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Assessing noninferiority in a three-arm trial
using the Bayesian Approach

Pulak Ghosh, Farouk S. Nathoo, Mithat Gonen, and Ram C. Tiwari

Abstract

Non-inferiority trials, which aim to demonstrate that a test product is not worse
than a competitor by more than a pre-specified small amount, are of great impor-
tance to the pharmaceutical community. As a result, methodology for designing
and analyzing such trials is required, and developing new methods for such anal-
ysis is an important area of statistical research. The three-arm clinical trial is usu-
ally recommended for non-inferiority trials by the Food and Drug Administration
(FDA). The three-arm trial consists of a placebo, a reference, and an experimen-
tal treatment, and simultaneously tests the superiority of the reference over the
placebo along with comparing this reference to an experimental treatment. In this
paper, we consider the analysis of noninferiority trials using Bayesian methods
which incorporate both parametric as well as semi-parametric models. The re-
sulting testing approach is both flexible and robust. The benefit of the proposed
Bayesian methods is assessed via simulation, based on a study examining Home
Based Blood Pressure Interventions.
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1 Introduction

Recently, there has been a growing interest in drug development to demonstrate whether a new

treatment is not worse than that of an active control by more than a specified margin (Snapinn,

2000). This helps in assessing whether a less toxic, easier to administer, or less expensive treatment

is clinically non-inferior to a standard treatment. This kind of clinical trial, where the intention is

to investigate whether a new treatment is not inferior to the standard treatment by more than a

small predefined margin, is usually known as non-inferiority trial (EMEA, 2005). There have been

a series of articles on this topic; see for example, special issues of Statistics in Medicine (Volume 47,

Issue 1, 2005) and Journal of Biopharmaceutical Statistics (Volume 14, Number 2, 2004). It is clear

that a new treatment might be preferred to a standard therapy despite it not being better than a

standard treatment. For example, the new treatment may be less invasive and less debilitating, or

it may be less expensive, and hence preferable. For these reasons, once noninferiority with respect

to the primary end point has been demonstrated, the new treatment would be an attractive option

for patients, and this is of benefit to the health care system in general.

The statistical literature dealing with inference for noninferiority for two treatments has grown

substantially in the last two decades (D’Agostino et al., 2003; Munk et al., 2005; Koti, 2007).

Two-arm noninferiority trials of a test treatment and a well established reference treatment are

an attractive option in that, in certain settings, there is no need to expose patients to a placebo.

Nevertheless, two-arm noninferiority trials exhibit some major challenges in terms of design, analysis

and interpretation (Jones et al., 1996; Rohmel, 1998; Temple et al., 2000; D’Agostino et al., 2003;

Koch and Rohmel, 2004). Most two-arm trials lack the support of the assay sensitivity resulting

in an inability of the trial to distinguish between test and active control treatments. As a result,

the inclusion of a placebo group into trials comparing active treatments is useful, whenever this is

ethical (Kieser and Friede, 2007; Koti 2007).

Recently, Pigeot et al. (2003) and Koch and Rohmel (2004) considered three-arm trials with both

a known effective active standard treatment/drug and placebo as control groups. These three-arm

noninferiority trials are useful as they avoid the difficulties described above. In this case, efficacy

of the test treatment can be demonstrated by direct comparison to the placebo; however, a major

limitation of these methods is the assumption of a homogenous variance in the response variables

collected across the treatment arms. Along these lines, while noninferiority trials have generated

considerable research in last few decades, there have been few attempts to address noninferioity

2

http://biostats.bepress.com/mskccbiostat/paper19



under a heteroscedastic variance assumption. Recently, Hasler et al. (2007) and Koti (2007)

have considered the analysis of noninferiority trials in three treatment arms in the presence of

heteroscadesticity. Hasler et al. (2007) used a t-distribution to test the noninferiority hypothesis;

whereas, Koti (2007) has developed a new test procedure based on the Fieller-Hinkley distribution.

In this paper, we put forth a novel Bayesian approach for the analysis of noninferiority trials

under three treatments in the presence of heteroscadesticity. A fully Bayesian approach can have

important advantages in accounting fully for various sources of uncertainty, and incorporating prior

information (Gill, 2002; Gelman et al. , 2004). Posterior distributions can be computed efficiently

and accurately using simulation based methods, and inference relating to non-inferiority testing can

proceed without resorting to asymptotics, which is useful with small sample studies. In addition,

as a non-inferiority trial involves treatments that have been well-studied in the past, it is plausible

that prior information is available, and the ability to incorporate such information is an advantage.

