajan and Kass (2000), among others. The

use of these methods in practice has been hindered by their longer computational time and the lack of

implementation in comprehensive statistical packages.

Recent improvements in computing technology have facilitated further developments in numerical inte-

gration methods to estimate GLMMs. Pinheiro and Chao (2006) built on the methods introduced in Pinheiro

and Bates (1995) and proposed ef�cient Laplacian and adaptive Gaussian quadrature algorithms that reduce

computational complexity and memory usage for approximating multilevel GLMMs. Chan et al. (2006)

combined Bayesian and classical approaches by using Gibbs sampling to evaluate the marginal likelihood

and then obtain maximum likelihood estimates through the Newton-Raphson method. Ng et al. (2006)

evaluated the use of simulated maximum likelihood in estimating GLMMs and showed that it produces
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results similar to those from quadrature methods, although it can be more computationally intensive. Tsai

and Hsiao (2008) employed a Bayesian approach with approximate Jeffreys priors for the covariance matrix

of the random effects and showed that the Bayesian approach outperforms PQL for the applications inves-

tigated. However, none of these approaches have readily available user code integrated in conventional

statistical packages.

In a recent paper, Rue and Martino (2009) proposed using integrated nested Laplace approximations

(INLA) to approximate posterior marginals for latent Gaussian models. This approach is a promising alter-

native to reduce the computational burden of Markov chain Monte Carlo algorithms and has been received

with enthusiasm as a way of stimulating greater use of Bayesian analysis in practice. Models that require

a large number of hyperparameters are a concern with this approach, and further research may be needed

to tackle this challenge. Fong et al. (2010) evaluated the use of INLA for GLMMs and concluded that the

method is accurate in general but less accurate for binomial data with small denominators. Implementation

of INLA is available using an R interface.

Though numerous methods have been proposed, in practice the applied statistician still faces situations

in which available methods implemented in commercially statistical software produce widely disparate

results. This is the case in the analysis of our motivating dataset of head and neck cancer patients in which,

as seen later in Section 4.1, depending on the method used, the variance component estimates can differ by

a factor of 9 and odds ratio estimates by 50%.

In Capanu and Begg (2010) we introduced a hybrid pseudo-likelihood approach with Bayesian estima-

tion of the variance component in settings where the data are very sparse for individual random effects. The

motivating context was a two-stage hierarchical model that was designed for estimating the relative risks

of rare genetic variants. Using simulations we have shown that this approach has superior properties as

compared to two competitor techniques investigated: pseudo-likelihood estimation and pseudo-likelihood

estimation with Breslow and Lin correction for the variance component. Building upon these �ndings, in

this paper we propose a hybrid approach that combines Bayesian estimation of the variance components

with Laplace estimation of the regression coef�cients, and examine it under the general setting of gener-

alized linear mixed models (GLLMs). Combining the simplicity of implementation of PQL and Laplace

approximations with the desirable properties of the Bayesian approach, the hybrid approach enjoys good

properties in the settings examined and is fast and easily accomplished in the standard statistical package

SAS. The original hybrid pseudo-likelihood approach is also evaluated.

Section 2 describes the motivating study in which radiologic methods were used to assess recurrence in

head and neck squamous cell carcinoma patients. The crossed random effects analysis of the salamander
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mating experiment (McCullagh and Nelder 1989) is revisited. Section 3 describes the methods investigated,

while Section 4 applies the methods to the head and neck and the salamander datasets. Section 5 presents

simulations based on the salamander mating experiment. It also report the results of simulations based on

a Guatemalan survey dataset (Rodriguez and Goldman 1995) which involves a multilevel structure with a

large number of random effects. Results of the analysis of the head and neck data and the salamander data

are interpreted in light of the simulation �ndings. Section 6 concludes with a Discussion.

2 Datasets

In this section we describe the motivating study which involved head and neck squamous cell carcinoma

(HNSCC) patients. The analysis involves binary outcome with a large number of random effects, a setting

which has proven dif�cult to analyze since different proposed procedures can yield different estimates and

it is unclear which one is the most appropriate to use. We also revisit the widely analyzed salamander

mating experiment which involves binary clustered data with crossed random effects and has been shown

in numerous publications to pose challenges to existing estimation methods for GLMMs. The analyses of

these datasets will be presented in Section 4.

2.1 Head and neck cancer data

Head and neck squamous cell carcinoma is the eighth most common malignancy in the US. Surgical re-

section remains the best treatment option at diagnosis, but approximately 70 per cent of the patients recur

within 5 years. For various clinical and biological reasons, detecting recurrent disease in a timely manner is

a challenge. Late detection of recurrent HNSCC limits the treatment options available for recurrent disease

and confers a poor prognosis.

The clinical study that motivated our work focused on the accuracy and prognostic value of imaging pa-

rameters as well as factors associated with relapse free and overall survival in patients with HNSCC treated

at Memorial Sloan-Kettering Cancer Center between 1996 and 2001 (Wong et al. 2002). The study inves-

tigated multiple questions, but here we focus on the prognostic value of several risk factors as independent

predictors of recurrent disease at 6 months. Patients are typically followed for recurrence by a radiological

examination every 3-6 months. A radiological exam is usually recorded as negative (no recurrent disease),

positive (recurrent disease), or equivocal. Since recurrent lesions can appear anywhere in the body, de-

pending on the clinical history of the patient, there can be multiple records from the radiological exam for

each patient. Re�ecting the corresponding treatment options, observations within a patient were limited to

up to three sites: local (at or near site of the primary tumor), regional (lymph nodes near the site of the
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primary tumor) and distant (other organs). Radiologic data was available for 128 patients. All equivocal

results were treated as positive for this analysis. Potential predictors considered were clinical variables such

as age, previous head and neck surgery, and previous exposure to chemotherapy, as well as results of the

clinical examination including palpation of the neck area and interpretation of various blood tests.

