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Optimal Cutpoint Estimation with Censored
Data

Mithat Gonen and Camelia Sima

Abstract

We consider the problem of selecting an optimal cutpoint for a continuous marker
when the outcome of interest is subject to right censoring. Maximal chi square
methods and receiver operating characteristic (ROC) curves-based methods are
commonly-used when the outcome is binary. In this article we show that selecting
the cutpoint that maximizes the concordance, a metric similar to the area under
an ROC curve, is equivalent to maximizing the Youden index, a popular crite-
rion when the ROC curve is used to choose a threshold. We use this as a basis
for proposing maximal concordance as a metric to use with censored endpoints.
Through simulations we evaluate the performance of two concordance estimates
and three chi-square statistics under various assumptions. Maximizing the partial
likelihood ratio test statistic has the best performance in our simulations.
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Summary

We consider the problem of selecting an optimal cutpoint for a continuous marker

when the outcome of interest is subject to right censoring. Maximal chi square meth-

ods and receiver operating characteristic (ROC) curves-based methods are commonly-

used when the outcome is binary. In this article we show that selecting the cutpoint

that maximizes the concordance, a metric similar to the area under an ROC curve, is

equivalent to maximizing the Youden index, a popular criterion when the ROC curve

is used to choose a threshold. We use this as a basis for proposing maximal concor-

dance as a metric to use with censored endpoints. Through simulations we evaluate

the performance of two concordance estimates and three chi-square statistics under

various assumptions. Maximizing the partial likelihood ratio test statistic has the

best performance in our simulations.
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1 Introduction

Dichotomization of continuous markers is usually disfavored because of the inherent

loss of information (Royston et al, 2006). Nevertheless it is sometimes necessary to

do so. For example, when a marker is used to inform treatment decisions, such as

prostate specific antigen (PSA) in recurrent prostate cancer, a threshold is necessary

for the binary action treat/do not treat. Similarly, clinical trials that seek to enroll

high-risk patients will need a threshold for a marker to define high-risk. In other

cases dichotomization is not essential but helpful. For example, adjustment for risk

status as a confounder can be performed using the marker as a continuous covariate

in an analysis of covariance model, but an analysis stratified by two levels of the

marker could be favored because it enables the analyst to provide concrete summary

statistics or graphical summaries (such as survival curves) within each risk group. For

all these reasons, choosing a threshold to dichotomize a marker has been an active

area of research (see, for example, Mazumdar and Glassman (2000) and the references

therein).

There are two statistical approaches to the problem of choosing an optimal thresh-

old. One uses the receiver operating characteristic (ROC) curve and the other at-

tempts to maximize a suitably chosen test statistic. ROC curves are commonly used

to assess the ability of ordinal or continuous markers in distinguishing the two states

of a binary outcome. Their use in diagnostic medicine (Begg et al 2000; Pepe, 2003)

and predictive modeling (Harrell, 1996) is firmly grounded. It may at first seem odd

to use the ROC curve for dichotomizing purposes since it is usually promoted as a way

to assess the overall discriminatory ability of the marker while avoiding dichotomiza-
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tion. However, since each point on the ROC curve represents the sensitivity and

(one minus) the specificity of a potential threshold, it is only natural to compare the

thresholds by using a criterion that combines these two measures of predictive accu-

racy. When the outcome of interest is binary, there are two widely-used such criteria:

distance from the ideal marker and distance from the non-informative marker, also

called the Youden index (Youden, 1950).

Despite their intuitive appeal, the expansion of ROC-based methods to censored

outcomes is not a trivial problem. When the outcome is time to event and it is subject

to censoring, an ROC curve can only be defined as a function of time (in fact they

are called time-dependent ROC curves) (Haegerty et al, 2000; Haegerty and Zheng,

2005; Cai et al, 2006). Since most investigators find the idea of a time-dependent

threshold irksome, using a time-dependent ROC curve will require first selecting a

time point, which could be an arbitrary choice.

While a single ROC curve with censored data is elusive, it is possible to estimate

the concordance probability, a metric closely connected to the area under the ROC

curve, when the outcome is subject to right censoring (Harrell et al, 1984; Gönen

and Heller, 2005). In this article we will propose a criterion that uses concordance

to dichotomize a continuous marker. We will show that this criterion concurs with

the Youden index, thereby making available a familiar criterion to choose the optimal

cutpoint with censored data.

