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Semiparametric Bayesian Modeling of
Multivariate Average Bioequivalence

Pulak Ghosh Dr. and Mithat Gonen

Abstract

Bioequivalence trials are usually conducted to compare two or more formulations
of a drug. Simultaneous assessment of bioequivalence on multiple endpoints is
called multivariate bioequivalence. Despite the fact that some tests for multi-
variate bioequivalence are suggested, current practice usually involves univari-
ate bioequivalence assessments ignoring the correlations between the endpoints
such as AUC and Cmax. In this paper we develop a semiparametric Bayesian
test for bioequivalence under multiple endpoints. Specifically, we show how the
correlation between the endpoints can be incorporated in the analysis and how
this correlation affects the inference. Resulting estimates and posterior probabil-
ities “borrow strength” from one another where the amount and direction of the
strength borrowed are determined by the prior correlations. The method devel-
oped is illustrated using a real data set.
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Abstract

Bioequivalence trials are usually conducted to compare two or more formula-

tions of a drug. Simultaneous assessment of bioequivalence on multiple endpoints is

called multivariate bioequivalence. Despite the fact that some tests for multivariate

bioequivalence are suggested, current practice usually involves univariate bioequiv-

alence assessments ignoring the correlations between the endpoints such as AUC and

Cmax. In this paper we develop a semiparametric Bayesian test for bioequivalence

under multiple endpoints. Specifically, we show how the correlation between the

endpoints can be incorporated in the analysis and how this correlation affects the

inference. Resulting estimates and posterior probabilities “borrow strength”’ from

one another where the amount and direction of the strength borrowed are deter-

∗Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, 30303-3083, USA; Email:

pghosh@mathstat.gsu.edu
†Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue,

New York, NY 10021;

1

Hosted by The Berkeley Electronic Press



mined by the prior correlations. The method developed is illustrated using a real

data set.

Key words: Average bioequivalence; Crossover design; Gibbs sampling; Mixture

of Dirichlet Process prior; Markov Chain Monte Carlo;
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1 Introduction

The main objective of a bioequivalence study is to establish if different formulations of the

same drug substance are equivalent. A bioequivalence study is thus an experiment to compare

a test product (T) to a reference product (R). For an unapproved generic dosage form to be

marketed and accepted as therapeutically effective to the innovator product, it must establish

bioequivalence with the innovator product, in vivo. The determination of bioequivalence trials

are of interest to many groups: pharmaceutical companies, insurance companies, prescribing

doctors, pharamcists, regulatory authorities, etc. The availability of safe and effective generic

drugs is beneficial to the public due to cost considerations. On the other hand, patients should

be protected from the failure of treatment and toxicity of drugs via rigorous evaluation meth-

ods. In the pharmaceutical industries because the regulatory agencies like US Food and Drug

Administration (FDA) allow a generic drug to be marketed only if its manufacturer can demon-

strate that the generic product is bioequivalent to the innovator product. According to FDA

regulations (2002) a valid statistical evaluation of bioequivalence trial is essential to guarantee

the safety and efficacy of the generic drug products. FDA suggests the consideration of average

bioequivalence (ABE) (Berger et. al., 1996) for establishing bioequivalence between two for-

mulations, which requires the equivalence between the population means of the reference and

test formulations.

A test formulation and a reference formulation are bioequivalent if the bioavailability of the

two formulations, which are characteristics of the extent and rate of absorption, are sufficiently

close. This concept relies on the fundamental assumption that two formulations are therapeu-

tically equivalent if the bioavailabilities of the two formulations are the same. Bioequivalence

is usually studied by administering drug formulation to a subject and measuring concentra-

tion of the drug in the blood at pre-specified sampling times. These concentration by time

measurements are connected with a polygonal curve. The profiles of the concentration time
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curves are compared by means of several pharmacokinetics (PK) parameters. These are, the

area under the blood concentration-time curve (AUC), maximum concentration Cmax and time

to achieve maximum concentration Tmax. Clearly, these bioavailability metrics are dependent

on the formulation and the type of study.