Finally, the Bayesian approach circumvents the difficulties encountered with traditional methods

for hypothesis testing (Ghosh and Gönen, 2008), as the hypotheses of interest are assessed based

on the posterior probability distribution, and not on p-values which are often misinterpreted.

Another potential drawback associated with existing methodology for non-inferiority testing is the

assumption of normally distributed response variables. In general, inferences based on the normality

assumption can be misleading when this assumption is not adequate (Ghosh and Gönen, 2008), and

more flexible methods would be useful in many settings. More specifically, methods based on scale

mixtures of the normal distribution are useful to consider, allowing for heavier-tailed distributions

and leading to robust procedures. Thus, it is of practical interest to develop statistical models for

noninferiority trials that move beyond the traditional parametric normal model. We develop here

robust parametric and semiparametric Bayesian modeling approaches to assess noninferiority. To

develop this approach we use mixtures of Dirichlet processes (MDP) (MacEachern, 1994; Escober

and West, 1995; MacEachern and Muller, 1998; Ghosh, Basu and Tiwari, 2009) which lead to

flexible models for data exhibiting non-normal behavior. Aside from gaining flexibility, our use of

the MDP also facilitates an implementation in standard software for Bayesian computing, and this

is a practical advantage.

In Section 2 we review the three arm noninferiority trial, and in Section 3 we describe parametric

methods for analysis under heteroscedasticity. These methods are then extended in Section 4, we

present our semi-parametric Bayes approach, which allows for flexibility under a wide range of
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distributions. In Section 5 we describe the Home-Based Blood Pressure Intervention trial, which

forms the basis of a simulation study conducted in Section 6. Finally, Section 7 draws conclusions

and provides an outlook on future research.

2 Hypothesis testing in a three-arm noninferiority trial

There have been two main approaches adopted for testing in noninferiority trials. The traditional

approach first defines a noninferiority margin δ, and then demonstrates that the effect of the

experimental treatment is not worse than the effect of the control by more than this amount. This

is referred to as the fixed-margin approach (Koch and Rohmel, 2004). The second approach involves

directly combining the point estimate and variance from the noninferiority trial with those from

historical trials, and is referred to as the synthesis approach (Koch and Rohmel, 2004). In this

work we shall follow the traditional fixed-margin approach as described below.

Let XE,i, XR,j , XP,k, (i = 1, 2, · · · , nE ; j = 1, 2, · · · , nR; k = 1, 2, · · · , nP ) denote the random

variables corresponding to observations taken from the experimental, reference, and placebo groups

respectively. We assume that these random variables are mutually independent and that

XE,i
i.i.d.∼ N(µE , σ

2
E), XR,j

i.i.d.∼ N(µR, σ
2
R), XP,k

i.i.d.∼ N(µP , σ
2
P ) (1)

so that we allow for heteroscedasticity across treatment arms, but assume normally distributed

response variables, an assumption that will be relaxed in Section 4. Commonly, for a two-arm trial,

the noninferiority hypothesis is formulated as

H0 : µE − µR ≤ δ vs Ha : µE − µR > δ (2)

where δ < 0 denotes the pre-specified maximal clinically irrelevant amount, and is called the

amount of noninferiority margin. The choice of δ in a clinical trial depends on a combination

of statistical reasoning and clinical judgement. See the Concept Paper on the development of a

Committee for Proprietary Medicinal Products (CPMP, 2005) guidelines for more on the choice of

the noninferiority margin δ. Essentially, a rejection of the null hypothesis is required to demonstrate

noninferiority support of the experimental treatment to the reference treatment.

When a placebo group is included in the trial, one can formulate δ as a negative fraction f of the

unknown difference in mean response between the reference and placebo (Pigeot et al., 2003), that

is δ = f(µR − µP ), where f is a fraction ranging between 0 < f < 1. Assuming, µR − µP > 0 and
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employing this expression for δ in the hypothesis (2) we obtain

H0 : µE − µR ≤ f(µR − µP ) vs Ha : µE − µR > f(µR − µP ). (3)

Next we let θ = (1 + f) so that (3) can be written as

H0 :
µE − µP

µR − µP
≤ θ vs Ha :

µE − µP

µR − µP
> θ, (4)

where θ is the prespecified fraction of the effect of the reference drug (relative to placebo) that

we require for the effect of the test drug (relative to placebo), in order to declare noninferiority.

