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Abstract

Randomized trials remain the most accepted design for estimating the effects of interventions, but

they do not necessarily answer a question of primary interest: Will the program be effective in a

target population in which it may be implemented? In other words, are the results generalizable?

There has been very little statistical research on how to assess the generalizability, or “external

validity,” of randomized trials. We propose the use of propensity-score-based metrics to quantify

the similarity of the participants in a randomized trial and a target population. In this setting the

propensity score model predicts participation in the randomized trial, given a set of covariates.

The resulting propensity scores are used first to quantify the difference between the trial partici-

pants and the target population, and then to weight the control group outcomes to the population,

assessing how well the weighted outcomes track the outcomes actually observed in the population.

These metrics can serve as a first step in assessing the generalizability of results from randomized

trials to target populations. This paper lays out these ideas, discusses the assumptions underlying

the approach, and illustrates the metrics using data on the evaluation of a schoolwide prevention

program called Positive Behavioral Interventions and Supports.

Keywords: Causal inference; External validity; Positive Behavioral Interventions and Supports;

Research synthesis.



1 Introduction

Randomized trials remain the most accepted design for estimating the effects of interventions, and

they serve as the basis for the recommendations being made for prevention and treatment pro-

grams by the U.S. Department of Education (What Works Clearinghouse), the Substance Abuse

and Mental Health Services Administration (National Registry of Evidence-based Programs and

Practices), the Agency for Healthcare Research and Quality (Evidence-based Practice Centers),

and researchers (the Cochrane Collaboration). However, randomized trials do not necessarily an-

swer a question of primary interest: Will the program be effective in a target population in which it

may be implemented? In other words, are the results generalizable? Efficacy trials assess whether

an intervention works under ideal circumstances, often including a rather homogeneous set of par-

ticipants (Flay, 1986). As defined by Campbell (1957), p. 297, “The second criterion is that of ex-

ternal validity, representativeness, or generalizability: to what populations, settings, and variables

can this effect be generalized?” Effectiveness trials are a step in the direction of generalizability,

in that they assess whether the intervention works in real-world conditions, with a broader set of

participants (Flay, 1986). However, even effectiveness trials rarely are done using participants

that are representative of the target populations in which the interventions being evaluated may

eventually be implemented (Rothwell, 2005). Statistical methods to assess the generalizability

of results from effectiveness trials to target populations are needed (National Institute of Mental

Health, 1999; Institute of Medicine, 2006).

This paper focuses on the aspect of generalizability related to differences in the characteristics

of participants in an effectiveness trial and in a target population. Participants in effectiveness trials

are rarely representative of the target population of interest and effects often vary for different types

of people and in different contexts. This combination means that the results seen in a randomized

trial may not reflect the effects that would be seen if the intervention were implemented in a
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different target population (Flay et al., 2005). As an example, one explanation for discrepancies

regarding the effects of hormone replacement therapy for post-menopausal women in the Women’s

Health Initiative randomized trial and the Nurse’s Health Study observational study is differences

in the types of women in the two studies (Grodstein et al., 2003). Another example relates to

recommendations concerning breast conservation vs. mastectomy for women with breast cancer;

the General Accountability Office was concerned that the results obtained from randomized trials

may not carry over to women in general medical practice, and so also used observational data

methods to estimate the effects for a broader group of women (Rubin, 2008). This issue is similar

to that of the representativeness of results from web-based surveys where respondents opt-in for

participation; some recent work has investigated implications for survey research, but without a

focus on studies estimating causal effects (Couper and Miller, 2008).

The work in this paper is related to proposals to use weighting-based approaches to estimate

effects for a target population using data from a randomized trial (e.g., Shadish et al., 2002; Cole

and Stuart, 2009; Haneuse et al., 2009; Pan and Schaubel, 2009). These proposals use ideas

similar to Horvitz-Thompson estimation for sample surveys and inverse probability of treatment

weighting (IPTW) for non-experimental studies (Lunceford and Davidian, 2004), but where the

trial sample is weighted to represent the population. In this paper we take a step back to develop

diagnostics to help researchers determine when such generalizations may be possible and reliable.