While the AUC is the most accepted measure of absorption rate and bioequivalence is mostly

established based on AUC measure, none of the above three measures can be deemed as uni-

versally superior to the other. One may be more appropriate for some drugs but not others.

The measure Cmax is of importance because some drugs may need to reach a certain level of

concentration in order to achieve the desired therapeutic effect. A drawback of Cmax is that it

is highly correlated with the AUC, and thus is not a pure measure of absorption rate. Endrenyi,

Fritsch and Yan (1991) suggested using the ratio Cmax/AUC instead of Cmax. However, this

suggestion does not seem to have been adopted into common practice. Tmax may be a relevant

measure for drugs such as analgesics and antibiotics that must reach the peak concentration as

soon as possible. However, it may not be a good measure for drugs requiring multiple dosage

before a therapeutic effect is observed. Tmax is independent of AUC but power from this measure

may be limited because of its discrete nature (Kaniwa, Ogata, Aoyagi, Takeda and Uchiyama,

1989). United States FDA considers both AUC and Cmax as important metric of the rate of

absorption.

Most bioequivalence analysis are based on any one of the PK parameters and thus while

bioequivalence may be established for one PK parameter it may be bioinequivalent for another

PK parameter. Because there is no single PK parameter that is universally accepted as the

best, it would be best to consider a test of ABE which includes all the endpoints together. This

set up is called multivariate ABE. FDA (1992) and EC-GCP (1993) consider two drugs to be

bioequivalent only if they are similar in both AUC and Cmax. Westlake (1988) and Hauck et. al.

(1995) have considered the problem of comparing AUC and Cmax simultaneously.

ABE has generated a lot of research in the last few decades, but there is only limited attempts
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to address multivariate ABE (Berger and Hsu, 1996). Chinchilli et. al. (1997) proposed an

approach to compare test and reference formulation based on two regions, an acceptable region

based on reference profile and another region based on test profile. Wang et. al. (1999)

developed an intersection union test and proved that their test is uniformly more powerful than

the existing tests. Munk et. al. (1999) have also developed a equivariant confidence rule.

Recently, Quan et. al. (2001), developed a simultaneous equivalence assessment of therapy and

pain data.

All these methods considers that all the endpoints, e.g., AUC and Cmax, come from a mul-

tivariate normal distribution, resulting in correlated parameter estimates and test statistics.

This has been the standard approach in frequentist and likelihood approaches to multivariate

modeling. One shortcoming is that it cannot account for the correlation between parameters,

something which can only be done in the Bayesian paradigm. Despite this fact, many Bayesian

approaches to multivariate modeling uses standard independent priors.

There is a subtle difference between correlated parameters and correlated parameter estimates.

The former induces “borrowing strength,” a phenomenon that causes the estimates of the

correlated parameters shrink towards a common point. Borrowing strength cannot be induced

through correlated parameter estimates. This is studied in detail by Gönen, Westfall and

Johnson (2003) and will be demonstrated in Section 4.

Another drawback of the existing methods is the normality assumption. Normality assump-

tion in a bioequivalence trial may not always hold and subsequent inferences can be misleading

(Chow and Tse ,1990; Bolton 1991). There can be a great deal of variability in bioequivalence

trials between subjects, and so we may need more flexibility than a parametric model would

allow. For example, in the data set we analyze, which is discussed in more detail in section 4,

there is a lot of diversity in the AUC and Cmax values. Histograms of the AUC and Cmax measures

suggest nonnormality in their distributions as well as strong presence of outliers.

5
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Thus, in this paper we extend the existing methods in two ways. First, we assume a mul-

tivariate prior on treatment effects that allows positive probability of null hypothesis for each

endpoint. Specifically, we calculate how the posterior probability of bioequivalence depends on

the prior correlation among hypothesis on each endpoint and also the joint prior probability

that all hypothesis are true. Second, in this paper we develop a semiparametric Bayesian test

for multivariate ABE. To our knowledge there is no Bayesian work in multivariate ABE in this

direction. A Bayesian semiparametric method using a mixture of Dirichlet process (MDP) (

MacEachern, 1994; Escober and West, 1995; MacEachern and Müeller, 1998) is thus proposed

to relax the distributional assumption and to accommodate possible population heterogeneity.