The other approach commonly used for dichotomization is the maximization of an

appropriate test statistic. This is often a two-sample test that compares the groups

resulting from dichotomization. This method was first developed in the context of a

binary outcome using Pearson’s chi-square test (Miller and Siegmund, 1982) and is
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often called the maximal chi-square method. In the case of censored data one can

use three test statistics routinely reported by commonly available statistical software:

log-rank test, Wald test and the partial likelihood ratio test (Kalbfleisch and Prentice,

2002). Since the score test from a proportional hazards model with only one binary

explanatory variable and no ties in the survival times is asymptotically the same as the

log-rank test (Klein and Moeschberger, 1997), it is not given separate consideration.

The following section details on the notion of concordance probability and places

it in the context of other ROC-based methods available for dichotomization. Section

3 presents and compares two estimates of concordance probability commonly used in

practice, while section 4 briefly reviews the maximal chi-square methods used with

censored data. We present our simulation study and its results in Section 5, and

conclude with a general discussion and recommendations in Section 6.

2 Maximal concordance: Definition and Relation

to Existing Criteria

Concordance is the probability that, in a pair of randomly selected patients, the

ordering of markers is consistent with the order of outcomes. If X is the marker and

Y is the outcome, then concordance probability can be defined as CP = P (Y1 >

Y2|X1 ≥ X1) for two randomly selected observations. Concordance is directly linked

to various rank correlation measures such as Kendall’s τ , Somers’ D and Kruskal’s

γ (Pratt and Gibbons, 1981). More importantly for our purposes, when Y is binary

concordance is a monotone function of the area under the ROC curve (Begg et al,
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2000). This is a key point in the subsequent development in this article and it implies

that optimal cutoffs chosen by maximizing the AUC and concordance would coincide.

Although the ROC curve and the corresponding AUC are most often considered

for ordinal or continuous markers, they are also defined for binary markers. Consider

a marker with M distinct values m = 1, · · · , M . Each value m, characterized by sen-

sitivity Sensm and specificity Specm, can be regarded as a threshold that dichotomizes

marker into a binary variable Zm. In Figure 1, let C be the ROC curve of the marker

that we want to dichotomize. If P is the point on the ROC curve corresponding to

the value m, then the pair of segments (OP,PV ) can be regarded as the ROC of the

binary marker Zm, and the corresponding AUC can be computed as:

AUCm =
Sensm − (1− Specm) + 1

2

The threshold that provides the maximum AUC will be called the maximal con-

cordance threshold.

We will call the thresholds obtained from the ROC-based methods operating

points. In the remaining of this section we will describe two methods that are com-

monly used for choosing an operating point on the ROC curve, and explore their

relationship to the proposed method of maximal concordance.

In Figure 1, the diagonal line OV represents the ROC curve of a non-informative

marker, and the point B represents the ideal binary marker which is 100% sensitive

and specific. The first method seeks the threshold m that maximizes the vertical

distance |PJ | from the curve C to the non-informative marker. This optimal threshold

is called the Youden Index, and it is the point which, at the same level of specificity

5
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as the non-informative marker, provides the maximum excess of sensitivity (Youden,

1950). The second method chooses the threshold that minimizes the distance |PB| to

the ideal marker B. Previous work has shown that these two methods often disagree.

In fact one can show that, if the marker distributions within negative and positive

groups both belong to the same location-scale family, the two methods will agree

(i.e. find the same cutpoint) if and only if the two distributions have the same scale

parameter (Perkins and Schisterman, 2006).

To enable discussion of the three ROC-based criteria (Youden Index, minimum

distance from the ideal marker, maximal concordance) under a single analytical frame-

work, we will let f(x, y) generically represent a criterion and define a threshold optimal

with respect to f if the following is satisfied:

mopt = argmaxm f(Sensm, Specm)

It can easily be shown that the three criteria discussed so far can be represented

with the following choices of f :

f1 = Sensm − (1− Specm) (1)

f2 = −
√

(1− Specm)2 + (1− Sensm)2 (2)

f3 =
Sensm − (1− Specm) + 1

2
(3)

where the minus sign in the second definition is used to ensure compliance with the

definition of mopt as a maximization over f . Here f1 is the objective function for

Youden’s index, f2 for distance from ideal marker and f3 for maximal concordance.