Almost no metrics for this purpose are currently available. Glasgow et al. (2006) discusses the

need for considering and measuring the “reach” of an intervention in terms of patient participation

and representativeness, but discuss only very simple metrics. The state of the art currently is to

simply compare the covariates one by one and make qualitative statements regarding the similarity

of subjects in a trial and some target population. The work described here aims to provide a

more direct metric for representativeness with respect to observed pre-treatment characteristics. In

particular, we investigate the use of propensity scores to measure and quantify differences between
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the participants in a randomized trial and a target population and use results from the propensity

score literature on how to quantify differences between two groups and determine how large a

difference is too much for reliable comparison, applying those results to a new area.

The proposed methods are illustrated using a randomized trial of a schoolwide behavior im-

provement program, Positive Behavioral Interventions and Supports (PBIS; Sugai and Horner,

2006). The trial involved the random assignment of 37 public elementary schools from five Mary-

land school districts to PBIS or a control condition (Bradshaw et al., 2009). Primary outcomes

of interest include behavior and academic performance, as measured by student discipline prob-

lems, school climate, and student test scores. We also take advantage of school-level data available

for all elementary schools across the state of Maryland. The question of interest is how similar

the schools in the trial are to those across the state, and whether the results from the trial might

hold across the state of Maryland. This paper focuses on the statistical ideas and concepts; future

work will discuss more of the substantive issues associated with the PBIS intervention itself and

generalizing its effects.

This paper outlines the main idea behind using propensity scores to measure similarity of

participants in and out of a randomized trial and illustrates it using the PBIS data. In particular,

Section 2 describes previous work in methods to assess or enable generalizability. Section 3 then

proposes two diagnostic measures that use propensity scores to help quantify how similar the

subjects in a trial are to the target population. Section 4 applies those measures to the motivating

example of the PBIS program, and Section 5 concludes.

2 Previous work assessing generalizability

To this point, research emphasis has generally been on internal validity–obtaining unbiased effect

estimates for the participants in a trial. Less attention has been paid to external validity–addressing

whether those participants are representative of the population and whether the effects are gener-

3



alizable (Imai et al., 2008). The following two sections describe the methods that have been used

to assess generalizability, first in terms of study design strategies and then in terms of data analysis

techniques.

2.1 Study design

To provide a framework for thinking about these issues, Imai et al. (2008) decompose the esti-

mation error in the estimate of a population treatment effect (∆) into components due to sample

selection and to treatment assignment:

∆ = (∆SX
+ ∆SU

) + (∆TX
+ ∆TU

),

where S refers to bias due to sample selection and T refers to bias due to treatment selection.

The subscript X refers to observed variables and U to unobserved. Different study designs focus

on different quantities. For example, randomized experiments have ∆TX
= ∆TU

= 0, but may

have larger ∆SX
and ∆SU

than do observational studies. Observational study methods such as

propensity score matching (Stuart, 2010) focus on reducing ∆TX
, and sensitivity methods such as

in Rosenbaum (2002) assess the potential impact of ∆TU
on study conclusions.

Relatively less attention has been paid to the size of ∆SX
and ∆SU

in randomized experiments.

Standard methods that make qualitative arguments regarding the generalizability of results assume

that the results from the trial directly carry over to the population: that ∆SX
= ∆SU

= 0. In

this paper we focus on methods to assess the amount of sample selection bias due to observed

covariates, ∆SX
. While there may still be bias due to ∆SU

, the methods discussed here at least

provide a way to reduce bias in ∆ due to ∆SX
.

One of the most straightforward ways of ensuring the generalizability of results from random-

ized trials is to enroll in the trial a representative sample from the target population. However,

only a handful of studies have used random assignment of a fully representative (e.g., random)

sample from a population to estimate program effects (Cook, 2007). Examples include the na-
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tional evaluations of Upward Bound (U.S. Department of Education, 2009) and Head Start (U.S.

Department of Health and Human Services, 2005), although even that Head Start evaluation ex-

cluded certain centers, such as those that were under-enrolled and those serving Native American

populations. There has been increasing attention given to practical clinical trials, which aim to

enroll a very large and diverse sample of patients, from a range of settings (Peto et al., 1995; Insel,

2006). However, those trials require large amounts of time and money and are not always feasible.