Mixture of DP by far are the most widely used nonparametric Bayesian model mainly because

one can easily obtain posterior estimates using standard MCMC approaches such as Gibbs

sampling and it is computationally tractable.

The plan of the paper is as follows. Section 2 introduces a semiparametric random effects

model for multivariate ABE. In section 3, we describe the Bayesian approach. Section 4 describe

the data and the results of the empirical analysis are presented. Section 5 draws conclusions.

2 A Semiparametric Model for Multivariate Bioequiva-

lence

2.1 Model

We will consider a 2 × 2 crossover design for multivariate ABE endorsed by FDA (1992). In

a two-sequence, two-period crossover design with multivariate responses, suppose p endpoints

are measured for each of two treatments A and B. In this article the p characteristics are the

pharmacokinetic parameters, such as AUC, Cmax and Tmax.
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Let yijkp be the p characteristics on the j th formulation of the i th subject in the k th

sequence. Then writing

yijk = (yijk1, yijk2, · · · , yijkp)
T (1)

the model for a multivariate 2 × 2 crossover design is given by

yijk = µj + sik + π(j,k) + ξk + eijk (2)

Thus each yijk (j = T,R; k = 1, 2; i = 1, 2, · · · , nk) is a p × 1 response vector. It is important

to note that yijk might have been subjected to a transform to improve suitbaility of model

assumptions. For example in Section 5 we will use the log-transform for AUC and Cmax. Whether

the endpoints are transformed or not,however, has no bearing on what follows, except for prior

elicitation.

Here, µj = (µj1, µj2, · · · , µjp)
T is the treatment effect vector for formulation j, sik = (sik1, sik2, · · · , sikp)

T

is the random effect of subject i in sequence k, πj,k = (π(j,k)1, π(j,k)2, · · · , π(j,k)p)
T is the fixed

effect vector of period administering treatment j in sequence k, ξk = (ξk1, ξk2, · · · , ξkp)
T is the

vector of fixed effect sequence, and eijk = (eijk1, eijk2, · · · , eijkp)
T is the error for subject i of

sequence k for formulation j.

Note that the vector of direct effect for treatment j is µj. We have two treatments (T and R).

We assume that the error terms are normally distributed around 0 but we leave the random

subject effect distribution unspecified:

sik|(.) ∼ f(.), eijk ∼ Np(0,Σ) (3)

We further assume that sik and eijk are independent and

µT + µR = 0, ξ1 + ξ2 = 0, and π1 + π2 = 0. (4)

The usual distribution of the random effects f(.) is multivariate Gaussian. However, the choice

of normal distribution may not be appropriate, if the data are skewed or contain outliers. To
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guard against the influence of outliers and /or skewness, which can be quite influential in

typical small-sample bioequivalence studies we replace the usual normality assumption for the

random effect with a mixture of Dirichlet process (MDP) prior. The use of MDP prior is also

motivated by the following considerations: (1) Bioequivalence endpoints are direct measures

of human metabolism and they can exhibit substantial between-subject variability which may

not be captured by the normal distribution, (2)The MDP model defines and entire class of

distribution and multivariate Gaussian is a special case of it (as described in section later), (3)

This generalization has the potential to make the inference robust to departures from a normal

distribution while still having good performance if the actual distribution is normal.

The application of MDP for the random effect sik using Gibbs sampler has been pioneered by

MacEachern (1994), Escobar and West (1995), MacEachern and Müeller (1998). In particular

we assume sik|(.) ∼ f(.) with f(.|G) =
∫

N(.|µ, Ω)dG(µ). Here, N(.|µ,G) denotes the density

of normal distribution with mean µ and variance and covariance matrix Ω. The mixture model

f can be equivalently written as a hierarchical model as

sik|G ∼ N(mi, Ω) (5)

mi ∼ G (6)

The model is completed with a prior probability model for the random distribution G. We

assume G ∼ DP (α,G0), a Dirichlet process (DP) prior with precision parameter α and baseline

distribution G0. For the baseline distribution G0 we assume a N(0, ∆) distribution. This is a

standard specification for MDP priors.