We will use mopt
1 , mopt

2 and mopt
3 to refer to the optimal operating points satisfying

these three criteria.
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As shown by Perkins (2006), in general mopt
1 6= mopt

2 . It is also evident from the

above formulation that mopt
1 = mopt

3 . Therefore, the Youden’s index and the maximal

concordance criteria are equivalent.

3 Using Maximal Concordance with Censored Data

Despite the lack of a single ROC curve (and hence a single AUC), concordance proba-

bility (CP) is well-defined with censored data. In general, for two pairs of observations

randomly selected from the bivariate distribution (X, T ), where X is a continuous

marker and T is time to event, the concordance probability is defined as

CP = pr(T2 > T1|X2 ≥ X1).

While concordance probability is well-defined, its estimation is not necessarily

straightforward. An estimator proposed by Harrell et. al. (1984), called the c-index,

has been widely used in pratice. Letting t denote the observed survival or follow-up

time, δ the censoring status and x the marker, the c-index is computed by forming

all pairs {(ti, xi, δi), (tj, xj, δj)} where the smaller follow-up time is a failure time:

CI =

∑∑
i<j

{I(ti < tj)I(ti > tj)I(δi = 1) + I(tj < ti)I(xj > xi)I(δj = 1)}∑∑
i<j

{I(ti < tj)I(δi = 1) + I(tj < ti)I(δj = 1)}

The relationship of CI to Kendall’s τ is investigated by Pencina and D’Agostino

(2004).

Harrell’s c-index is simple to conceptualize and operationalize but has the defi-

ciency of ignoring pairs where the shorter time is censored. An altenative estimate

can be obtained if one is willing to assume proportional hazards (Gönen and Heller,

2005), which leads to the following definition for the CP:

7
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CP =

∫∫
βTx1>βTx2

[
1 + exp

{
βT(x2 − x1)

}]−1
dF (βTx1)dF (βTx2)∫∫

βTx1>βTx2

dF (βTx1)dF (βTx2)
,

where β is the vector of regression parameters in the corresponding Cox model, x

is the vector of covariates and F is the distribution function of the covariate linear

combination βTX. Concordance probability can be estimated by substituting estima-

tors of β and F in the above expression. The partial likelihood estimator β̂ presents

itself naturally for β and the empirical distribution is used for F . The result is the

concordance probability estimator:

CPE =
2

n(n− 1)

∑∑
i<j

{
I(β̂Txji < 0)

1 + exp(β̂Txji)
+

I(β̂Txij < 0)

1 + exp(β̂Txij)

}
,

where xij represents the pairwise difference xi − xj.

Harrell’s c-index CI is biased and the bias increases with censoring rate (Gönen

and Heller, 2005). On the other hand, under proportional hazards, CPE is a con-

sistent estimate of concordance since β̂ itself is consistent. It is not clear, though,

which concordance estimate will perform better in choosing a cutpoint with varying

censoring rates and departures from proportional hazards.

4 Using Maximal Chi-Square with Censored Data

In addition to the ROC-based methods, another approach taken for dichotomizing

a continuous marker is to maximize a test statistic that represents the association

between the dichotomized marker and the binary outcome (Mazumdar and Glass-

man, 2000). It is well-known that a maximally selected test statistic has a different

null distribution than one which involves no selection. For example, for a randomly
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selected cutpoint with a binary outcome, the null distribution of Pearson’s chi-square

test follows a chi-square distribution, but the maximum of test statistics over all pos-

sible thresholds follows a Brownian bridge under the null hypothesis of no association.

While great effort has been devoted to deriving these distributions under a variety

of conditions (Miller and Siegmund, 1982; Lausen and Schumacher, 1992; Hilsenbeck

and Clark, 1996; Mazumdar and Glassman, 2000), considerably less emphasis was

placed on the bias of the cutpoint estimate using this method.

In our simulation study, the maximal chi-square method will be applied with

three test statistics that we will attempt to maximize: log-rank test (TLogR), Wald

test (TW ) and the partial likelihood ratio test (TPL), where the latter two are obtained

from a proportional hazards model with the repeatedly dichotomized marker as the

only covariate. The estimates of the three test statistics are formally defined below

(Kalbfleisch and Prentice, 2002):

TLogR =
∑n

i=1
δi ×

(
Zi −

∑n
j=1I(tj ≥ ti)× Zj∑n

j=1I(tj ≥ ti)

)
(4)

TW = β̂T × [V̂ (β̂)]−1 × β̂ (5)

TPL = 2× [l(β̂)− l(0)] (6)

where δi, ti and β̂ are defined as in Section 3; Zi is the group membership indicator

for subject i; V̂ (β̂) is the estimated variance of β̂; and l(·) is the partial likelihood.