According to CPMP (1999), reasonable choices of f include −1
2 ,−

1
3 ,−

1
5 ; however, it should also

be mentioned that while making this choice, a clinical consideration should be applied in practice.

The alternative hypothesis in (4) implies that the test treatment achieves more than θ× 100% of

the efficacy of the reference treatment, each compared to placebo. Pigeot et al. (2003) have shown

that different choices of θ are chosen for different purposes. In particular, noninferiority of test

treatment to the reference treatment is evaluated through a test of H0 in (4) with 1 + f < θ < 1;

and 0.5 ≤ θ < 1 (Koch and Tangen, 1999).

For the derivation of the statistical test procedures for the test problem (4), it is helpful to express

(4) as:

H0 : µE − θµR − (1− θ)µP ≤ 0 vs Ha : µE − θµR − (1− θ)µP > 0 (5)

Pigeot et al. (2003) derived a Student-t statistic based on Fieler’s confidence interval. They

also considered a bootstrap percentile interval as an alternative to Fieler’s method in case the

assumption of normality does not hold. More recently, Hasler et al. (2007) extended the results to

the situation where the group variances are heterogenous.

3 Bayesian Analysis

3.1 Prior distribution

Our first approach is based on a fully parametric model, where we specify a prior distribution for

location and scale parameters (µl, σ
2
l ), l ∈ {E, P, R} using a normal-inverse-gamma distribution

µl|σ2
l ∼ N(µ0l, σ

2
l |κ0l), and

σ2
l ∼ Inv-gamma(ν0l/2, σ

2
0l ν0l/2), l ∈ {E, R, P}

5
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where µ0l, κ0l, ν0l, σ
2
0l are fixed hyperparameters. The appearance of σ2

l in the conditional distri-

bution of µl|σ2
l calibrates the prior information on µl to the scale of measurement in the observed

data, with κ0l ≥ 0 representing the number of prior observations on this scale. The prior sample

size κ0l can be adjusted with reference to the observed sample size nl, and is an intuitive measure

characterizing the degree of prior information on µl. The hyperparameters ν0l and σ2
0l are chosen

to reflect prior information on the scale parameters σ2
l . These variance components are typically

nuisance parameters and a noninformative prior can be obtained by letting ν0l → 0, resulting in

p(σ2
l ) ∝ σ−2

l . Next we condition on µR−µP > 0, leading to a truncated prior having density of the

form

p(µ,σ) ∝ I{µR > µP }
∏

l∈{E,P,R}

p(µl, σ
2
l |µ0l, κ0l, ν0l, σ

2
0l) (6)

where I{·} denotes the indicator function and p(µl, σ
2
l |µ0l, κ0l, ν0l, σ

2
0l) = p(µl|µ0l, κ0l, σ

2
l )p(σ

2
l |ν0l, σ2

0l)

, with p(µl|µ0l, κ0l, σ
2
l ) the density of the N(µ0l, σ

2
l /κ0l) distribution and p(σ2

l |ν0l, σ2
0l) the density

of the Inv-gamma(ν0l2 ,
σ2
0lν0l
2 ) distribution.

In practice, analysis can be performed under several choices of prior parameters. Two such

extreme choices are often called skeptical and enthusiastic priors. In a clinical trial of superiority,

for example, one might center the prior for treatment difference in favor of the experimental arm

to represent an enthusiastic prior (and vice versa for the skeptical prior). In the case of a non-

inferiority trial with three arms such choices are not immediate. Here we have some suggestions

for the practicing Bayesian statistician.

3.2 Posterior Distribution

The non-inferiority hypothesis (??) is evaluated under the marginal posterior distribution [µ|X],

where X = {XE,i, XR,j , XP,k, i = 1, 2, · · · , nE ; j = 1, 2, · · · , nR; k = 1, 2, · · · , nP } denotes the

observed data. Under the Gaussian assumption for the response variables, and under the prior

(??), the density of this posterior arises through the product of three student-t densities, where

again, the distribution is truncated so that µR > µP

p(µE , µP , µR|X) ∝ I{µR > µP }
∏

l∈{E,P,R}

tνnl
(µl|µnl, σnl) (7)

where tν(x|µ, σ) ∝ (1+ 1
ν (

x−µ
σ )2)−(ν+1)/2 denotes the density function of the student-t distribution

on ν degrees of freedom, with location µ and scale σ. For each l ∈ {E,P,R}, the parameters of the