MDP prior assumes that the prior distribution G itself is uncertain drawn from a Dirchlet

process. The parameters of a Dirichlet process are G0 a probability measure, and α, a positive

scalar assigning mass to the real line. The parameter G0 is a distribution that approximates

the true nonparametric shape of G. The concentration parameter α reflects our prior belief
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about how similar G is to G0. Large values of α lead to a G that is very close to G0. Small

values of α allow G to deviate more from G0 and put most of its probability mass on just a few

atoms. MDP prior allows for heterogeneity, outliers and skewness as desired. It also includes

a multivariate normal prior as a limiting case for α → ∞. One can assume a preassigned

value for α or may specify a prior distribution on α to capture the uncertainty and sample α

from posterior distribution using Gibbs sampler (Brown and Ibrahim, 2003; Escober and West,

1995).

There are several ways to implement a MDP prior. Following Sethuraman (1994) one way

to generate the DPP prior is to regard the infinite dimensional parameter G as an infinite

mixture. Recent research, however, has focussed on using the constructive definition of the

Dirichlet process to produce MCMC algorithms (Ishwaran and James, 2002; Ishwaran and

Zarepour, 2002). This includes a finite approximation for MDP (Ishwaran and Zarepour, 2002)

can be used within the software WinBUGS (Spiegelhalter et. al., 2003) to implement Gibbs

sampling. In fact, for our data analysis we use the finite approximation to MDP to implement

the Gibbs sampling in WinBUGS. This finite approximation for MDP can be done by introducing

latent variables I = (I1, J2, · · · , In) which indicate the group membership for the unobserved

variables mI along with a probability vector w = (w1, w2, · · · , wL)T . Thus, the model can be

written as:
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sik|mi, Ω ∼ N(mIi
, Ω) (7)

Ii|w ∼ Multinomial({1, 2, · · · , L},w) (8)

ml|G ∼ G, l = 1, 2, · · · , L (9)

G|α,G0 ∼ DP(αG0) (10)

G0|∆ ∼ N(0, ∆) (11)

w ∼ Dirichlet(
α

L
,
α

L
, · · · ,

α

L
) (12)

∆ ∼ IW (q, Φ) (13)

Ω ∼ IW (ξ, R) (14)

α ∼ Gamma(aα, bα). (15)

Here IW (n,A) denotes a inverse-Wishart distribution with scalar parameter n and matrix

parameter A, and Gamma(a, b) denotes a Gamma distribution with shape parameter a and

scale parameter b, parameterized such that the expected value is a/b.

2.2 Hypotheses of Interest

We consider the ABE assessment in terms of difference of the averages in the treatment effects.

Let θ = µT − µR. Then θ = {(θl)} (l = 1, · · · , p) are the true mean differences between the

two treatments for the p endpoints. Then in order to assess ABE on each end point we test the

following hypothesis:

H0l : θl ≤ δl or θl ≥ γl vs. H1l : δl < θl < γl, , l = 1, · · · , p. (16)

where δl, γl are pre-specified equivalence bounds set up by regulatory agencies like FDA. ABE

is established on all the p endpoints simultaneously if the following hypothesis is correct.

H1 : δ1 < θ1 < γ1 and δ2 < θ2 < γ2 · · · and δp < θp < γp (17)

10

http://biostats.bepress.com/mskccbiostat/paper8



For convenience, we assume δ1 = δ2 = · · · = δp = δ and γ1 = γ2, · · · , γp = γ. FDA guidelines

recommend δ = log(0.80) and γ = log(1.25) and that is what we will use in Section 4.

3 Bayesian Inference

3.1 Prior Distribution

We will start by placing a multivariate normal prior on µT with mean b1 and variance B1. Since

µT , is the parameter of interest the choice of b1 and B1 is of great importance to inference and

we will explain in detail in Section 4, in the context of an example, how traditionally available

information in a bioequivalence trial can be used to specify these prior parameters.