5 Simulations

We first describe the simulation scheme used to generate data such that there is a

true cutpoint in the distribution of a continuous marker that separates two groups

9
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with distinct survival outcomes. Then, we outline the approach taken to estimate

the optimal cutpoint based on each of the following criteria: three variations of the

maximal chi-square method (maximal log-rank test, Wald test and partial likelihood-

ratio test) and two variations of the concordance-based method (maximal c-index and

CPE).

5.1 Data generation

A continuous marker X is generated from a normal distribution with mean µ and

variance v. We choose a cutpoint c∗ to create a binary variable Z = I(X ≤ c∗).

Survival times T corresponding to each Z value are generated from two indepen-

dent Weibull distributions, with shape and scale parameters (γ0, λ0), for Z = 0, and

(γ1, λ1), for Z = 1. This way of generating data ensures that c∗ is the true cutpoint

that divides the sample into two groups with distinct survival outcomes. An inde-

pendent censoring time U is generated from a uniform distribution ranging from 0 to

τ , and the event indicator δ is defined as I(T ≤ U). The value of τ controls the level

of censoring.

5.2 Choosing the best cutpoint

Consider a value x on the continuous distribution of X. A Cox proportional hazard

model can be fit such that:

h(t|x) = h0(t)e
βI(X≥x)

Based on this model, the following statistics are estimated: Wald test (TW ), the

partial likelihood ratio test (TPL), and the concordance probability estimate (CPE).
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Additionally, we estimate the log-rank statistic (TLogR) for the test of survival differ-

ence between the two groups defined by I(X ≥ x), and the c-index (CI) as described

in Harrell et. al. (1984).

The five measures listed above are estimated for each value x between the 5th

and the 95th percentile of the X distribution. Excluding from evaluation the extreme

values of the cutpoint is standard pratice to avoid singularities due to small group sizes

that result from these cutpoints (Mazumdar and Glassman, 2000). The best cutpoint,

according to each of the five criteria, is the one that maximizes the corresponding

statistic.

5.3 Simulation results

Tables 1-3 present simulation results, under different parameter scenarios.

Tables 1 and 2 examine the situation when the survival times corresponding to

the two groups meet the proportional hazards assumption (γ0 = γ1). The bias in the

optimal cutpoint estimates is investigated when the true cutpoint migrates away from

the center of the marker’s distribution by 0.25, 0.5, 0.75 and 1 standard deviation.

The proportion of censoring increases from 35% - 55% in Table 1 to 75% - 85% in

Table 2.

Table 3 examines the performance of the five criteria when the two groups vi-

olate the proportional hazards assumption (γ0 6= γ1) and have different degrees of

separation (as controlled by the difference between λ0 and λ1). The proportion of

censoring is 45% - 55%. This scenario is of particular interest because the CPE is

derived assuming proportional hazards.

11
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In all simulations, the continuous marker is generated from a normal distribution

with mean µ = 0 and variance v = 4. The sample size is n = 100 although, for

scenarios that generate considerably biased estimates, increased sample sizes (n =

300, 500) are also examined.

The following messages emerge from these results:

• All five criteria perform well when the true cutpoint lies in the center of the

marker’s distribution, even when the proportional hazards assumption is vio-

lated.

• For all five criteria, the bias in the estimates increases as the true cutpoint

migrates away from the center of the marker’s distribution (Table 1). The bias

decreases with increasing sample size.

• TPL outperforms the other two chi-square-based methods in all scenarios consid-

ered, while the Wald test has the worst results among all methods considered.

• CI and CPE have similar performance, with CI generating slightly better

estimates when the true cutpoint migrates away from the center of the marker’s

distribution and the censoring proportion is maintained below 60% (Table 1).

• When the percentage of censored observations exceeds 75%, the only methods

that provide reasonably good estimates are TPL and CPE (Table 2).

