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Lehmann Family of ROC Curves

Mithat Gonen and glenn heller

Abstract

Receiver operating characteristic (ROC) curves are useful in evaluating the ability
of a continuous marker in discriminating between the two states of a binary out-
come such as diseased/not diseased. The most popular parametric model for an
ROC curve is the binormal model which assumes that the marker is normally dis-
tributed conditional on the outcome. Here we present an alternative to the binor-
mal model based on the Lehmann family, also known as the proportional hazards
specification. The resulting ROC curve and its functionals (such as the area under
the curve) have simple analytic forms. We derive closed-form expressions for the
asymptotic variances of the estimators for various quantities of interest. This fam-
ily easily accommodates comparison of multiple markers, covariate adjustments
and clustered data through a regression formulation. Evaluation of the underlying
assumptions, model fitting and model selection can all be performed using any off
the shelf proportional hazards statistical software package.
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Summary

Receiver operating characteristic (ROC) curves are useful in evaluating the ability of

a continuous marker in discriminating between the two states of a binary outcome

such as diseased/not diseased. The most popular parametric model for an ROC

curve is the binormal model which assumes that the marker is normally distributed

conditional on the outcome. Here we present an alternative to the binormal model

based on the Lehmann family, also known as the proportional hazards specification.

The resulting ROC curve and its functionals (such as the area under the curve) have

simple analytic forms. We derive closed-form expressions for the asymptotic variances

of the estimators for various quantities of interest. This family easily accommodates

comparison of multiple markers, covariate adjustments and clustered data through

a regression formulation. Evaluation of the underlying assumptions, model fitting

and model selection can all be performed using any off the shelf proportional hazards
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statistical software package.

Key words: Regression, accuracy, concordance, proportional hazards

1 Introduction

ROC curves have become the standard tool for evaluating the discriminatory power

of medical diagnostic tests and they are commonly used in assessing the predictive

ability of binary regression models. In a typical setting one has a binary indicator

and a set of predictions or marker values. The goal is to see how well the marker

values predict the binary indicator. The principal idea is to dichotomize the marker

at various thresholds and compute the resulting sensitivity and specificity. A plot of

sensitivity (true positive fraction or TPF) versus one minus specificity (false positive

fraction or FPF) is the ROC curve. It provides a complete picture of various levels

of sensitivity and specificity that can be achieved using the marker. When dealing

with predictions from a regression model instead of a diagnostic marker, the same

principle applies so we will use the term “marker” generically from this point on to

refer to the variable for which an ROC curve is desired.

An empirical ROC curve may be obtained by connecting the observed (TPF, FPF)

pairs. The area under the empirical ROC curve is a one-to-one function of the two-

sample Wilcoxon statistic and Somers’ D (Pratt and Gibbons, 1981). The empirical

curve is attractive because it makes minimal assumptions, but it does not generalize

easily to allow covariate adjustments or clustered data. When such generalizations

are needed, most analysts work with a model, assuming that an explicit monotone

transformation of the marker values follow a normal distribution. This gives rise to
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the binormal model (Dorfman and Alf, 1996; Hanley, 1996).

The literature is replete with regression analyses of ROC curves, a framework

which provides adjustments for covariates and clustering. A survey of this literature

is found in Pepe (2003). The binormal model, after specifying the transformation, can

be formulated as a regression model, with the marker value as the dependent variable

and the disease status as the independent variable. This can be easily extended by

adding covariates and covariate-disease status interactions to the right hand side of the

model. The regression parameters can be estimated using least squares or maximum

likelihood. The binormal model has the advantage of using familiar methods based on

the normal distribution, but requires the stringent assumption that the normalizing

transformation is specified.

Pepe (1998) classified ROC regression procedures under three headings: Modeling

the marker values, modeling summary measures of accuracy and direct modeling

of ROC curves. As she noted, modeling summary measures of accuracy does not

allow for continuous covariates, hence it is not a regression model in the conventional

sense. She further notes that direct modeling of ROC curves, while making fewer

assumptions than the other two, requires large sample sizes, is difficult to implement,

and lacks methods for model checking. Finally, modeling the marker values has

many practical advantages, including ease of implementation and availability of model

checking methods. The chief disadvantage is that it requires full specification of a

parametric model for the conditional distribution of marker values.