There has also been some discussion of purposively sampling units that are either heterogeneous

(to reflect the range of units that are in the target population) or that are typical of that population

(Shadish et al., 2002), but those ideas seem to have been rarely used in practice, at least in a formal

way.

2.2 Study analysis

Another strategy is to use existing data to assess the generalizability of existing studies, which is

the approach we take here. Other methods in this area include meta-analysis (Hedges and Olkin,

1985; Sutton and Higgins, 2008), cross-design synthesis (Prevost et al., 2000), and the confidence

profile method (Eddy et al., 1992). Many of these approaches aim to model treatment effects as

a function of study parameters, such as randomized vs. non-randomized, and the explicit inclu-

sion/exclusion criteria, and they generally rely on having a relatively large set of studies to include

in the analysis. Unfortunately there is often only one or two studies from which conclusions can

be drawn. In addition, little attention is usually paid to the types of participants enrolled in the

various studies included, and how variation in their characteristics may affect the results.

Perhaps the most common way of generalizing results to a target population is through post-

stratification, which re-weights the effects based on population distributions. As a simple exam-

ple, imagine a target population with 50% males and 50% females, but a randomized trial that

had 20% males and 80% females. A simple post-stratification would estimate effects separately
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by gender and then average the male and female effects using the population proportions (50/50).

Post-stratification can be very effective when there are only a small number of variables to con-

trol for, but is infeasible when there are many (or continuous) variables, leading to a very large

number of post-stratification cells. Frangakis (2009) discusses a more complex scenario for post-

stratification, where generalizability also depends on post-treatment variables.

Weisberg et al. (2009) posit a simple model to account for differences between a trial sam-

ple and a population due to inclusion or exclusion criteria, for a setting with a binary outcome.

They provide formulas for the amount of bias that may be created and show that depending on

whether high-risk patients are particularly included or excluded, the estimated effect may change

considerably, or even reverse sign. In work that is probably most similar to that presented here,

Greenhouse et al. (2008) provide a case study of assessing generalizability, comparing the pedi-

atric participants in randomized trials of antidepressants to the general population of children and

adolescents. While that work represents an important step in assessing generalizability, they focus

on variable-by-variable comparisons of the sample and the target population and do not provide a

way to summarize information across variables or to actually estimate effects for the population.

3 Using propensity scores to assess generalizability

3.1 Formal setting

We consider a setting where a randomized trial has been conducted to estimate the effect of a pro-

gram, P, relative to a control condition, C, on a sample of participants, Ψ, of size n. By “program”

we mean any intervention of interest, whether preventive or a treatment for a particular disorder or

disease. The participants in Ψ may be individuals or they may be at a higher level, such as com-

munities or schools, as in the case of PBIS. In the trial the program P has been randomly assigned

to participants in Ψ, forming a program group and a control group that are only randomly different

from each other on all background characteristics. Interest is in determining the effectiveness of
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the program P in a target population, represented by Ω, where Ψ is a subset of Ω. We refer to Ψ as

the “sample” and Ω as the “population.” In the PBIS example, Ψ consists of the 37 schools in the

effectiveness trial; Ω consists of all public elementary schools in the state not in the trial and not

implementing PBIS. We assume that for all participants in Ω (or a representative sample of them)

we observe a set of background characteristics X, which describe both the participants themselves

and their broader contexts. In the PBIS study, X consists of characteristics such as test scores,

enrollment, and demographics.

For subject i we denote membership in the randomized trial sample by Si, Ti indicates mem-

bership in the treatment vs. control group (only defined for those with Si = 1), and Yi(1) and

Yi(0) are the potential outcomes under treatment and control, respectively (Rubin, 1977). Fol-

lowing the notation in Imai et al. (2008), the treatment effect for individual i is the difference in

potential outcomes, Yi(1) − Yi(0), although results could be extended to other functions of the

potential outcomes, such as their ratio. The standard intent to treat estimates from a randomized

trial, such as a difference in means of the outcome in the treated and control groups, yields an

unbiased estimate of the sample average treatment effect (SATE):

SATE =
1
n

∑
i∈{Si=1}

Yi(1) − Yi(0).

However our estimand of interest is the population average treatment effect (PATE):

PATE =
1
N

N∑
i=1

Yi(1) − Yi(0).