6 Lung Cancer Example

Locally advanced lung cancer is treated with surgery. Recurrence rates are high even

after complete resection of the tumor hence it is commonly accepted that high-risk
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patients should be treated with post-surgical chemotherapy. One possible way of

selecting patients for chemotherapy is the glucose uptake of the tumor in a positron

emission tomography (PET) scan, frequently summarized by the standardized uptake

value (SUV), a continuous variable where higher values are indicative of a more

aggressive tumor.

In a study where all patients underwent a PET scan before surgery, SUV values

are associated with survival (Downey et al, 2004). The median follow-up was 26

months (range: 5-81 months) and 79% of observations were censored. The interest

is selecting a cutpoint for SUV above which patients will be considered high risk

and candidates for post-surgical chemotherapy. In this data SUV had a median of 9

(range: 0.5-32) and a mean of 10 (standard deviation=6.8).

The CPE and TPL methods selected the same cutpoint (8.93), situated in the

center of the marker’s distribution (50th quantile). TW statistic chose a close optimal

threshold (9.8, 54th quantile), while both CI and TLogR selected an extreme cutpoint

(2.3, 8th quantile). When restricting the limits of the cutpoint search from the 5th-

95th percentiles of the SUV distribution to the 10th-90th percentiles, CPE, TPL and

TW produced the same result, while CI and TLogR selected the most extreme possible

value.

This is a situation when the selected cutpoint varies remarkably based on the

method chosen. This finding is not surprising: our simulation results showed that,

in the case of datasets with high censoring rates, CPE and TPL, although imperfect,

give the only reliable results. Based on these considerations, we recommend choosing

8.93 (which is also a clinically meaningful value) for separating low-risk from high-risk

patients.
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7 Discussion

Our simulations indicate that maximizing the likelihood ratio test statistic has the

smallest bias under a variety of scenarios, including high censoring and violations of

the proportional hazards assumption. Maximizing the log-rank and Wald statistics

have considerably worse performance. At first look this may come as a surprise

because applied statisticians have come to view those tests as exchangeable in larger

samples. While that view applies for significance testing of the group differences (or

regression coefficients), we have shown that the location of its maxima can be quite

different.

It is important to remember that our simulations were based on a true-cutpoint

model and the results should be interpreted in this context. If one believes that

the underlying model follows this assumption, then the question of whether a test

statistic or concordance should be used is somewhat moot because the overarching

goal would be to estimate the true cutpoint. In many instances, however, one might

be interested in estimating a cutpoint even if the data generating process does not

have a true cutpoint. For example the relationship between most biomarkers and

disease progression is thought to be smooth. Nevertheless, a dichotomization of the

biomarker may still be necessary if one will use the biomarker for identifying high-

risk patients for a clinical trial. In this case the metric used to select the cutpoint

(concordance or test statistic) is relevant directly to how the dichotomized version

of the marker will be used. In this example of selecting patients for a clinical trial,

concordance may be more appropriate because the dichotomized marker is essentially

being used to predict who is at high risk. In contrast, consider the situation when
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a marker is used for stratifying patients during randomization. This is essentially

a problem of association since the data will be analyzed by a stratified model and

maximum power is achieved when stratifying factors are highly associated with the

outcome. In this case maximizing a test statistic may be preferred.

Our results can provide guidance even when the true-cutpoint model is not thought

to hold. Based on the foregoing discussion, investigators would identify their optimal-

ity criterion in conjunction with the purpose of the use of the cutpoint. If maximal

concordance is desired then an argument for the use of c-index can be made because it

exhibited smaller bias than CPE in most of the situations covered in our simulation

study, except for the case when the censoring level is high.

All estimators had a certain amount of underestimation the degree of which is a

function of the distance of the true cutpoint from the center of the marker distribution.

Similar observations were made by Lausen and Schumacher (1992), although in a

narrower context. An intuitive explanation for this underestimation is that, as the

true cutpoint moves away from the center of the distribution, one of the dichotomized

groups gets smaller, resulting in poorer estimation of its outcome profile.

In general our results point to the difficulty of finding the true cutpoint. Most

statistical tools are devised with smooth relationships in mind: a regression model, for

example, can be considered as a way of “smoothing” noisy data. On the other hand

a true-cutpoint model is non-differentiable at the cutpoint and hence non-smooth.