In a similar vein, the prior for ξ1 is multivariate normal with mean b2 and variance B2 and π1

is also given a multivariate prior with mean b3 and variance B3. While the model is developed

for the generic prior, in most cases the variance-covariance matrices B2 and B3 can be taken a

diagonal matrix. These fixed-effect covariates, though as they may be correlated, are not the

focus of investigation and it is unlikely that the analysts will have sufficient information to elicit

a covariance matrix with non-zero off-diagonals. For the same reason we will take the prior of

ξ1 and π1 to be independent of one another. The prior for the within-subject variance, Σ are

assumed to be of conjugate form. The following summarizes the prior structure we impose on

this problem:

µT ∼ Np(b1,B1) (18)

ξ1 ∼ Np(b2,B2) (19)

π1 ∼ Np(b3,B3) (20)

Σ−1 ∼ W (η,R) (21)

(22)
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with the additional constraint that µT⊥ξ1⊥π1⊥Ω⊥Σ.

Although this prior specification is sufficient to derive the posterior distribution it is instruc-

tive to examine the implications on θ and the hypotheses in (16,17). Since θ = 2µT the implied

prior for θ is

θ ∼ Np(2b1, 4B1).

which can be used to express the prior probability of the individual hypotheses

P (H0l) = P (I(θ(l) ≤ δl ∪ θ(l) ≥ γl))

= 1 − Φ

(

γl − (2b1)
(l)

(4B1)(ll)

)

+ Φ

(

δl − (2b1)
(l)

(4B1)(ll)

)

where the superscript indexes the elements of the corresponding vector or the matrix.

Furthermore one can examine the joint prior distribution of the hypotheses H0l which form

a multivariate array of Bernoulli variates with tetrachoric correlation that is a function of b1

and B1. Their joint distribution can be assessed in terms of the prior of µT as

P ({H0l}l = {rl}l) =

∫

· · ·

∫

Υ{rl}l

φk(µT ;b1,B1) dµT

where φk(.; ., .) is the multivariate normal density, rl is a 0-1 index indicating whether H(0l) is

true or not and Υ{rl}l
is the appropriate subset of ℜp on which the joint distribution is to be

computed. Specifically, let

Υ{rl}l
=

⋃

{rl}l

Υrl

where

Υrl =







δl < µ
(l)
T < γl, rl = 1

µ
(l)
T > γl ∪ µ

(l)
T < δl, rl = 0

(23)

We will discuss the practical implications of the choice of prior parameters in the context

of an example in section 4. It is important note here that diagonal elements of B1 plays an
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important role. They represent the correlation between the endpoints a priori and they will

allow one endpoint to “borrow strength” from the other. This cannot be accomplished in

a frequentist framework. Traditional mixed-effect models allow for modeling the correlation

between test statistics, but not between endpoints themselves and thus they cannot induce

borrowing strength. For a more detailed elucidation of this point along with other examples,

see Gönen, Westfall and Johnson (2003).

3.2 Gibbs Sampling

The posterior distributions are analytically intractable and thus computations are done via

Monte Carlo approximations with the help of the MCMC method. The Gibbs sampler is one of

the most widely used MCMC methods, and is implemented in the software package WinBUGS. It

works by drawing samples from the posterior distribution of the parameters in such a way that

sample draws are made from the conditional posterior distributions of univariate parameters

given the most recent draws of the other parameters. Thus, what is required for the Gibbs

sampler to work is the ability to sample from the full conditional posterior distribution of

the parameters. The conditional distribution of all the parameters are obtained from the joint

distribution of all the parameters. We omit the explicit expression of the conditional distribution

as WinBUGS does not require their explicit specification.

3.3 Model Assessment

Since we used a MDP distribution for random effects instead of a usual Gaussian distribution,

it is interesting two compare the two models. Thus, we compare the following two models:

Model 1: This is the model with the random effect sik following a multivariate normal distri-

bution, i.e., sik ∼ Np(0, Σ).
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Model 2: This is the model we considered, i.e., sik have a MDP distribution.