In this article we present an alternative semiparametric approach to modeling

ROC curves that incorporates covariates. Under Pepe’s classification it would be

considered an example of modeling the marker values and carries the advantages of
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model fitting, inference, and diagnostics for model specification, using most popu-

lar statistical software packages. The model is semiparametric and is based on the

proportional hazards specification. The proportional hazards framework for the ROC

analysis is presented in Section 2. Section 3 covers covariate adjustments, comparison

of markers, and the incorporation of clustered data. Section 4 presents the analysis

of the utility of chemical shift magnetic resonance imaging in differentiating normal

and benign vertebral marrow processes using the proposed family. Section 5 contains

a discussion and provides our conclusions.

2 Model

Let V be the marker, D = 0, 1 be the binary indicator and let S0 = SD=0 and S1 =

SD=1 denote the survival functions (one minus the cumulative distribution function)

of the marker for the two different values of the binary indicator. A semiparametric

relationship is proposed

S0(v) = S1(v)θ, (1)

where the underlying survival distributions (S1, S0) are left unspecified, but their

relationship is governed by a single parameter θ. The parameter θ represents the

odds that a subject belonging to the D = 1 group has a higher marker value relative

to a subject belonging to the D = 0 group. The survival functions for the two

groups are oriented by assuming θ ≥ 1. This semiparametric relationship between

survival distributions was originally proposed by Lehmann (1953). We will call (1)

the Lehmann assumption and the resulting ROC curves, the Lehmann family of ROC

curves.
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We will use x to denote the false positive fraction and y to denote the corre-

sponding true positive fraction so that the (x, y) pairs form the ROC curve. The

relationship between the false positive fraction and the true positive fraction, can be

represented as

y = S1(S
−1
0 (x)), x ∈ [0, 1]. (2)

Using (1) in (2) yields the general form of the Lehmann family of ROC curves:

y = xθ. (3)

We note that (3) is concave everywhere on the unit interval, a desirable property for

ROC curves, since it implies a monotone increasing curve that lies above the 45-degree

line. Figure 1 shows a spectrum of ROC curves belonging to this family.

An alternative form for the Lehmann relationship between two groups is based on

the hazard function. Defining the hazard function as

h(v) = lim
∆v→0

Pr(v ≤ V < v + ∆v|V ≥ v)

∆v

the Lehmann specification in (1) may be rewritten as

h̃(v)

h(v)
= θ. (4)

Note that in this case h = hD=1 and h̃ = hD=0, but the general notation will be

helpful in subsequent sections. The identity (4) is the reason the Lehmann relation-

ship is referred to as the proportional hazards specification (Cox, 1972, 1975). This

connection to proportional hazards model provides an extensive body of literature

and software for the estimation and inference of the odds parameter θ.
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Cox regression modules in statistical software can be used for this purpose using

V as the outcome and D as the independent variable. Formally, we set

h0(v, D) = h1(v) exp{βD}

and θ = eβ. One can estimate β, and consequently, θ, using the Cox partial likelihood.

We will use β̂ for the partial likelihood estimate and

V (θ̂) = exp{2β̂}V (β̂)

for its estimated variance, where V (β̂) is computed as the inverse of the information

matrix from the partial likelihood.

Estimation and inference of the ROC curve and continuous measures of the curve,

are derived from the proportional hazards framework. For example, the pointwise

variance estimate of the smooth ROC curve is, using the delta method, given by

V (y(x)) =
[
xθ̂ log x

]2
V (θ̂). (5)

The area under the ROC curve is estimated as

ÂUC =

∫ 1

0

xθ dx = (θ̂ + 1)−1 (6)

and its variance is estimated by

V (ÂUC) = (θ̂ + 1)−4V (θ̂). (7)

Finally, the partial area under the curve up to x0, pAUC(x0), can be estimated using

p̂AUC(x0) =

∫ x0

0

xθ dx = (θ̂ + 1)−1xθ̂+1
0 (8)
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with variance estimate

V (p̂AUC(x0)) =

(
xθ̂+1

0

θ̂ + 1

)2

[
xθ̂

0 log x0

]2
V (θ̂)(

xθ̂+1
0

)2 +
V (θ̂)

(θ̂ + 1)2
− 2xθ̂+1

0 log x0V (θ̂)

xθ̂+1
0 (θ̂ + 1)

 .