6
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posterior distribution are obtained in closed form as νnl = ν0l +nl; µnl =
κ0l

κ0l+nl
µ0l +

nl
κ0l+nl

X̄l, and

σ2
nl =

ν0lσ
2
0l

(ν0l + nl)(κ0l + nl)
+

(nl − 1)S2
l

(ν0l + nl)(κ0l + nl)
+

κ0lnl(µ0l − X̄l)
2

(ν0l + nl)(κ0l + nl)2

where X̄l and S2
l , l ∈ {E,P,E} are the corresponding sample mean and variance from group

l. Inference and, in particular, calculation of the posterior probability of H1 in (??) is based on

drawing samples from the posterior distribution (??), which is easily accomplished by drawing

independent student-t random variables tνnl
(µl|µnl, σnl), in conjunction with rejection sampling to

ensure that µR > µP .

3.3 Test Procedure

In determining whether the experimental drug is non-inferior or not, it is necessary for an inves-

tigator to pick a value for θ which is the required cut-off point in order for the experimental drug

to be non-inferior than the active control. Then the clinician finds the posterior probability of

the hypothesis (??). The experimental drug is said to be non-inferior to the active control if this

posterior probability is greater than the some pre-specified cut-off point, say, RNI. Thus, one will

declare the experimental drug to be non-inferior if

P (H1 :
µE − µP

µR − µP
> θ|Data) > RNI

Calculation of the above posterior probability in our case is straightforward. If we can draw T

values from the posterior distribution of µE−µP
µR−µP

we can estimate this probability by

P̂ (H1 :
µE − µP

µR − µP
> θ|Data) =

1

T

T∑
l=1

I(
µl
E − µl

P

µl
R − µl

P

> θ)

where, µl
E , µ

l
P , µ

l
R are respectively the values of µE , µP , µR in the lth iteration of the algorithm.

The choice of RNI is highly consequential. A reasonable default value might be 0.5, which

essentially means that, between the null and alternative, the hypothesis with the higher posterior

probability is retained. However, in some contexts it may be useful to consider higher values of

RNI, depending on the operating characteristics needed.

4 Semiparametric Extensions

There could be instances where XE , XR, XP are skewed or multimodal and thus far from normal.

While a natural procedure is to use some ad-hoc transformation to achieve normality, a normalizing

7
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transformation on the original data should be avoided if a more suitable parametric model can

be found. This is mainly because transformations sometimes may not be useful as it changes the

original unit of the data, which, in turn, makes it difficult to interpret and communicate the findings.

In addition, it is often not straightforward, or impossible, to discover the right transformations. To

address this need we also consider modeling these responses by a Dirichlet process mixture (DPM)

model. This new approach creates a model and inference procedure that is robust to departures

from the assumption of normality.

The DPM models have recently become computationally feasible with development of MCMC

methods for sampling from the posterior distribution of the Dirichlet process (Escobar, 1994; Esco-

bar and West, 1998; MacEachern, 1994; Ishwaran and James, 2001). The DPM models are by far

the most widely used semiparametric Bayesian models, mainly because of the ease of computation,

and ability to characterize different shapes.

Suppose, as before, the observed response is {Xi}. We drop the treatment subscript l ∈ {E,P,R}

for the different treatment for the time being. Under the error-DPM model we assume that Xi

follows a scale mixture of normal DPM whose density (with respect to Lebesgue measure) is given

by

f(Xi|µi, G) =

∫
ϕ(Xi|µi, ξi ζ) dG(ξi). (8)

Here ϕ(X|µ, τ) denotes the density of the N(µ, ζ−1) distribution. The key feature of the model

is the assumption that the scale mixing distribution G is unknown, and is modeled by a Dirichlet

process (DP) prior with concentration parameter ν and specified base probability measure G0(·|κ)

that depends on an unknown parameter vector κ (G and G0 here denote probability measures

although we often refer to them as distributions). This model can be expressed hierarchically as

Xi| µi, ξi, ζ
indep∼ N

(
µi, variance=ξ−1

i ζ−1
)
, i = 1, . . . , n

ξ1, . . . , ξn| G
iid∼ G

G | ν, κ,G0 ∼ DP(ν,G0(·|κ))

(ζ, κ, ν) ∼ π(ζ) π(κ) π(ν) , (9)

with the mean µ. The Bayesian model specification for the error-DPM model is completed by

assigning prior probability models for the hyperparameter vector κ of G0 and the concentration

parameter ν. We will use a Gamma(s/2, s/2) distribution for the base measure, G0(.) We note here

that the class of normal- scale mixtures is quite broad and includes many popular heavier tailed

8
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distributions such as the Logistic family and the t-family of distributions; distributions which are

often used in robust statistical procedures.