We examine two statistics for comparing these models, the Deviance Information Criterion

(DIC; Spiegelhalter et. al., 2002) and Conditional Predictive Ordinate (CPO; Gelfand, Dey, and

Chang, 1992). DIC is the Bayesian equivalent of the AIC , particularly suitable for hierarchical

models. The DIC is given by

DIC = D̂ + 2pD

where D̂ is the deviance evaluated at the posterior mean θ̄, and pD is the effective number of

parameters in the model, which is given by pD = D̄−D̂, where D̄ is the posterior mean deviance.

DIC can be computed based on the MCMC sample, and is reported automatically by WinBugs.

The interpretation of DIC is similar to that of the AIC, as a single-number summary of the

relative fit between the model and the “true model” generating the data, from the perspective

of prediction, conditional on the clusters in the hierarchy, e.g., the subjects in the study. The

smaller the DIC the better the fit, and, in analogy with AIC, a difference larger than 10 is

overwhelming evidence in favor of the better model (Burnham et. al., 2002).

We also calculate the conditional predictive ordinate (CPO) (Gelfand, Dey, and Chang, 1992)

for each observation. Chen, Shao, and Ibrahim (2000, chapter, 10) show in detail how to obtain

Monte Carlo estimates of the CPO statistic. We compare these two different models using the

log pseudo marginal likelihood (LPML). Define ĈPOi to be the Monte Carlo estimate of the

ith subject’s CPO statistic. Models with greater LPML =
∑

log(ĈPOi) values will indicate a

better fit.
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4 Data Analysis

4.1 Data

In this section we illustrate the above methods using a data set from Clayton and Leslie

(1981). Two erythromycin formulations were compared using the two-sequence, two-period,

two-treatment crossover design involving 18 subjects. The two formulations were, A : Ery-

thromicin stearate [Erthrocin (R), 500mg, ovalid tablets, 6316, Abbott australasia Private

Limited] and B : Erythromycin base [Eryc (R), 2 × 250mg capsules, containing enteric coated

pellets]. The primary concern was to compare the bioavailability of formulations A, B when

each was administered immediately after food. Generally speaking, a stearate formulation will

exhibit more rapid absorption as compared to a base formulation. Nine subjects were random-

ized to a formulation sequence AB while another nine subjects were randomized to sequence

BA. A one week washout period separated the two periods. Blood samples were taken im-

mediately before drug administration and then at 0.5, 1, 1.5, 2, 3, 4, 6 and 8 hours after drug

administration. The primary variables of interest AUC and Cmax was calculated from 0 to 8

hours.

Figures 1 and 2 give the histograms for period differences for the two endpoints. Once

can identify a few outliers by visual inspection. The distribution of the endpoints for each

treatment are given in Figure 3 assuming no period differences and hint that there may be a

treatment difference. We also observe that, even after the log-transformation, there is strong

evidence against the normality assumption. Finally, Figure 4 is the scatter plot between the two

endpoints for the two treatments, making clear the strong correlation between the endpoints.

15
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4.2 Prior Elicitation

Since there are only two endpoints AUC and Cmax, we set p = 2. We choose a relatively

weak prior for the parameters other than the treatment effect. In particular, we take ξ2 ∼

N2{(0, 0)
′
, diag(0.001, 0.001)}, π2 ∼ N2{(0, 0)

′
, diag(0.001, 0.001)},

Ω ∼ IW



2,





0.1 0

0 0.1







 , Σ ∼ IW



2,





0.1 0

0 0.1







 , ∆ ∼ IW



2,





0.1 0

0 0.1









A Gamma(0.01, 0.01) is assumed for α. We tried various values of L and found L = 5 works

very well.

The choice of b1 is usually facilitated by the specific null hypothesis. It is commonly accepted

that a clinical trial is justified only if the prior probability of the null and alternative hypotheses

are comparable, otherwise it would be unethical to subject humans to experimentation. In

addition, if the two products are not bioequivalent there is no a priori reason to anticipate

the direction of bioinequivalence for either of the endpoints, at least in this example. These

considerations suggest b1 = (0, 0). The diagonal of B1 can be elicited using the following

constraint:

P (H0l) = P (θl ≤ δl or θl ≥ γl) = 0.5

Using the logarithmic scale equivalent of FDA mandated bioequivalence limits of δ = log(0.80)

and γ = log(1.25), setting

B1 =





0.055 σ12

σ12 0.055





ensures that prior probability for each of the bioequivalence hypothesis is 0.5.