(9)

Although the ROC curve is generically represented as a function of survival func-

tions, the Lehmann specification of the ROC curve, given by (3), depends only on

the odds parameter θ, and does not require the estimation of survival functions ex-

plicitly. In addition, there are several methods developed and implemented for model

diagnostics (Lin, 1991; Grambsch and Therneau, 1994) that can assist the analyst in

determining if the proportional hazards assumption is warranted for the specific ROC

analysis. A graphical approach for checking the proportional hazards specification,

based on the partial sums of the residuals, is demonstrated in our data example in

Section 4.

3 Further Applications of Regression

The Lehmann specification of the ROC curve lends itself to extensions in several

important contexts: covariate adjustment, comparison of ROC curves for several

markers, and clustered data. All of these can be represented in a proportional hazards

regression framework, as discussed in this section.

3.1 Covariate Adjustments

Covariate adjustment is important in ROC analysis when the marker threshold for

group membership is a function of a concomitant covariate. For example, the Prostate
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Specific Antigen (PSA) level is a validated marker for prostate cancer. PSA, however,

increases as men age. Thus, an adjustment for age would improve an ROC analysis

using PSA as a marker for prostate cancer.

Tosteson and Begg (1988) showed that a regression model with an interaction

term can be used to estimate a covariate-adjusted ROC curve. In the context of the

Lehmann family this amounts to a proportional hazards regression model,

h(V |D, U) = h̃(v) exp{β1D + β2U + β3DU} (10)

with U as the concomitant covariate. The ratio of the two hazard models with group

membership D = 1 and D = 0 results in

h(V |D = 1, U)

h(V |D = 0, U)
= eβ1+β3U , (11)

which yields the covariate-adjusted ROC curve

y(u, x) = xθ(u) (12)

where

θ(u) = exp{β1 + β3u} (13)

The interaction between D and U in the model, enables the hazard ratio to reflect the

effect of the covariate U , otherwise the right hand side of (11) would simply be eβ1 .

The use of the interaction term in the ROC analysis is not specific to the proportional

hazards model and can be observed in all regression models following the Tosteson-

Begg approach. Note that expressions (5-9) still hold when θ̂ is replaced by θ̂(u),

which itself is a contrast that can be estimated from the underlying regression model

along with its standard error. Covariate adjustment can be extended to any number

of covariates using (10).
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3.2 Comparing the ROC Curves of Several Markers

The comparison of two markers is an important case of covariate adjustment. In

radiology, a new imaging technique (such as positron emission tomography) may be

in competition with standard of care (such as computed tomography) in detecting

disease. In the field of biomarkers it may be of interest to compare several ways of

evaluating a marker. An example from the field of prostate cancer surveillance is

whether a baseline PSA measurement or the change in PSA over time, summarized

by an index such as PSA velocity, is a better predictor of disease recurrence. In

prediction modeling, there may be competing models. For example, using the same

data one may use different statistical techniques to make predictions such as logistic

regression, classification trees, or neural networks. Another possibility is that one

might have an emerging predictor variable such as a genetic variant, and it would be

of interest to see if a prediction model using the new predictor variable along with

the traditional variables is better than one that uses traditional variables only.

If interest is in comparing markers, one can use (10) with U as an indicator variable

denoting the two markers to be compared. This single model gives rise to an ROC

curve for each marker under consideration: xθ
1 and xθ1+θ3 , where θi = eβi . In addition,

this approach provides a direct way to test whether the two ROC curves are different

using the null hypothesis H0 : β3 = 0. A Wald, score, or likelihood ratio statistic

can be constructed from the partial likelihood and the maximum partial likelihood

estimates to test this null hypothesis. It is likely that the software used to estimate the

model parameters will provide one or more of these tests by default. This approach

can be extended to multiple markers using a matrix U of dummy variables within the
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regression framework.