This analysis can be handled with a binary regression model that allows for clustering since some

patients contribute multiple data points to each analysis. These models are part of the family of GLMMs. In

Section 4.1 we give a precise description of the model and the multiple methods we used for �tting. Without

getting into details, we want to point out here the widely disparate results we obtained from different model-

�tting procedures (top part of Table 1). Estimates of the variance component can differ by nine-fold from

one method to the other, and the odds ratio for one of the �xed effects shows 50% difference across methods.

We felt uncomfortable facing these widely disparate results and we were unable to �nd any guidance in

the literature as to which methods give more reliable results. This article is motivated by such data analyses.

We provide explicit recommendations and present a hybrid method that is fast and reliable.

2.2 Salamander Experiment

The salamander dataset has been previously described and analyzed at length by McCullagh and Nelder

(1989), Breslow and Clayton (1993), Drum and McCullagh (1993), Karim and Zeger (1992), Lin and

Breslow (1996), and others and we describe it only brie�y here. Ten males and ten females from each

of two populations of Apalachian salamanders with different habitats, Rough Butt (RB) and White Side

(WS), were paired in a crossed design. Each salamander was paired to three salamanders of the opposite

sex from each population and the occurrence of mating was recorded as a binary response. The experiment

was conducted three times, the �rst two times using the same 40 salamanders (Summer and Fall 1), while

a new set of 40 animals was utilized the third time (Fall 2). As seen later in Section 4.2, analysis of these

data suffers of the same limitations encountered for the head and neck data with different methods leading

to widely different results.

3 Methods

Consider a GLMM represented succinctly as follows:

Y = m + e, such that

g(m) = Ua +Xd = h (1)

cov(d ) = G

E(e|m) = 0, cov(e|m) = R
1/2
m RR

1/2
m ,
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where a is a vector of �xed effects, d is a vector of random effects normally distributed with mean 0

and variance matrix G, and g(.) is a differentiable monotonic link function (for example the logit link for

mixed logistic regression). Here e is a vector of unobserved residuals, Rm is a diagonal matrix containing

the variance functions of the model evaluated at m , and R is unknown. In the settings investigated here,

we assume G is a diagonal matrix with the diagonal elements called random effects variance components,

while the residual variance component is the common diagonal element of the diagonal matrix R.

If p(·) is used as a generic term for the probability density function, then the marginal distribution of

the data in a mixed model can be expressed as

p(y|a ,G) =
∫

p(y|d ,a ,G)p(d )dd . (2)

In general, this integral does not have a closed-form expression for GLMMs, and different methods have

been proposed to estimate it. In this article, we will investigate the performance of several approaches for

estimating GLMMs: PQL, Breslow and Lin correction to PQL, Laplacian approximation, and two versions

of our proposed hybrid approach, pseudo-likelihood and Laplacian estimation of the regression coef�cients.

The next section provides a brief review of these methods.

3.1 The Pseudo-Likelihood Method

The pseudo-likelihood method estimates the model parameters of GLLMs by iteratively using a lineariza-

tion technique which employs Taylor expansions to approximate the initial generalized linear mixed model

with a linear mixed model (Wol�nger and O'Connell 1993). Fitting the resulting linear mixed model is

itself an iterative process which upon convergence leads to new parameter estimates that are then used to

update the linearization. This results in a new linear mixed model, and the process continues until the

relative change between parameter estimates from successive cycles is suf�ciently small. The predictors

�d are the estimated best linear unbiased predictors (BLUPs), referred to as EBLUP in the approximated

linear mixed model. More details of this algorithm and additional formulas are provided in Wol�nger and

O'Connell (1993) and Schabenberger (2005) and a description of its application to �t hierarchical models

can be found in Capanu et al. (2008).

The penalized quasi-likelihood method (PQL) of Breslow and Clayton (1993) estimates generalized

linear mixed models using Laplace approximations. Though arrived at through different expansions, the

PQL and the pseudo-likelihood methods produce identical parameter estimates since the objective functions

minimized by the two methods differ only by a constant (Wol�nger and O'Connell 1993). Note that under

both PQL and the pseudo-likelihood estimation, you can choose to freely estimate the dispersion parameter

with the rest of the parameters rather than assuming no dispersion (i.e. the dispersion parameter is 1) the
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way the binomial distribution does.

It is well known that the PQL estimates of the variance components are subject to bias especially for

certain cases such as clustered binary data with clusters of small size. In Section 3.2 and 3.4 we describe

two modi�cations of PQL designed to improve estimation of the variance components and of the regression

coef�cients.

3.2 Lin and Breslow Correction for the Variance Component

Breslow and Lin (1995) and Lin and Breslow (1996) proposed a correction of the PQL estimates of the

variance components as well as �rst-order and second-order corrections for the PQL regression coef�cients.

The proposed correction matrices are derived based on a series of linear expansions and depend on the �xed

effects and random effects design matrices and on the variance functions associated with the generalized

mixed model. Using simulations, Breslow and Lin showed that the corrections can improve the performance

of the PQL method for models with moderate values of variance components (between 0.5 and 1 on the

log relative risk scale) but they still have severe bias for larger variance components. For general use they

recommend applying the correction only for the variance components and recalculating the PQL regression

coef�cients based on the corrected PQL variance components.

3.3 Integral Approximations

3.3.1 Laplace Approximation

There have been several Laplacian approximations proposed for estimating marginal posterior densities

(Tierney and Kadane 1986) or nonlinear mixed models (Breslow and Clayton 1993; Wol�nger 1993; Pin-

heiro and Bates 1995). The idea behind the Laplace approximation is to approximate an integral by ex-

panding the logarithm of the integrand in Taylor series and then using the Gaussian distribution to evaluate

the integral obtained after the expansion. In the context of GLMMs, following Schabenberger (2005), the

marginal distribution of the data can be written as

p(y|a ,q ,f) =
∫

p(y|d ,a ,f)p(d |q )dd

=
∫
exp{ch(y,a ,q ,f ;d )} dd

µ |G|−1/2
∫
eh(d ) dd

where q is the vector of the covariance parameters contained in the matrix G, f is a possible scale param-

eter, and c is a constant. Substituting the conditional density functions in this expression and following the

derivation in Breslow and Clayton (1993), we obtain

p(y|a ,q ,f) ≈ |G|−1/2−|h′′( �d )|−1/2
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where h′′ is the second derivative matrix

h′′(y,a ,q ,f ; �d ) =
¶ 2h(y,a ,q ,f ;d )

¶d 2
| �d ,

while �d satis�es

¶h(y,a ,q ,f ; �d )
¶d

= 0.