There are several ways to implement a DPM prior. Recent research has focused on using the

following constructive definition of the DP (Sethuraman and Tiwari, 1982; Sethuraman, 1994) to

produce MCMC algorithms

G(·) =

∞∑
r=1

prδZr(·); where Zr
iid∼ G0(·|κ), (10)

with p1 = V1, pr = Vr

r−1∏
j=1

(1− Vj), and Vr
iid∼ Beta(1, ν), r ≥ 1 (11)

If we truncate the sum in (??) at a large integer R > 0 we obtain the models considered in Ishwaran

and Zarepour (2002), Ishwaran and James (2001, 2002). This reduces G(·) into finite dimensional

form as G =
R∑

r=1
prδZr(·). The model in (??) can then be expressed hierarchically as

Xi|Z = (Z1, · · · , ZR), s, µi
ind∼ ϕ(Xi|µi, ζ Zsi), i = 1, . . . , n

si|p
iid∼

R∑
r=1

prδr(·), (12)

where si is the latent mixture component indicator for the ith observation, s = (s1, . . . , sn), Zr
iid∼

G0(·|κ), and the distribution of p = (p1, . . . , pR) is specified by the stick-breaking construction. The

so-called blocked Gibbs sampler updates Z, s and p in multivariate blocks. Another advantage here

is that since the DPM structure is reduced to a finite mixture model by this truncation and a non-

conjugate structures can be more easily handled now. The effect of truncation on the distribution of

functionals of a Dirichlet process has been studied by Ohlssen, Sharples, and Spiegelhalter (2007),

and Ishwaran and Zarepour (2002). Ishwaran and Zarepour (2002) suggest taking R =
√
n for large

n, and R = n for small n. We follow the suggestion of Ishwaran and Zarepour (2002) in choosing

R.

Based on the above idea, we now put a DPM prior on the distribution of the experimental drug,

active control and the placebo as follows:

9
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XE,i ∼ N(µE , γ
−1
1i σ

2), XR,j ∼ N(µR, γ
−1
2j σ

2), XP,k ∼ N(µP , γ
−1
3k σ

2) (13)

γEi ∼ G1, , γRj ∼ G2, γPk ∼ G3 (14)

G1 ∼ DP (ν1, G01), G2 ∼ DP (ν2, G02), G3 ∼ DP (ν3, G03) (15)

G0k ∼ Gamma(a, b), k = 1, 2, 3 (16)

νk ∼ Gamma(c, d), k = 1, 2, 3 (17)

5 Example: Home-Based Blood Pressure Interventions

The method was motivated by the design of a randomized trial to assess the effectiveness of orga-

nizational interventions at improving blood pressure (BP). Home health care is a non-institutional

setting that provides services to a high-risk population characterized by multiple chronic conditions

and significant needs for both medical and self-care management. Several patients in home health

care have essential hypertension (HTN), but for various reasons management of blood pressure for

patients with HTN has traditionally received less attention than the management of other chronic

conditions such as diabetes and chronic obstructive pulmonary disease. For this reason a random-

ized trial is proposed that will examine the effectiveness of two organizational interventions aimed

at improving BP control among a high-risk home care population. The two interventions to be

tested include (i) a ”basic” intervention delivering key ”just-in-time” information to nurses, physi-

cians and patients while the patient is receiving traditional post-acute home health care; and (ii)

an ”augmented” intervention transitioning patients to a Home-Based HTN Support Program that

extends the information, monitoring and feedback available to patients and primary care physicians

for an 18-month period beyond an index home care admission. Usual care is included as a third

arm. The primary goal is to see if the basic intervention is at least as good as the augmented

one, relative to the usual care. In the terminology of Section 3, usual care is the placebo group,

augmented care is the reference group and basic care is the experimental group.