Using methods that are originally devised for smoothing the data to detect singular

points is fundamentally difficult and partly explains the persistent bias we observed

in our simulations. As long as one is aware of this inherent bias, using the partial

likelihood ratio statistic or concordance probability estimate are the best available

15
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strategies.
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Table 1: Data generated under proportional hazards assumption. Censoring Rate: 35-55% 

(γ1, λ1), (γ0, λ0) True cutpoint Sample Size 
Selected Optimal Cutpoint (Bias)

TLogR T TW PL CI CPE 

(1,3), (1,1) 

0 100 0.08 (0.08) -0.06 (-0.06) -0.02 (-0.02) -0.07 (-0.07) -0.01 (-0.01) 

0.5 100 0.42 (-0.08) 0.41 (-0.09) 0.47 (-0.03) 0.42 (-0.08) 0.46 (-0.04) 

1 100 0.9 (-0.1) 0.81 (-0.19) 0.97 (-0.03) 0.88 (-0.12) 0.81 (-0.19) 

1.5 100 1.36 (-0.14) 1.08 (-0.42) 1.46 (-0.04) 1.3 (-0.2) 1.28 (-0.22) 

1.5 300 1.47 (-0.03) 1.38 (-0.12) 1.5 (0) 1.47 (-0.03) 1.42 (-0.08) 

2 100 1.83 (-0.17) 1.15 (-0.85) 1.89 (-0.11) 1.55 (-0.45) 1.35 (-0.65) 

2 300 1.97 (-0.03) 1.72 (-0.28) 1.99 (-0.01) 1.94 (-0.06) 1.75 (-0.25) 

2 500 1.98 (-0.02) 1.77 (-0.23) 1.99 (-0.01) 1.97 (-0.03) 1.85 (-0.15) 
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Table 2: Data generated under proportional hazards assumption. Censoring Rate: 75-85% 

(γ1, λ1), (γ0, λ0) True cutpoint Sample Size 
Selected Optimal Cutpoint (Bias)

TLogR T TW PL CI CPE 

(1,3), (1,1) 

0 100 -0.3 (-0.3) -0.43 (-0.43) -0.09 (-0.09) 0.18 (0.18) 0.02 (0.02) 

0.5 100 0.06 (-0.44) -0.08 (-0.58) 0.37 (-0.13) 0.21 (-0.29) 0.42 (-0.08) 

1 100 0.51 (-0.49) 0.23 (-0.77) 0.84 (-0.16) 0.46 (-0.54) 0.83 (-0.17) 

1.5 100 0.58 (-0.92) 0.54 (-0.96) 1.16 (-0.34) 0.7 (-0.8) 1.06 (-0.44) 

2 100 0.98 (-1.02) 0.24 (-1.76) 1.6 (-0.4) 0.83 (-1.17) 1.34 (-0.66) 
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Table 3: Data violate proportional hazards assumption. Censoring Rate: 45-55% 

 

(γ1, λ1), (γ0, λ0) True cutpoint Sample Size 
Selected Optimal Cutpoint (Bias)

TLogR T TW PL CI CPE 

(1, 3), (1.5, 1) 0 100 -0.05 (-0.05) -0.04 (-0.04) -0.02 (-0.02) -0.05 (-0.05) -0.002 (-0.002) 

(1, 3), (2, 1) 0 100 -0.04 (-0.04) -0.01 (-0.01) -0.004 (-0.004) -0.03 (-0.03) 0.02 (0.02) 

(1, 2), (1.5, 1) 0 100 -0.06 (-0.06) -0.005 (-0.005) -0.05 (-0.05) -0.03 (-0.03) 0.08 (0.08) 

(1, 2), (2, 1) 0 100 -0.005 (-0.005) 0.13 (0.13) 0.09 (0.09) 0.01 (0.01) 0.08 (0.08) 

(1, 3), (1.5, 1) 1 100 0.93 (-0.07) 0.81 (-0.19) 0.98 (-0.02) 0.89 (-0.11) 0.91 (-0.09) 

(1, 3), (2, 1) 1 100 0.95 (-0.05) 0.75 (-0.25) 0.99 (-0.01) 0.91 (-0.09) 0.93 (-0.07) 

(1, 2), (1.5, 1) 1 100 0.91 (-0.09) 0.61 (-0.39) 0.99 (-0.01) 0.82 (-0.18) 0.84 (-0.16) 

(1, 2), (2, 1) 1 100 1 (0) 0.56 (-0.44) 1.02 (0.02) 0.91 (-0.09) 0.9 (-0.1) 
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