Noting h′′(d ) ≈ XTRmX +G−1, which follows from ignoring a remainder term with zero expectation, we

arrive at

p(y|a ,q ,f) = |G|−1/2 + |XTRmX +G−1|−1/2−h( �d ) (3)

This is the general form of the Laplace approximation for GLMMs. PQL follows from (3) via ignoring the

middle term |XTRmX +G−1|−1/2, which amounts to assuming that Rm varies very slowly as a function of

m .

Wol�nger (1993) assumed a �at prior for a and expanded the integrand around a and d , using the

optimization only for the covariance parameters. Then, for given variance components �q , the �xed ef-

fects and random effects a and d were determined in a suboptimization that involved a linear mixed

model with pseudo-data. In contrast, the Laplacian approximation implemented in PROC GLIMMIX

(METHOD=LAPLACE) in SAS involves a suboptimization which for given values of �a and �q determines

the random effects vector �d that maximizes h(y,a ,q ,f ;d ). Another difference between the implementation

of the Laplacian approximation in the GLIMMIX procedure and the approximations proposed by Wol�n-

ger (1993) and Pinheiro and Bates (1995) is that the latter use an approximation of the second derivative

h′′(y,a ,q ,f ; �d ) whereas the SAS PROC GLIMMIX computes this analytically. We have employed the

SAS PROC GLIMMIX to carry out the Laplacian approximation in our simulations and data analyses.

3.3.2 Adaptive Gaussian Quadrature

Introduced by Pinheiro and Bates (1995), adaptive Gaussian quadrature methods approximate a given inte-

gral by a weighted sum over prede�ned abscissas for the random effects. A good approximation can usually

be obtained with an adequate number of quadrature points as well as appropriate centering and scaling of

the abscissas. The name of �adaptive� comes from the fact that the number of quadrature points (nodes) is

adaptively selected by evaluating the log-likelihood function at the starting values of the parameters until a

tolerance is met (see Pinheiro and Bates 1995; SAS Institute Inc. 2008a,b, for more technical details). The

approximation to the log-likelihood can be improved by increasing the precision of the numerical integra-

tion, and thus adaptive Gaussian quadrature methods are expected to perform better than linearization-based

alternatives (Pinheiro and Bates 1995; Zhang et al. 2011).

Adaptive Gaussian quadrature methods are currently implemented in SAS PROC GLIMMIX with

8
http://biostats.bepress.com/mskccbiostat/paper22



�METHOD=QUAD� option and PROC NLMIXED. However there are restrictions to which models these

procedures can handle. The class of models that can be currently estimated by adaptive Gaussian quadrature

in PROC GLIMMIX is considerably smaller than that handled with the Laplacian approximation described

in Section 3.3.1 (PROC GLIMMIX METHOD=LAPLACE). For instance, crossed random effects models

(such as that in the salamander data analysis) or models with non-nested subjects can not be currently �t us-

ing the quadrature approach. One limitation of PROC NLMIXED is that it only allows models with a single

variance component and thus models with multiple variance components (such as that in the salamander

data) or multilevel nonlinear mixed models (such as that in the Guatemalan survey described in Section

5.2) are not accommodated. Moreover, as the number of random effects increases, the quadrature approach

becomes computationally infeasible due to the high dimensionality of the integral and this further limits

the use of the NLMIXED or GLIMMIX procedures to �t adaptive Gaussian quadrature methods. Pinheiro

and Chao (2006) proposed ef�cient adaptive Gaussian quadrature algorithms for approximating multilevel

models however their implementation is not available with standard statistical packages as of yet.

3.4 Hybrid Bayesian Estimation

In earlier work, we investigated a hybrid approach that combines the desirable properties of the Markov

chain Monte Carlo methods with the simplicity (in terms of speed and implementation) of the pseudo-

likelihood method (Capanu and Begg 2010). This involves a three-step procedure with Bayesian estimation

of the variance components of the random effects followed by pseudo-likelihood estimation of the �xed and

random effects using the Bayesian variance component estimators. Speci�cally:

1. Step 1: Apply the pseudo-likelihood method to obtain an approximated linear mixed model, as de-

scribed in Section 3.1.

2. Step 2: Use a Markov chain Monte Carlo algorithm to estimate the variance components of the

approximated linear mixed model obtained in Step 1.

3. Step 3: Re-estimate the regression parameters using the pseudo-likelihood method for the original

GLMM with the variance components pre-speci�ed at the Bayesian estimates obtained in Step 2.

Step 1 is carried out using the SAS macro %glimmix. To achieve the Bayesian estimation in step 2,

we generate a posterior sample from the marginal posterior densities of the variance components using a

random walk Metropolis-Hastings algorithm with a non-informative Inverse-Gamma prior distribution with

shape and scale parameters both set at 0.01, and use the posterior mean as the estimator. This step is carried

out using SAS PROC MIXED with the �PRIOR� option. Finally, step 3 can be implemented using the

%glimmix macro with the option �GDATA� which allows one to prespecify the variance-covariance matrix

of the random effects. Details of the implementation can be found in the Appendix.
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In this article, we have also explored a modi�ed version of the hybrid approach that replaces the pseudo-

likelihood estimation in Step 3 with a Laplacian approximation to obtain the parameter estimates for the

�xed and random effects once the Bayesian estimates of the variance components have been obtained (as

described in Step 2). Under this version, Step 3 is achieved using SAS PROC GLIMMIX with the op-

tion �METHOD=LAPLACE�. Both versions of the hybrid approach (with pseudo-likelihood and Laplace

estimation of the regression parameters) have been evaluated in our simulations.

4 Applications

We apply the methods outlined in Section 3 to the head and neck cancer data and the salamander mating

experiment.