When the treatment effect is constant PATE=SATE, but that will in general not be the case. For

a simple setting with one effect modifier, Cole and Stuart (2009) give an equation for the bias,

which depends on 1) the proportion of the population not sampled, 2) the heterogeneity in the

treatment effects, 3) the prevalence of the effect modifier in the population, and 4) the strength of

the association between the effect modifier and sample selection.
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3.2 Key assumptions

We make three primary assumptions. Assumption 1 is that, given X, all subjects in the population

have some probability of being selected for the trial:

Assumption 1 : 0 < P (Si = 1|Xi) < 1 for all Xi.

Assumption 2 is that there are no unmeasured variables that are related to both sample selection

and the treatment effect (E(∆SU
) = 0), which we term “unconfounded sample selection” (see

also Cole and Stuart, 2009). This assumption is similar to the assumption of ignorable treatment

assignment in observational studies (Rosenbaum and Rubin, 1983b) or the “missing at random”

assumption with respect to missing data (Rubin, 1976). Formally, this assumption says that sample

selection is independent of the potential outcomes, given the observed covariates:

Assumption 2 : S ⊥ [Y (0), Y (1)]|X.

Assumption 3 is that treatment assignment is randomly assigned (hence independent of the

potential outcomes) and independent of sample selection, given the observed covariates:

Assumption 3 : T ⊥ [S, Y (0), Y (1)]|X.

The combination of Assumptions 1 and 3 also implies that each subject has a positive prob-

ability of receiving the treatment, comparable to the assumption of “strongly ignorable treatment

assignment” in Rosenbaum and Rubin (1983b).

The validity of Assumption 1 depends on the definition of the target population. In settings

where some individuals in the initial target population would never receive the treatment of interest

(e.g., a targeted intervention that is only given to at-risk students who have already exhibited some

problem behaviors), the target population should be redefined to include only those individuals

to whom the treatment may be given. Assumption 3 is easily met in randomized trials where the
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random assignment is done after the sample selection, and where treatment assignment depends

only on observed characteristics X . Assumption 2 is arguably the hardest to meet, and relies on

having all potential moderators of the treatment effect measured. This assumption is discussed

further below.

Given these three assumptions we discuss two diagnostics for generalizability, both based on

the propensity score. First, the average propensity score difference between the sample and the

population, and second, the use of propensity score weights to compare observed and predicted

outcomes under control for the population.

3.3 Propensity score distance as a measure of similarity

The first diagnostic tool we propose is the propensity score distance between the participants in the

trial and the target population, as a way to summarize their similarity. Here, the propensity scores

model the probability of being in the randomized trial; using inverse propensity score weights

will allow the trial participants to weight up to the target population (Cole and Hernan, 2008;

Cole and Stuart, 2009). The propensity score is typically defined as the probability of receiving

some program (or “treatment”) versus a comparison condition, given a set of observed baseline

characteristics (Rosenbaum and Rubin, 1983b). Propensity score matching, subclassification, or

weighting can help ensure that the program and comparison subjects being compared in a non-

randomized study are as similar as possible. This is done by comparing groups of subjects with

similar propensity scores, who, by virtue of the properties of the propensity score, will also have

similar distributions of the observed background covariates. In this way, propensity scores attempt

to replicate a randomized experiment in the sense of comparing subjects who did and did not

receive the treatment who have no systematic differences on the observed covariates (Ho et al.,

2007; Stuart, 2010).

Here, to summarize differences between the trial sample and the target population, the propen-
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sity score will model membership in the randomized trial sample, rather than receipt of the treat-

ment. In particular, we use a logistic regression model of the probability of being in the random-

ized trial (S) with the covariates (X) as predictors: log pi

1−pi
= β0 + β1X1i + · · · + βkXki, where

pi = P (Si = 1|Xi). We use p̂i to denote the estimated probability of sample selection for subject

i. In a connection to the discriminant function, these propensity scores serve as the scalar summary

of the covariates that distinguishes the most between the trial participants and the target popula-

tion (Rubin and Thomas, 1992). They thus can provide a summary measure of the similarity (or

dissimilarity) of the trial participants and the population: just as propensity scores can be used to

identify when treatment and control groups are too far apart for reliable causal inference (Rubin,

2001), they can be used to also identify when a sample is too different from a population of interest

to yield reliable generalizations.