As this trial has been designed but not completed the simulation studies in the next section

are motivated by this example. Note that, because of the nature of the delivery of home health

care, it was decided to randomize the caregivers (nurses) instead of patients, thus making this a

cluster-randomized study.
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5.1 Simulation Studies

We consider data generation under two scenarios, normally distributed values of the logarithm of

the blood pressure as well as a heavier-tailed distribution ( Laplace distribution) as the second case,

to assess the robustness of our method and its semiparametric extension. The Laplace distribution

has density f(x) = 1
2σ exp(−1

b |x− µ|).

Since the trial is 1:1:1 randomized we are taking nE = nR = nP = 150. Using the preliminary

data that was gathered to design the trial we are estimating µP = 1, µR = 4.9, σ2
E = 5, σ2

R = 3

and σ2
P = 1. We consider two clinically different scenarios: a non-inferior scenario where µE = 5

and an inferior scenario on were µE = 3. Also we considered a range of values for µE as described

next.

When clustering is taken into account, the entire data generation process is replicated with 50

caregivers randomized to each arm and each caregiver is assumed to have three patients keeping

the sample size at 150 per arm. Patients within a caregiver are assumed exchangeable with a

correlation of 0.1.

The values of the hyperparameters associated with means and variances are listed in the setup

below. For the DP models, we take the base-measures, G0k to be Gamma(s/2, s/2) with s ∼

uniform(1, 100) and the concentration parameter νk ∼ Gamma(
√
n, 1) where n is the sample in

the given group.

Here we present the results of two simulation studies examining the performance of the pro-

posed methods. In each case, for a given set of parameter values µl, σl, l ∈ {E,P,R}; sample sizes

nl, l ∈ {E,P,R}; and effectiveness threshold θ; the performance is evaluated through the expected

posterior probability of non-inferiority E[P (H1|Data)], where the expectation is taken with respect

to the sampling distribution, generating repeated realizations of the data. In the first study, we

assume a Gaussian sampling distribution, applying the model described in Section 2, and illustrate

the impact of prior information under various sample size assumptions. In the second study, heav-

ier tailed sampling distributions are considered, and we examine the performance of the Gaussian

model under misspecification, and compare this performance with that of the semiparametric scale

mixture model proposed in Section 3.

Design of simulations 1:

11
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• Assume nE = nP = nR = n and θ = 0.8

• Set σ2
E = 5, σ2

R = 3, σ2
P = 1

• Set µP = 1, µR = 4.9 and let µE vary from µE = 2.95, 2.96, . . . , 6.01 so that µE−µP
µR−µP

covers a

range of values from 0.5 to 1.2.

• For a given value of µE−µP
µR−µP

, generate data, and compute P (H1|Data) under the three priors

considered. Repeat nsim = 1000 times and compute the average as a Monte Carlo estimate

of E[P (H1|Data)] for each of the three priors.

• For the three priors considered, we set ν0l = 0 so that they are all uninformative with respect

to the variance parameters. The three priors vary according to hyperparameters κ0l and µ0l,

which represent, respectively, the prior sample size and prior mean of µl

1. noninformative prior: κ0l = 0, µ0l = 0, l ∈ {E,R, P}

2. enthusiastic prior: κ0l = 10, l ∈ {E,R, P}, µ0E = 4, µ0R = 3, µ0P = 1

3. skeptical prior: κ0l = 10, l ∈ {E,R, P}, µ0E = µ0P = 1, µ0E = 3

• Repeat over the entire range of values for µE−µP
µR−µP

in order to generate a curve for each prior.

• Generate curves for four different sample sizes: n = 20, 50, 100, 150

Results are depicted in Figure 1. Within each panel of Figure 1, we see that as the prior moves

from enthusiastic to skeptical, the posterior probability of H1 decreases for each value of (µE −

µP )/(µR − µP ), as expected. Moving from one panel to the other, we observe that the effect

of increasing sample size is making each curve more steep (and hence more likely to reject H1)

and also closer to one another (hence robust to prior specification). Both of these behaviors are

intuitive and expected. Furthermore, since θ = 0.8, one would consider (µE − µP )/(µR − µP ) >

0.8 corresponding to the case where the alternative is true. The non-informative prior yields

approximately 0.5 posterior probability at that point, for all sample sizes considered, suggesting

that it is well calibrated.
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Figure 1: Study 1: Curves depicting expected posterior probability of non-inferiority

E[P (H1|Data)] as a function of µE−µP
µR−µP

for each of the three priors considered. These based on

θ = 0.8, σ2
E = 5, σ2

R = 3,σ2
P = 1, µP = 1, µR = 4.9 and nE = nP = nR = n with (a) n = 20; (b)

n = 50; (c) n = 100; (d) n = 150.
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Design of simulations 2:

• Replace the Gaussian sampling distribution with data simulated from (1) a t-distribution

with DF = 2 and (2) a Laplace distribution.