Eliciting a value for σ12, or ρ, the implied prior correlation is more difficult. One can pre-

sumably research the literature for all relevant multivariate average bioequivalence studies and

record whether the hypothesis of bioequivalence is rejected for AUC and Cmax and use the em-

pirical correlation. If there is available a rich literature on the subject with detailed reporting
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of individual endpoints, then such an undertaking with the collaboration of PK experts would

be preferable.

An alternative which we used here is to try different values of ρ and produce a sensitivity

analysis. There is no reason to consider ρ < 0; the nature of the endpoints dictate that if

there is any correlation it will be positive. To choose an upper bound for ρ for the sensitivity

analysis it is instructive to consider what the correlation between a pair of binary variables

will be if they are concordant for a certain percentage of the time. In this exercise the binary

variables represent the two elements of the hypotheses of multivariate bioequivalence. A simple

calculation yields that if two binary variables are concordant 75% of the time, then their

correlation will be approximately 50%. This assumes marginal probabilities of 50% for each

binary variable, the scenario which yields the maximum correlation. It seems reasonable for

this example, to take ρ = 0.5 as the upper bound of the range for sensitivity analysis. However,

if one is interested in more than 75% concordance the same logic can be applied to find an

upper bound of ρ.

4.3 Results

We compared the semiparametric model (Model 2) with the simple parametric model (Model

1) using the deviance information criterion (DIC, Spiegelhalter et al. , 2002). The LPML are

−311.45 and −259.44 for model 1 and 2 respectively. Also, the DIC for the two models are

251.16 and 221.99 respectively. Since, the semiparametric model has the largest LPML and

smalles DIC, we conclude that for this data set the model with MDP is the better fitting model.

Thus, we report here the results based on semiparametric model. The posterior estimates

of the fixed effects parameters are given (for ρ = 0.3) in Table 1. Treatment effect under

AUC is quite high while it is small in Cmax. The treatment effects are also significant in both

the endpoints as the 95% posterior interval does not contain 0. The estimate of the variance-
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covariance matrix Σ is found to be Σ̂ = (8.4, 2.521, 2.521, 0.913). This is a reflection of the

high variability in AUC.

The Bayesian hypothesis test requires calculating the posterior probability of the hypotheses

described in (17). Thus, the posterior probability of ABE for single endpoint, e.g., lth endpoint

can be computed using the following equation:

Pr[ABE/Data] = Pr[log(0.8) < θl < log(1.25)/Data]

=
1

m

m
∑

c=1

I[log(0.8) < θlc < log(1.25)/Data]

where, (θlc : c = 1, 2, · · · ,m) is a sample from the observed posterior density of θl, I(.) denotes

the indicator function, and m = 10, 000 is the number of iterations.

In a similar way, we can evaluate the posterior probability of ABE on multiple endpoints

simultaneously, as follows:

Pr[Joint ABE/Data] = Pr[log(0.8) < θ1 < log(1.25), · · · , log(0.8) < θp < log(1.25)/Data]

=
1

m

m
∑

c=1

I[log(0.8) < θ1c
< log(1.25), · · · , log(0.8) < θpc

< log(1.25)/Data]

Table 2 presents the posterior probability of ABE on each of the two endpoints as well as the

joint posterior probability for various values of ρ, the correlation corresponding to six different

specifications of σ12. Although the development in the previous sections has formulated B1 in

terms of the covariance parameters we find the correlation more useful in terms of presentation.