4.1 Head and Neck Cancer Data

We �t the following model

logitPr(yi j = 1|bi) = xTi ja +bi, (4)

where yi j is the presence or absence of recurrence as assessed by the radiology imaging for the ith patient

at the jth site (i = 1, · · · ,128, j = 1, · · · ,3), and bi ∼ N(0,s 2) are the independent random effects corre-

sponding to the patients. The �xed effects covariates xi j included an intercept, age, suspicious �ndings in

clinical exam (lesion speci�c), previous head and neck surgery, and previous exposure to chemotherapy.

We �tted this model using currently available techniques: PQL, Laplace approximation, as well as the

adaptive Gaussian quadrature as implemented by PROC NLMIXED in SAS with the NRRIDG as the op-

timization technique. Note that implementation of the adaptive quadrature method using the GLIMMIX

procedure with METHOD=QUAD option leads to identical results. We also employed the Gibbs sampling

algorithm (Zeger and Karim 1991) with diffuse priors for the hyperparameters (an Inverse Gamma distribu-

tion with both shape and scale parameters set at 0.001 for the variance component and normal distributions

with mean 0 and variance 1000 for the other hyperparameters). This was implemented using the WinBUGS

software based on 20000 burn-ins followed by 20000 iterations.

The top part of Table 1 presents estimates for the �xed effects as well as for the variance component

from the four methods investigated. Methods yield widely different estimates for the patient to patient

variability, with the smallest and largest estimates differing by a factor of 9. In fact, based on estimates

from PQL with estimated dispersion parameter (PQL1 in the table) and Laplace approximation one could

even question the need of a random effects model. Though not as disparate as the estimates for the variance
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component, there are still substantial differences in the estimates for �xed effects and their standard errors

among the different methods. For example, depending on which method is used, the odds ratio for surgery

is either 0.38 (=exp(−0.98)) or 0.55 (=exp(−0.6)).

We further carried out the analysis using the two versions of the hybrid approach: the hybrid Bayesian

pseudo-likelihood approach (denoted �Hybrid BPL� in the tables) and the hybrid Bayesian with Laplacian

approximation (denoted �Hybrid BL�), and these results are shown at the bottom of Table 1. Hybrid BPL

which, just as PQL1 allows the dispersion parameter to be estimated, yields variance component estimates

about 8 fold higher than the Laplace and the PQL version in which the dispersion parameter is �xed at 1

(PQL2). In contrast, the hybrid BL, produce results that are closer to the adaptive quadrature and Gibbs

sampling. The estimates for the �xed effects are clustered similarly, with methods yielding smaller variance

component estimates resulting in �xed effect estimates closer to each other than for the methods yielding

larger variance component estimates.

To summarize the results, if one is to make conclusions based only on signi�cance of the factors, the

different analyses roughly agree that a positive �nding on the clinical examination increases the risk of

recurrence (although if PQL2 or Hybrid BLP were used the p-value does not reach the commonly used

5% threshold) and that previous surgery and chemotherapy are not signi�cantly associated with recurrence.

Some methods suggest that older age may also contribute to an elevated risk, although not statistically

signi�cant by most of the methods. However, an examination of point estimates and standard errors reveal

substantial disagreement between the methods: variance component estimate varies nine-fold and �xed-

effects odds ratios up to 50%. There is a clear need for conducting simulations to establish which of these

methods is more appropriate than the others.

4.2 Salamander Experiment

Following Lin and Breslow (1996), consider a model that pools the data across the three experiments (called

Model A in Breslow and Clayton 1993):

logitPr(yi j = 1|b f
i ,b

m
j ) = xTi ja +b

f
i +bmj , (5)

where yi j is the mating occurrence for the ith female with the jth male (i, j = 1, · · · ,60), and b f
i ∼ N(0,s 2

f )

and bmj ∼ N(0,s 2
m) are the female random effects and male random effects assumed independent of each

other. Note that the model assumes that different animals had been used in each experiment (as it is atypical

to use the same exact animals in two separate experiments) (Drum and McCullagh 1993; Lin and Breslow

1996). The �xed effects covariates xi j contain an intercept, an indicator WS f for whether the female was

WS or RB, an indicatorWSm for whether the male was WS or RB, and a term for their interaction. We also
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�tted a model with separate �xed and random effects for each of the three experiments (called Model C in

Breslow and Clayton 1993).

Lin and Breslow (1996) applied their proposed �rst- and second-order PQL correction to estimate this

model and compared the results to those previously obtained by various other methods applied to the sala-

mander data: the method of moments (McCullagh and Nelder 1989), Gibbs sampler (Karim and Zeger

1992), PQL (Breslow and Clayton 1993), and REML (Drum and McCullagh 1993). They noted unsatis-

factory performance of the PQL correction which they conjectured was likely due to large variability in

the random effects. After conducting simulations, they concluded that REML had superior properties with

almost unbiased estimates, though its applicability is limited as it requires a balanced design with marginal

mean expressed as a linear function of the parameters of interest. For those who view the problem from a

Bayesian standpoint, the Gibbs sampler would be the standard Bayesian approach (Zeger and Karim 1991).

We analyzed the salamander dataset using the two proposed versions of the hybrid approach: the hybrid

Bayesian pseudo-likelihood approach (denoted �Hybrid BPL� in the tables) and the hybrid Bayesian with

Laplacian approximation (denoted �Hybrid BL�). We present results for the variance components separately

for each experiment and from the pooled data in Table 2, while in Table 3 we report results for the �xed

effects based on the pooled data analysis. For comparison purposes, we reproduce the results reported in

Table 1 and Table 2 of Lin and Breslow (1996) for several of the methods they investigated: �rst-order and

second order PQL correction (�CPQL�), PQL, PQL with the Breslow and Lin correction to the variance

components (denoted �PQL( �s 2

CP)�), Laplace approximation, REML and Gibbs sampler. We also report the

results from Shun (1997) obtained using his two proposed corrections: using one correction term in the

Laplace expansion (denoted �Shun Corrected (1)�), and using an exponentiated correction term (denoted

�Shun Corrected (2)�). Results for the integrated nested Laplace approximation (�INLA�) presented by

Fong et al. (2010) for Model C are also included for the variance components estimates by experiment in

Table 2. The pooled data analysis with INLA was not reported by Fong et al. (2010) and thus the results

were not available for presentation here. Chan et al. (2006) and Tsai and Hsiao (2008) also performed

Bayesian analysis on the salamander data but the former conducted the analysis on the summer experiment

only while the latter assumed correlated random effects and these results are not included here.