One practical aspect where marker comparison differs from other covariate adjust-

ments is study design. Most marker comparison studies are paired in nature because

it is usually feasible to evaluate the competing markers within patient. As a result,

the covariance between multiple marker measurements needs to be taken into account.

One approach is to use the marginal proportional hazards model. In this case, the

estimates derived from (10) are obtained by solving an estimating equation rather

than maximizing the partial likelihood. This method is explained in more detail in

the next subsection.

3.3 Clustered Data

Clustered data arise naturally in many radiologic imaging studies. As technology ad-

vances, so-called full-body scans render multiple evaluations possible for each patient.

For example, for a cancer patient one may evaluate the primary tumor, local lymph

nodes and distant metastatases all on the same scan leading to clustered data. For

k = 1, . . . , K markers, the marginal proportional hazards regression models

hk(V |D, U) = h̃k(v) exp{β1kD + β2kU + β3kDU}

are applied to produce marker specific covariate adjusted ROC curves

yk(u, x) = xθk(u).

Assuming the Lehmann specification is correct, the partial likelihood estimates are

consistent, but (θ̂1, . . . , θ̂K) are correlated, requiring an adjustment to the variance

calculation. The asymptotic variance is estimated by V̂ Ŵ V̂ , where V̂ is the variance

10
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matrix from the marginal partial likelihoods and the matrix Ŵ provides the between

marker correlation information (Wei et al. 1989). This marginal approach is appli-

cable when the data are paired, or for any data set where each patient contributes

multiple observations.

4 Example

Zajick et al (2005) report a study on the utility of chemical shift magnetic resonance

in differentiating normal, benign and malignant vertebral marrow processes. The

marker of interest is the percent difference between the in-phase and out-phase signal

intensities. Their focus was on establishing a range of values for signal intensity

change in normal vertebral marrow. Here we use their data for an objective that has

not been pursued in their article: evaluating the ability of signal intensity change in

discriminating between normal and benign vertebral marrow processes.

A total of 569 normal vertebrae were evaluated on 75 patients, as compared with

215 benign lesions in 92 patients. Figure 2 presents the histograms of the signal

intensity change for normal and benign vertebrae separately. The two distributions

have some overlap suggesting that the marker may not have the ability to discriminate

the two classes. The empirical ROC points, represented with open circles, in Figure

3 verifies this suspicion since it is only slightly better than the diagonal line which

represents the ROC curve of a coin flip. Before we can use the Lehmann curve, we

need to confirm that proportional hazards assumption is not violated. The thick line

in Figure 4 is the observed score process and the dotted lines are 100 sample paths

generated from the score process under the assumption of proportional hazards (Lin,
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1993). Since the observed process is typical of the sample paths obtained under the

model, there is no evidence against proportional hazards between normal and benign

patients, validating the assumptions underlying the ROC curves in Figure 3.

In our first analysis we ignore the fact that patients contribute multiple vertebrae

to the analysis and assume that the signal intensity change is independent across

vertebrae, conditional on the gold standard (normal/benign). Using partial likelihood

we find that β̂ = −0.355 with a standard error of 0.088, which corresponds to θ̂ =

0.701. The resulting member of the Lehmann family of ROC curves is plotted with

a solid line and the dotted lines around it represent the asymptotic pointwise 95%

confidence intervals. We then obtained β̂ using estimating equations to adjust for the

clustering due to multiple observations contribued for each patient. The coefficient

β is again estimated to be −0.355 but the standard error is now 0.144. The wider

set of dotted lines in Figure 3 represent the confidence intervals obtained using the

marginal model.