The “borrowing strength” effect, briefly discussed in Section 3.1, for the treatment effect under

AUC (tAUC), Cmax (tCmax) and the posterior probability of bioequivalence (pAUC, pCmax)

is clear. When the two endpoints are deemed independent there is a substantial difference

with respect to AUC, but a moderate one for Cmax. This is also reflected in the posterior
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probabilities. We note that the frequentist threshold of 0.05 plays no role in interpreting

posterior probabilities and we think the relevant threshold is 0.5, suggesting that one should

retain the hypothesis with the higher posterior probability. Therefore an analyst assuming

independence might conclude that the two treatments are bioequivalent for Cmax, but not for

AUC. We note that using ρ = 0 is for comparative purposes only. We think any reasonable

Bayesian analysis of this model should use ρ > 0.

As one increase the correlation, treatment effects shrink towards a common point and so do

the posterior probabilities. Despite this shrinkage they remain substantially different even at

high levels of correlation suggesting that the treatment difference is more pronounced for AUC

than it is for Cmax. Notably, when one introduces a correlation the bioequivalence hypothesis is

no longer retained for Cmax. The fact that the two treatments are so strongly bioinequivalent

for AUC, along with a moderate prior correlation between AUC and Cmax, reduces the posterior

probability of bioequivalence from 0.610 to 0.418. We also observe that posterior probability

of multivariate ABE increases with increasing ρ. As ρ gets near 1, posterior probabilities of the

two individual hypotheses and the multivariate ABE all converge to the same point.

5 Discussion

Multivariate response occurs frequently in clinical trials using crossover designs. Bioequivalence,

or perhaps more to the point, bioavalibility, is essentially a multivariate endpoint and any em-

pirical assessment of bioequivalence, just as in any Bayesian evaluation of multiple endpoints,

has to take into account the prior correlation between endpoints. While there is substantial

literature on the Bayesian analysis of multivariate endpoints using independent priors we be-

lieve that they have no place in the assessment of bioequivalence and one should expect the

bioequivalence endpoints to bear a moderate prior correlation. In this article we showed how

such an analysis can be carried out for average bioequivalence, including the analysis of a real
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data set, commenting extensively on prior elicitation and sensitivity analysis. One should note

that only in a Bayesian framework it is possible to formally incorporate the correlation between

endpoints. It is clear that a non-Bayesian model can only incorporate the correlation between

the observed test statistics and cannot induce a borrowing strength of the type observed in

Section 4. It is also clear that specifying a diagonal B1 leads to a similar problem and under-

mines the strength of a Bayesian approach. Berger (2003), citing Gönen, Westfall and Johnson

(2003), points out the importance of carefully calibrating the prior probabilities of multiple

hypotheses.

The magnitude of the prior correlation is difficult to elicit, but a sensitivity analysis like in

Table 1 can produce convincing conclusions that can sometimes contradict from traditional

Bayesian analysis assuming prior independence. This has important implications for practi-

tioners in the pharmaceutical industry who operate in a tightly-regulated environment. We

have developed a semiparametric Bayesian approach for assessing bioequivalence on multiple

endpoints. Our method can be generalized easily to more general cases. As FDA becomes

more accepting of Bayesian analysis, the practice of agreeing on a prior (or a few of them)

before the clinical trial is slowly emerging and it certainly should be considered in the case of

bioequivalence.
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Parameter AUC Cmax

Sequence 1.085 -0.0812

Period 1.129 0.4402

Treatment 2.027 0.790

Table 1: Posterior Parameter Estimates of the fixed effects for the two endpoints

ρ tAUC pAUC tCmax pCmax p(AUC and Cmax)

0 3.107 0.026 0.64 0.610 0.081

0.1 2.877 0.027 0.664 0.528 0.096

0.2 2.161 0.057 0.785 0.498 0.232

0.3 2.027 0.059 0.790 0.452 0.241

0.4 1.821 0.062 0.880 0.430 0.252

0.5 1.790 0.065 0.884 0.418 0.279

Table 2: Treatment Effect and Posterior Probability of ABE for AUC (tAUC, pAUC), Cmax

(tCmax, pCmax) and AUC and Cmax simultaneously, for a variety of the values of the prior

correlation between the endpoints
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Figure 1: Histogram of Period differences under AUC
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Figure 2: Histogram of Period differences under CMAX
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Figure 3: Histogram of two formulation ignoring period effects
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