We define the propensity score difference between the trial sample and population (∆p) as the

difference in average propensity scores between those in the trial and those not in the trial:

∆p =
1
n

∑
i∈{Si=1}

p̂i −
1

N − n

∑
i∈{Si=0}

p̂i.

If the sample is actually a (very large) random sample from the population, then we would expect

essentially no difference in the mean propensity scores between those sampled and not sampled.

In that case, E(pi|Si = 1) = E(pi|Si = 0) and E(∆p) = 0. As we will see later in the PBIS

example, in finite samples, there is likely to be a small, positive value for ∆p, reflecting small

chance differences between the trial participants and the population. When there are systematic

differences between the trial sample and population we will expect that these means will be quite

different. In the standard propensity score context of observational studies, simulation studies

and theoretical approximations have indicated that propensity score means that differ by more

than 0.25 standard deviations indicate a large amount of extrapolation and heavy reliance on the

models being used for estimation (Rubin, 2001; Ho et al., 2007).
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3.4 Inverse probability of selection weights as diagnostic tools

A second way in which we can use the propensity scores to assess generalizability is by creating in-

verse probability of participation weights and comparing the observed outcomes in the population

to predicted outcomes under control, weighted back to the composition of the target population.

The weights are calculated as the inverse propensity scores, wi(Xi) = 1bpi(Xi)
, as are used in non-

response adjustments in survey sampling (Kalton and Flores-Cervantes, 2003) and in IPTW. This

weighting forms a pseudo-population with characteristics similar to those of the target population.

If no one in the population was receiving the intervention of interest, then, if the weights are ef-

fective, the weighted control group outcomes should be similar to the outcomes observed in the

target population. Mathematically, we can extend results in Horvitz and Thompson (1952) and

Lunceford and Davidian (2004), where the expectations are taken over the target population:

E

(
S(1 − T )Y

w(X)(1 − e(X))

)
= E

(
E

(
1(S = 1)(1 − 1(T = 1))Y

w(X)(1 − e(X))
|Y, X

))
= E

(
E

(
1(S = 1)(1 − 1(T = 1))Y (0)

w(X)(1 − e(X))
|Y (0), X

))
= E

(
Y (0)

w(X)(1 − e(X))
E(1(S = 1))(1 − 1(T = 1))|Y (0), X)

)
= E

(
Y (0)

w(X)(1 − e(X))
P (S = 1|X = x)(1 − P (T = 1|X = x))

)
= E(Y (0))

In this expression e(X) reflects the probability of treatment assignment, e(X) = P (T =

1|X), which is known in a randomized experiment. The above equations show that the probability

of treatment assignment and trial participation-weighted control group mean will be an unbiased

estimate of the population potential outcome under control, given the assumptions detailed above.

In this way we can use the similarity of the weighted control group means to the population means

as a diagnostic for how well the generalization is likely to work.
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4 Applying methods to PBIS study

We now apply the diagnostic tools described above to the group-randomized trial of Positive Be-

havioral Interventions and Supports (PBIS). PBIS is a schoolwide prevention program that aims

to improve school climate by creating improved systems and procedures that promote positive

change in staff and student behaviors (Sugai and Horner, 2006). It is being widely disseminated

by the U.S. Department of Education and many state governments. By 2009, approximately 9,000

schools across the United States, representing 9% of all U.S. public schools, were implement-

ing PBIS (Fixsen et al., 2009). Because the intervention operates at the school level, the unit of

analysis is the school.

We combine information from two datasets to illustrate the use of propensity scores for assess-

ing generalizability. First, the randomized effectiveness trial of the universal system of school-

wide PBIS, called “Project Target,” began in 2002 among a sample of 37 Maryland public ele-

mentary schools that volunteered for the study (Bradshaw et al., 2009). Those 37 schools were

randomized to treatment and control in two years (2002, 2003); for our illustrative purposes here

we pool the two years together. Second, we have longitudinal data on all public elementary schools

across Maryland, from 1993 through 2007. This provides the population data necessary to esti-

mate the probabilities of participation in the trial and compare the schools in the trial to schools

across the state.