As seen in Table 2, the estimates for the variance components are quite different among the various

methods investigated, pointing to a clear need for simulation studies to distinguish the properties of the dif-

ferent methods. In terms of �xed effects, among the methods compared in Table 3, the hybrid approach with

Laplace approximation for the regression coef�cients and the Laplace approximation on its own produce

estimates that are similar to each other and are close to the REML and Gibbs sampling estimates.
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5 Simulations and Data Analysis

We evaluate the properties of the methods described in Section 3 with simulations based on two examples:

the salamander experiment and the Guatemalan Child Health study which involves a multilevel model with

large number of random effects which can be overwhelming to �t for some methods and/or statistical pack-

ages. Using simulations that follow the structure of these datasets, we study the properties of the proposed

hybrid approach and compare its performance with those of other methods that have been used to analyze

these datasets. Note that we could not evaluate with simulations the adaptive Gaussian quadrature method

implemented by SAS as the NLMIXED procedure is limited to analyses involving a single variance com-

ponent, while the GLIMMIX procedure can not handle crossed random effects (salamander simulations)

and was computationally infeasible in the Guatemalan survey.

5.1 Salamander Experiment Simulations

To evaluate the �nite-sample properties of the hybrid approach, we reproduce the simulation study con-

ducted by Lin and Breslow (1996) in which 360 binary observations were generated according to model

(5). The true aT = (1.06,−3.05,−0.72,3.77) corresponding to the intercept,WS f ,WSm, andWS f ×WSM ,

respectively, were set to be the REML estimates �tted to the actual data. Lin and Breslow (1996) studied

two con�gurations for the variance components (s 2

f ,s
2
m) = (1.67,1.5) corresponding to the actual REML

variance component estimates (simulation results not shown in Lin and Breslow (1996)) and (s 2

f ,s
2
m) =

(0.5,0.5), representing a smaller amount of dispersion. In addition to these con�gurations, we consid-

ered an intermediate level of dispersion (s 2

f ,s
2
m) = (1,1). We carried out 1000 simulations corresponding

to these con�gurations and evaluated the performance of the different methods in terms of mean values,

mean squared error, and coverage probabilities of the 95% con�dence intervals obtained with the different

methods investigated. For reasons described in Section 3.2, the Breslow and Lin correction evaluated in

our simulations performs the correction for the variance components and then uses PQL to recalculate the

regression coef�cients using the corrected variance components (denoted �PQL( �s 2

CP)� in the tables). As

a benchmark, we also include the results from PQL with the variance components prespeci�ed at the true

values (denoted �PQL(s 2)�).

Table 4 presents the mean values of the different parameter estimates for the different con�gurations

of variance components studied. The PQL method underestimates substantially the variance components

regardless of the degree of dispersion studied, with worst bias for the larger variance components scenar-

ios. The regression coef�cients are also biased, with bias also increasing with increasing variability in

the random effects. For moderate amount of dispersion [(s 2

f ,s
2
m) = (0.5,0.5)], both versions of the hy-
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brid Bayesian approach produce almost unbiased estimates for the variance components. Nevertheless,

the hybrid Bayesian approach with pseudo-likelihood estimation of the regression coef�cients (BPL) still

has bias in the regression coef�cients. This is not surprising in light of the results presented for PQL in

which the variance components are prespeci�ed at the true value, which show that even when the variance

components are correctly estimated, the PQL regression coef�cients are still biased. The same behavior

was observed in the numerical studies of PQL conducted by Jang and Lim (2009) in which they show that

for binary outcomes, the PQL regression coef�cients are biased even when the variance components are

precisely estimated. In contrast, the Laplacian approximation and the hybrid approach with Laplacian ap-

proximation of the regression coef�cients have nearly unbiased estimates for the �xed effects coef�cients,

regardless of the magnitude of the variance components and despite the bias in the variance components

that both methods exhibit for the larger variance components. Note that the hybrid approach yields less

bias in the variance components for smaller amounts of dispersion, while the Laplacian approximation has

less bias in the variance components for larger variability in the random effects.

Table 5 reports the coverage probabilities of 95% con�dence intervals formed using asymptotic normal-

ity of the parameter estimates. For all scenarios considered, the Laplacian approximation has coverage rates

close to the nominal level of 95%. The hybrid approach with Laplacian approximation also has good cover-

age probabilities but tends to be anti-conservative for a1 and a3 parameters. This anti-conservativeness for

these two parameters is even more pronounced for the other methods and becomes worse for the scenarios

with larger variance components.

The Laplacian approximation and the hybrid approach with Laplacian approximation have similar mean

squared errors though it appears that the hybrid approach has lower mean squared errors for the variance

components estimates (see Supplementary Table).

Overall, both the Laplacian approximation and the hybrid approach with Laplacian approximation have

better properties than the different variations of PQL investigated, with the Laplacian approximation being

somewhat superior in terms of coverage probabilities, but with the hybrid approach providing least biased

variance components estimates for models with moderate variability in the random effects.

5.2 Guatemalan Survey Simulations

The 1987 Guatemalan National Survey of Maternal and Child Health (Pebley and Goldman 1992) was

conducted with the goal of better understanding the determinants of use of modern prenatal care (physician

or trained nurse) during pregnancy. The study was based on a multistage clustered sample of women aged

15-44 years living in clusters of communities and had a three-level structure: births within mothers within
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communities. Rodriguez and Goldman (1995) studied a subsample of respondents consisting of 2449 births

that pertained to 1558 mothers living in 161 communities. The sample sizes per community ranged from 1

to 30 mothers with a mean of 15 children. Rodriguez and Goldman (1995) used this hierarchical structure

to simulate 100 datasets to investigate the performance of several approaches for GLMMs available at that

time. The random effects logistic regression model that they studied was

(yi jk|pi jk) ∼ Bernoulli(pi jk) independent with

logit(pi jk) = b0 +b1x1i jk +b2x2 jk +b3x3k +u jk + vk,

where yi jk is a binary indicator with value 1 if modern prenatal care was received for the kth child within

the jth family within the ith community and where vk ∼ N(0,s 2

1
) and u jk ∼ N(0,s 2

2
) are the independent

community random effects and the independent family random effects, assumed independent of each other.