The area under the curve is 0.588 with a standard error of 0.030 (ignoring clus-

tering) or 0.050 (adjusted for clustering). The corresponding confidence limits are

(0.529, 0.647) and (0.490, 0.686) confirming the difficulty of distinguishing normal

and benign processes. In contrast, the area under the empirical curve is 0.597 with a

standard error of 0.025, which is very close to the estimates obtained above ignoring

clustering.

Finally, the ROC analysis is adjusted for age. Typically, vertebral marrow pro-

cesses are more difficult to image in older patients, due to the effects of aging on

the vertebrae confounding disease-related abnormalities. We first fit the proportional

hazards regression model (10) with U as age measured in years. Then we dichotomize

12
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age at the observed median of 58 years and re-fit the model with age as a binary

variable. The resulting parameter estimates and standard errors (in parentheses)

are given in Table 1, and Figure 5 provides adjusted ROC curves when age is di-

chotomized. While there is some evidence that the ROC curve is a function of age, β̂3

is not significantly different from 0, especially when clustering is taken into account.

This is also evident from Figure 5.

Model Clustering β̂1 β̂2 β̂3

Age (years) Ignored -1.288 (0.446) -0.017 (0.006) 0.014 (0.007)

Age (years) Adjusted -1.288 (0.894) -0.017 (0.009) 0.014 (0.013)

Age (> 58) Ignored -0.663 (0.139) -0.508 (0.159) 0.430 (0.180)

Age (> 58) Adjusted -0.663 (0.268) -0.508 (0.204) 0.430 (0.301)

5 Discussion

In this article we presented a model-based method to obtain smooth ROC curves.

The model is based on the Lehmann (or proportional hazards) assumption and can

accommodate a variety of research questions such as covariate adjustments and clus-

tered data. All the analyses can be performed with the built-in functionality of

off-the-shelf software. The approach does not require full parametric specification of

the distribution of the marker value for the two reference populations, hence it is less

restrictive than the fully-parametric models used for the same purpose. A popular

alternative approach is the binormal model, which assumes that a transformation

is available or can be derived to produce normally distributed marker values. Since

these two assumptions do not intersect one can consider the proportional hazards and
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the binormal model to be complementary.

The Lehmann assumption is equivalent to assuming the existence of a mono-

tone transformation producing marker values with an extreme value distribution

(Kalbfleisch, 1978), but does not require that the transformation is specified, un-

like the binormal model which necessitates that the normalizing transformation be

known or derived. Conversely, the Lehmann family of ROC curves is indexed by a

single parameter and affords less flexibility than the binormal model which has two

parameters.

The proposed model has two major advantages for the practicing statistician.

Both of these advantages stem from the regression representation. The first advan-

tage is operational. The proportional hazards model has become the primary vehicle

for the analysis of censored data, and all mainstream statistical packages provide

estimates, inferences, and model diagnostics for this model and the resulting ROC

analysis. The second advantage is conceptual. It is possible to formulate most prac-

tical problems of interest in the regression framework. For example, simultaneous

modeling and comparison of two or more markers can be seen as a regression prob-

lem with dummy variables. Covariate adjustments, which are sometimes necessary

because a covariate is thought to influence the accuracy of the marker, are naturally

modeled as regression problems. All of these regression problems, with multiple inde-

pendent variables, can be easily fit using the available software as mentioned above.

In addition, clustered data can also be handled within this framework. Marginal

models have become standard in recent years and it is possible with most statisti-

cal software to obtain a robust estimate of the variance, which can be used when

individual subjects contribute multiple observations to the analyses.

14
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Figures

Figure 1: Members of the Lehmann family with parameters ranging from 0.1 (closest

to 45-degree line) to 0.9.

Figure 2: Histogram of percent difference between the in-phase and out-phase

signal intensities for normal and benign vertebrae

Figure 3: Empirical ROC points (open circles), smooth ROC curve (solid line)

and 95% pointwise confidence limits using the partial likelihood (narrower dotted

lines) and marginal model (wider dotted lines)

Figure 4: Score process for checking the assumption of proportional hazards

Figure 5: Age adjusted ROC curves, dotted line is for age≤ 58 and the solid line

is for age> 58.
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