State-level coordinated training is required to implement the PBIS intervention. The state of

Maryland has a mechanism for training schools in PBIS, which was used to train both the PBIS

schools in the trial and non-trial schools that chose to implement PBIS (Barrett et al., 2008).

Because some elementary schools were implementing PBIS outside of the trial, as the target popu-

lation we consider the 717 elementary schools in the state that had not implemented PBIS by 2006

and that were not participating in the Project Target trial; subsequent use of the term “state popu-
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Table 1: Baseline characteristics of schools in Project Target (PT) trial and schools across the
state of Maryland. All variables measured in 2002. Test score variables reflect the percentage
of students scoring in the “Advanced” or “Proficient” ranges on the Maryland state standardized
test. Trend shows change from 2000 to 2002. p-values shown from t-tests or chi-square tests, as
appropriate.

Characteristic PT schools non-PT schools p-value
(2002) Mean SD Mean SD of difference
Total enrollment 485 150 480 177 0.85
Attendance rate 95.3 0.7 95.4 1.5 0.80
% students Caucasian 60.3 31.7 53.8 34.0 0.23
% students eligible for

free or reduced meals 39.7 20.0 36.2 27.5 0.31
% students eligible for

Title 1 47.3 49.6 26.3 41.4 0.02
% students in special ed 13.8 5.6 15.2 15.4 0.21
3rd grade math test 27.4 15.2 32.1 20.5 0.08
3rd grade reading test 32.9 16.4 34.5 20.4 0.57
5th grade math test 44.6 18.6 51.3 29.9 0.05
5th grade reading test 54.2 17.9 53.2 26.0 0.75
Trend in 3rd grade math scores -19.2 18.9 -15.9 16.6 0.31
Trend in 3rd grade reading scores -12.3 18.6 -11.9 14.6 0.90
Trend in 5th grade math scores -13.4 20.9 -11.9 18.4 0.66
Trend in 5th grade reading scores 1.3 19.1 -1.9 16.8 0.33
Sample size 37 680

lation” refers to this subsample of the full state population. Excluding the schools participating in

the trial from the state population of interest increases clarity and precision.

We consider variables measured in 2002 as pre-trial covariates and examine outcomes mea-

sured in 2003 and later. Observed characteristics of the schools (both in the trial and statewide)

include characteristics of the students (e.g., percent of students classified as special-education, per-

cent who qualify for free or reduced price meals, average math and reading test scores), as well as

of the schools themselves (e.g., enrollment). Schools in the PBIS trial are somewhat different from

the population of elementary schools across Maryland on these observed characteristics (Table 1).

In 2002, the schools enrolled in the trial had somewhat lower test scores and more students eligible

for Title 1 (a measure of poverty) than other schools across the state.

To summarize these differences, a propensity score (logistic regression) model was fit predict-
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Figure 1: Distribution of propensity scores among the schools across the state (density plot) and
schools in Project Target trial (vertical lines). State population consists of all elementary schools
across the state of Maryland not implementing PBIS and not enrolled in the trial.

ing membership in the Project Target trial given the set of characteristics in Table 1. Figure 1

shows the distribution of propensity scores among schools across the state and for the schools in

the Project Target trial. In general there is overlap of the propensity scores, with many of the trial

schools in the range of propensity scores with high density among the schools across the state, but

also with a number of the trial schools with relatively large propensity scores. We can also quantify

this, in that the difference in average propensity scores between the schools in the trial and those

across the state (∆p) is 0.055. The standardized difference (standardized by the standard deviation

of the propensity score) is 0.73, a substantial difference, and a size indicated by Rubin (2001) to

lead to unreliability of standard regression modeling because of the resulting extrapolation.

We can also compare these differences with what would be expected in repeated random draws

of the same size. This allows us to determine what size propensity score difference we would

expect if the schools in the trial were in fact selected randomly from the population. Figure 2

shows the distribution of the difference in mean propensity scores between sampled and unsam-

pled schools, given repeated samples of size 37 drawn from the population of Maryland public

elementary schools that had not implemented PBIS by 2006. While a propensity score distance
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Figure 2: Distribution of propensity score distances between sampled and unsampled schools,
where samples of size 37 repeatedly drawn from population of elementary schools in Maryland.
Left-hand plot shows simple differences (sampled minus unsampled); right-hand side shows stan-
dardized difference, standardized by standard deviation of propensity scores. Vertical line in each
shows the value observed for the Project Target trial schools.

of approximately 0.02 would be expected, our observed difference of 0.055 would happen in only

24 of 1000 samples randomly drawn from the population. Similarly, while a standardized differ-

ence of size 0.5 would be expected, only 3 of the 1000 samples that we drew had a standardized

difference as large as our observed value of 0.73.