Starting from the lowest level of the hierarchy, the child, family, and community covariates, x1i jk , x2 jk, and

x3k, respectively, are composite scales created by Rodriguez and Goldman (1995) to simplify the original

model used by Pebley-Goldman which contained many covariates at each level. The true parameter values

used in the simulations were b0 = 0.665 and b1 = b2 = b3 = s 2

1
= s 2

2
= 1. The values of the variance

components were chosen to result in a fairly large variability in the responses.

Recently, Pinheiro and Chao (2006) illustrated their adaptive Gaussian quadrature methods for multi-

level GLMMs using the 100 simulated datasets created by Rodriguez and Goldman (1995). Browne and

Draper (2006) also used the Guatemalan survey study to compare the performance of marginal and pe-

nalized quasi-likelihood methods with that of a Bayesian approach involving Markov chain Monte Carlo

estimation with adaptive hybrid Metropolis-Gibbs sampling. They chose improper Uniform priors for the

regression coef�cients and two prior distributions for the variance components, Inverse Gamma, and an

improper Uniform prior on (0,¥). Their analysis is based on 500 simulated datasets which they generated

themselves to replicate the same data structure as used by Rodriguez and Goldman (1995).

We applied the hybrid approach with Laplace estimation for the 100 datasets simulated by Rodriguez

and Goldman (1995) and compared the results against those already reported by Pinheiro and Chao (2006)

and Browne and Draper (2006). In Table 6 we report mean estimates for the �xed effects and variance

components, while in Table 7 we present the coverage of nominal 95% intervals for the �xed effects.

In their simulations, Pinheiro and Chao (2006) studied the properties of PQL with dispersion parameter

allowed to be freely estimated with the rest of the parameters (denoted �PQL1� in our tables). For compar-

ison we also investigated the performance of PQL with dispersion parameter �xed at 1 (denoted �PQL 2�).

Both versions of PQL have biased regression coef�cients and severe bias in the family variance component.
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Though better than PQL, Laplace on its own also exhibits bias in the regression coef�cients and severe bias

in the family variance component. In contrast, the hybrid approach with Laplacian estimation has almost

unbiased estimates for the �xed effects, improved estimate for the family variance component as compared

to the PQL and Laplace, though still underestimating the community variance component.

The adaptive Gaussian quadrature methods and the Bayesian implementations of Browne and Draper

(2006) have almost unbiased regression coef�cients and the variance component estimates are closer to

the true values than for the other methods investigated. In terms of coverages, PQL and Laplace have

poor coverage especially for the family and child �xed effects (b2 and b3) while the hybrid approach, the

adaptive Gaussian quadrature, and the adaptive Metropolis-Gibbs sampling have all coverage close to the

nominal level (coverages were not reported by Pinheiro and Chao (2006) but were mentioned in the text).

Though the adaptive Gaussian quadrature and the MCMC methods lead to more accurate variance

components estimates than the hybrid approach in this simulation, they require specialized software and

code that is not available in standard statistical packages as of yet. In contrast, the hybrid approach is

easy to implement with three calls to widely used SAS procedures and a macro (macro %glimmix, PROC

MIXED and PROC GLIMMIX), and though it underestimates the variance components it has almost no

bias and good coverage for the �xed effects, improving on the Laplacian approximation.

5.3 Revisiting the Applications

Results of Section 5 can be used to interpret the �ndings of data analyses reported in Section 4. For

example, in the head and neck cancer application, we have seen that the variance component estimates

across the methods cluster in two groups: high estimates (PQL2 and Hybrid BPL) and low ones (PQL1,

Laplace, adaptive quadrature, and Hybrid BL). There was a 9-fold difference between the highest and

lowest estimates (Table 1).

Table 4 suggests that this pattern of a large difference is repeated across the simulated data sets and it

is the same methods that cluster together; generally speaking, PQL methods yield much higher estimates

than Laplace-based methods. In our simulations the latter group of methods provided estimates closer to

the true value. In addition, in Table 1, both the results from NLMIXED and WinBugs, two methods that

can be considered somewhat of a gold standard but dif�cult to recommend for routine use due to numerical

dif�culties, are much closer to Laplace and Hybrid BL than they are to PQL2 and Hybrid BPL. In light of

these two �ndings the true value of the variance component in the head and neck example is likely to be in

the lower group.
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6 Discussion

The analysis of binary clustered data with small cluster sizes continues to pose challenges to the available

GLMM methods, with many of the proposed methods producing biased regression coef�cients and vari-

ance components. Adaptive Gaussian quadrature methods as implemented in the SAS PROC GLIMMIX

(Pinheiro and Bates 1995) perform well for these scenarios but can be overwhelmed for datasets with large

numbers of random effects and can not be currently applied to crossed random effects or models without

clustering. SAS NLMIXED procedure which also implements adaptive Gaussian quadrature methods has

been shown to have good properties (Zhang et al. 2011) however it is only limited to analyses involving a

single variance component. Ef�cient adaptive Gaussian quadrature methods have been proposed (Pinheiro

and Chao 2006) but they are not available for use with standard statistical packages. Bayesian implemen-

tations involving Gibbs sampling also have good performances but are burdened by long computational

times, they require a wise choice of priors, and the creation of specialized code for implementation.