• Location and scale parameters are set as in study 1, with σ2
E = 5, σ2

R = 3, σ2
P = 1, µP = 1,

µR = 4.9 and we let µE vary from µE = 2.95, 2.96, . . . , 6.01 so that µE−µP
µR−µP

covers a range of

values from 0.5 to 1.2.

• Assume nE = nP = nR = 20 and θ = 0.8

• Fit the Gaussian model and generate curves depicting E[P (H1|Data)] for each of the three

priors, based on nsim = 100 data replications.

• Fit the DP scale mixture model and generate curves depicting E[P (H1|Data)] for each of

the three priors, based on nsim = 100 data replications. Compare to results obtained from

Gaussian model.

• The noninformative, skeptical and enthusiastic priors on location and scale parameters are

assumed to be the same as in study 1. For the DP model, winbugs does not allow improper

priors, so we approximate the prior described in Section 3.1 by taking ν0l = 0.001 (as opposed

to ν0l = 0) in the prior for variance components; and κ0l = 0.001 (as opposed to κ0l = 0) in

the noninformative prior for the location parameters.

Results are depicted in Figure 2. The upper three panels correspond to the t2 simulation

for the three different priors: non-informative (a), skeptical (b) and enthusiastic (c). For the

non-informative prior, we see that the posterior probabilities of DP and Gaussian cross around

(µE − µP )/(µR − µP ) = 0.8, the value of θ used in the simulations, again showing excellent prior

calibration. For values (µE−µP )/(µR−µP ) > 0.8 the DP model gives higher posterior probabilities,

and hence more power, than the Gaussian model. For values (µE − µP )/(µR − µP ) < 0.8 the DP

model gives lower posterior probabilities which implies an appropriate level of conservatism under

the null hypothesis. The results from the skeptical model are also similar, the only difference being

that posterior probabilities for both models are proprtionately smaller than those observed with

the non-informative prior. Hence the price of insisting on a parametric model when it is wrong,

results in an increase in the number of both false positive and false negative decisions. While the
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enthusiastic model shows a similar pattern, the curves cross earlier since it takes a smaller signal

to convince the enthusiast.
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Figure 2: Study 2: Curves depicting expected posterior probability of non-inferiority

E[P (H1|Data)] as a function of µE−µP
µR−µP

for the Gaussian and DP models. These based on θ = 0.8,

σ2
E = 5, σ2

R = 3,σ2
P = 1, µP = 1, µR = 4.9 and nE = nP = nR = n = 20. Panels (a), (b) and

(c) correspond to data simulated from a t2 distribution and models based on the noninformative,

skeptical and enthusiastic prior respectively. Panels (d), (e) and (f) correspond to data simulated

from a Laplace distribution and models based on the noninformative, skeptical and enthusiastic

prior respectively.
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6 Discussion

In this paper we have developed two Bayesian approaches for hypothesis testing in non-inferiority

trials under a three-arm design. One is a parametric model, relying on normality of the data and

the other is nonparametric using a Dirichlet process prior. The latter has the advantage of accom-

modating data from skewed or thick-tailed distributions without requiring a transformation. Our

method has the advantage of accommodating heteroscedasticity, a common simplifying assump-

tion in the literature, which is unlikely to hold in many cases. Finally we take full advantage of

the Bayesian framework both conceptually, by using the posterior probabilities for inference, and

computationally, by using MCMC to accommodate the Dirichlet process prior.

We applied our method to an ongoing trial investigating an intervention to blood pressure man-

agement in the home care setting. Since the data are not yet available, we simulated under the

conditions presumed in the study protocol. The results suggest that the method works well under a

variety of priors. While the parametric method is efficient when correct, it may suffer considerably

when there are substantial deviations. We recommend routine use of the DPM unless there is

strong support for the parametric assumptions.

We are currently working on extensions to binary and censored data, where similar principles

apply, although implementations may differ substantially.
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