The Laplacian approximation has received a lot of interest as a fast computational method for estimation

of GLMMs, and numerous corrections and variations of it have been proposed based on the assumption that

the standard Laplace approximation on its own does not have good performance. However, our simulations

involving the salamander mating data show surprisingly good results for the Laplacian approximation ex-

actly in this challenging setting of binary clustered data with small cluster sizes. This con�rms the �ndings

of Joe (2008) who also evaluated the accuracy of the Laplace approximation and was also surprised with

its performance for the scenarios he investigated. It appears that the general feeling in the statistical com-

munity is that the Laplace approximation on its own has poor properties, but based on these �ndings, the

Laplacian approximation in fact exceeds our expectations and certainly deserves more attention for future

use. As Joe (2008) points out �I think other authors, who seem to recommend some of the other methods,

also did not expect Laplacian and adaptive Gauss-Hermite quadrature to do so well�. The proposed hybrid

approach is designed to improve on the performance of the Laplacian approximation by making use of

Bayesian estimation of the variance components.

Similarly to the Laplace method, the hybrid Bayesian Laplacian approach also shows good performance

in the dif�cult scenario of binary clustered data with small denominators, sometimes with slightly anti-

conservative coverage for models with more heterogeneous random effects, but with more accurate estima-

tion of the variance components for the models with smaller variability in the random effects. The hybrid

approach has better performance than the Laplacian approximation for the complex hierarchical structure

of the Guatemalan survey data, with almost unbiased regression coef�cients, but somewhat underestimated
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variance components. The analyses of our two datasets in Section 4 indicate that the Laplace method and

the hybrid Bayesian Laplacian approach produce results closer to Gibbs sampling and/or adaptive Gaussian

quadrature, which supports our simulation �ndings that these two methods have better statistical properties

than the other competitors considered.

Based on these �ndings, if interest lies in accurate estimation of the �xed effects of a GLLM for binary

clustered data, the Laplacian approximation is a good choice with excellent coverage probabilities and low

bias. If however, one is interested in precise estimation of the variance components, the hybrid Bayesian

with Laplacian approximation approach would be preferred for settings with moderate variability in the

responses. For multilevel models with large numbers of random effects, the hybrid Bayesian Laplacian

approach is superior to the Laplacian approximation on its own. Another advantage of the hybrid approach

is that it always produces a positive estimate for the variance components, whereas the Laplacian approxi-

mation (just as PQL) can lead to negative or zero estimates, or to con�dence intervals with negative values

which may not be appropriate in certain settings.

An attractive feature that both the hybrid approach and the Laplacian approximation possess is that they

are easy to apply in SAS with minimal model speci�cation while other methods are more complicated to

implement. They both run fast: for the salamander experiment for example, they converge and produce

results within seconds while adaptive quadrature implemented by SAS PROC GLIMMIX is overwhelmed

with the number of evaluations and runs out of memory without producing any results. SAS code is avail-

able at mskcc.org/marinelacapanu.

Adaptive Gaussian quadrature or Bayesian Gibbs sampling are attractive tools for models with software

readily available for use and for which their implementation is computationally feasible. However for more

complex models that require specialized code or are heavily time consuming, the hybrid approach and

the Laplacian approximation are worthy alternatives that are fast and easy to implement with widely used

standard procedures.
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Table 2: Estimated variance components for the salamander dataset; � � � indicates data not available.

Summer Fall 1 Fall 2 Pooled

Method s 2

f s 2
m s 2

f s 2
m s 2

f s 2
m s2

f s 2
m

REMLa 1.68 0.34 2.46 1.44 0.69 2.40 1.67 1.50

Gibbsa 2.35 0.14 2.99 1.42 0.33 2.89 1.50 1.36

PQLa 1.41 0.09 1.26 0.62 0.26 1.50 0.72 0.63

CPQLa,b 1.71 0.40 1.64 1.00 0.63 1.86 0.99 0.91

Shun Corrected(1)c 1.71 0.18 2.10 1.10 0.46 2.07 - -

Shun Corrected(2)c 1.80 0.25 2.53 1.37 0.55 2.25 - -

INLAd 1.66 0.61 1.91 1.00 0.64 2.13 - -

Laplacea 1.58 0.07 1.81 0.92 0.35 1.85 1.17 1.04

Hybrid BPL/BLe 2.09 0.35 1.90 0.91 0.54 2.04 1.13 1.07

aResults reported in Table 1 of Breslow and Clayton (1993).
bVariance components estimated using the Breslow and Lin correction; �rst-order (1 st CPQL) and second-

order (2nd CPQL) corrections reported in Table 2 apply only to the regression coef�cients.
cResults reported in Table 3 of Shun (1997).
dResults reported in Web Table 4 of Fong et al. (2010).
eThe estimation method for variance components is identical under both hybrid Bayesian Pseudo-

Likelihood (Hybrid BPL) and hybrid Bayesian with Laplacian (Hybrid BL) and so we report only a single

set of variance components estimates here.
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Table 3: Estimated �xed effects for the pooled salamander data.

Method Intercept WS f WSm WS f ×WSm

REMLa 1.06 -3.05 -0.72 3.77

Gibbsa 1.03 (0.43) -3.01 (0.60) -0.69 (0.50) 3.74 (0.68)

PQLa 0.79 (0.32) -2.29 (0.43) -0.54 (0.39) 2.82 (0.50)

PQL( �s 2

CP)
a,b 0.82 (0.35) -2.40 (0.46) -0.57 (0.42) 2.95 (0.51)

1st CPQLa,c 1.19 (0.37) -3.39 (0.55) -0.82 (0.43) 4.19 (0.64)

2nd CPQLa,d 0.68 (0.37) -2.16 (0.55) -0.49 (0.43) 2.65 (0.64)

Laplacea 1.01 (0.39) -2.90 (0.56) -0.70 (0.46) 3.59 (0.64)

Hybrid BPLe 0.84 (0.37) -2.44 (0.48) -0.58 (0.43) 3.00 (0.52)

Hybrid BL f 1.01 (0.38) -2.90 (0.50) -0.70 (0.46) 3.58 (0.56)

aResults reported in Table 2 of Breslow and Clayton (1993).
bPQL( �s 2

CP) stands for PQL estimation of regression coef�cients after prespecifying the variance compo-

nents at the Breslow-Lin corrected estimate.
c�1st CPQL� stands for Breslow and Lin's �rst-order correction to the regression coef�cients.
d�2nd CPQL� stands for Breslow and Lin's second-order correction to the regression coef�cients.
e�Hybrid BPL� stands for hybrid Bayesian Pseudo-Likelihood approach.
f �Hybrid BL� stands for hybrid Bayesian Laplacian approach.
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Table 4: Mean values of parameter estimates from the salamander data simulations.

(a) s 2

f = s 2
m = 0.50

Method s 2

f s 2
m a0 a1 a2 a3

True value 0.50 0.50 1.06 -3.05 -0.72 3.77

REMLa,b 0.55 0.54 1.09 -3.14 -0.74 3.88

PQLa 0.33 0.32 0.94 -2.73 -0.64 3.38

PQL( �s 2

CP)
a,c 0.46 0.46 0.96 -2.78 -0.66 3.44

PQL(s 2)d 0.95 -2.77 -0.64 3.42

Laplacea 0.41 0.42 1.05 -3.05 -0.71 3.76

Hybrid BPLe 0.50 0.52 0.95 -2.77 -0.66 3.44

Hybrid BL f 0.50 0.49 1.09 -3.15 -0.74 3.89

(b) s 2

f = s 2
m = 1.00

Method s 2

f s 2
m a0 a1 a2 a3

True value 1.00 1.00 1.06 -3.05 -0.72 3.77

PQL 0.55 0.54 0.87 -2.52 -0.6 3.11

PQL( �s 2

CP) 0.78 0.77 0.91 -2.61 -0.62 3.22

PQL(s 2) 0.92 -2.69 -0.63 3.33

Laplace 0.83 0.84 1.06 -3.02 -0.75 3.76

Hybrid BPL 0.87 0.88 0.9 -2.62 -0.63 3.25

Hybrid BL 0.87 0.88 1.07 -3.05 -0.74 3.79

(c) s 2

f = 1.67, s 2
m = 1.50

Method s 2

f s 2
m a0 a1 a2 a3

True value 1.67 1.50 1.06 -3.05 -0.72 3.77

PQL 0.79 0.68 0.81 -2.34 -0.55 2.87

PQL( �s 2

CP) 1.10 1.01 0.83 -2.44 -0.57 3.03

PQL(s 2) 0.90 -2.62 -0.63 3.23

Laplace 1.46 1.28 1.07 -3.03 -0.74 3.78

Hybrid BPL 1.30 1.17 0.85 -2.49 -0.57 3.08

Hybrid BL 1.32 1.18 1.02 -2.99 -0.71 3.73

aResults reported in Table 3 of Breslow and Clayton (1993).
bResults for REML are only reported for s 2

f = s 2
m = 0.50 in Breslow and Clayton (1993).

cPQL( �s 2

CP) stands for PQL estimation of regression coef�cients after prespecifying the variance compo-

nents at the Breslow-Lin corrected variance components.
dPQL(s 2) stands for PQL with variance components prespeci�ed at the true values.
e�Hybrid BPL� stands for hybrid Bayesian Pseudo-Likelihood approach.
f �Hybrid BL� stands for hybrid Bayesian Laplacian approach.
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Table 5: Coverage probability of nominal 95% intervals from the salamander data simulations.

(a) s 2

f = s 2
m = 0.50

Method a0 a1 a2 a3

PQL 0.92 0.86 0.94 0.86

PQL( �s 2

CP)
a 0.94 0.90 0.95 0.89

PQL(s 2)b 0.95 0.91 0.96 0.91

Laplace 0.94 0.96 0.94 0.95

Hybrid BPLc 0.94 0.89 0.95 0.87

Hybrid BLd 0.94 0.93 0.95 0.92

(b) s 2

f = s 2
m = 1.00

Method a0 a1 a2 a3

PQL 0.89 0.72 0.94 0.73

PQL( �s 2

CP) 0.93 0.80 0.96 0.81

PQL(s 2) 0.95 0.89 0.96 0.86

Laplace 0.95 0.94 0.95 0.97

Hybrid BPL 0.93 0.82 0.96 0.82

Hybrid BL 0.93 0.91 0.96 0.92

(c) s 2

f = 1.67, s 2
m = 1.50

Method a0 a1 a2 a3

PQL 0.87 0.60 0.94 0.56

PQL( �s 2

CP) 0.91 0.72 0.95 0.68

PQL(s 2) 0.97 0.90 0.97 0.85

Laplace 0.95 0.94 0.94 0.95

Hybrid BPL 0.92 0.77 0.95 0.73

Hybrid BL 0.94 0.91 0.94 0.92

aPQL( �s 2

CP) stands for PQL estimation of regression coef�cients after prespecifying the variance compo-

nents at the Breslow-Lin corrected variance components.
bPQL(s 2) stands for PQL with variance components prespeci�ed at the true values.
c�Hybrid BPL� stands for hybrid Bayesian Pseudo-Likelihood approach.
d�Hybrid BL� stands for hybrid Bayesian Laplacian approach.
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Table 7: Estimated coverages of 95% con�dence intervals for the Guatemalan simulated datasets; a � � �

indicates data not available.

Intercept Community Family Child

b0 b1 b2 b3
Method/True Values 0.665 1.000 1.000 1.000

PQL1
a 0.90 0.92 0.42 0.83

PQL2
b 0.98 0.97 0.87 0.92

Laplace 0.97 0.97 0.85 0.92

AGQ3 - - - -

AGQ5 - - - -

AGQ7 - - - -

Bayesian IG priorc 0.93 0.96 0.93 0.92

Bayesian Uniform priorc 0.94 0.96 0.93 0.94

Hybrid BLd 0.97 0.97 0.94 0.93

aPQL1 stands for PQL with dispersion parameter allowed to be estimated.
bPQL2 stands for PQL with dispersion parameter �xed at 1.
cResults reported in Table 10 of Browne and Draper (2006).
d�Hybrid BL� stands for hybrid Bayesian Laplacian approach.

Hosted by The Berkeley Electronic Press