Figure 3 illustrates the second diagnostic tool, which is to examine the comparability of the

weighted control group means to the values observed in the population. Despite the differences

seen between the trial and non-trial schools above, it appears that the control schools in the trial

reflect what was happening across the state as a whole, when appropriately weighted. We used

three outcomes for this illustration: the percentage of 3rd grade students scoring proficient or

higher on the yearly statewide reading and mathematics exams, and the percentage of students

suspended during the school year. The thick solid line shows the average value for each outcome,

averaged across all schools in the state that were not implementing PBIS and not in the trial, over

the time period from 2003 to 2005. The dashed line shows the same average, but calculated using

the control schools in the trial. The large distance between the dashed line and the thick solid line
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Figure 3: Observed and predicted outcome values for schools across the state of Maryland. For
math and reading scores, numbers shown are percent of children scoring “Proficient” or “Ad-
vanced” on the standardized test. Numbers shown for suspensions are the percentage of students
suspended in a school year. Black thick line shows observed state averages, where the state popu-
lation refers to schools across the state not implementing PBIS and not enrolled in the trial. Thin
dashed line shows average for control schools in Project Target trial; thin solid line shows weighted
average for control schools in trial, weighted using inverse propensity weights. For all three out-
comes, the weighted average tracks the state mean much more closely than the observed average
among control schools in the trial.
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illustrates the overall difference between the schools in the trial and those in the state: on average,

the schools in the trial had lower test scores and higher suspension rates than those across the

state. The thin solid line shows the average for the control schools in the trial, but weighted using

the propensity score estimated above. For all three outcomes the trial control schools’ weighted

average tracks the true state mean quite closely, seen by the similarity of the two solid lines in each

panel of Figure 3. These results indicate that, despite the apparently large differences on the pre-

treatment covariates, when weighted appropriately, the schools in the trial may help us learn about

population effects across the state of PBIS on 3rd grade math and reading tests and suspension

rates.

5 Discussion

Propensity scores offer a promising way to assess the similarity between a trial sample and a target

population of interest. However, there is still much work remaining in this area. The methods

presented here assume that individual-level data is available for the population, or at least for a

representative sample from that population. This type of data is becoming more readily available,

through nationally representative datasets or through administrative datasets such as Medicare

claims, Veteran’s administration records files, or health system administrative data sources. Sim-

ilarly, the No Child Left Behind Act requires states to collect and keep school records data on

academic performance and discipline for reporting purposes. However, in cases where individual-

(or school-) level population data may not be available, Cole and Stuart (2009) present an alterna-

tive approach that uses only summary statistics on the population of interest.

An important question for this work regards variable selection and model estimation. These

issues may be informed by similar work in the broader propensity score literature (e.g., Brookhart

et al., 2006), however it will be important to consider whether the implications are different in this

setting. For example, it will likely be particularly important to include strong predictors of the

outcome, and particularly moderators of the treatment effects, in the propensity score model. A

related issue is how to weight the characteristics that are observed. By default, propensity scores

effectively weight each characteristic by how predictive it is of membership in the trial sample.
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However, researchers are likely to have prior information on which characteristics moderate the

treatment effects, and thus are particularly important to control for. Future work will develop

methods that prioritize these key characteristics by giving them more emphasis in the summary

measure. One possible approach is to combine propensity scores with another multivariate dis-

tance (such as the Mahalanobis distance) calculated using those key characteristics (Rubin and

Thomas, 2000). A second possible approach is to combine propensity scores with the prognosis

score methods recently developed by Hansen (2008). Prognosis scores effectively weight each

characteristic by how predictive it is of the outcome under control, Y(0).

In many settings it is likely that both individual- and contextual-level factors moderate the

effects of interventions. For example, the effects of school-based smoking prevention programs

may be moderated by both individual characteristics such as gender and race, but also by the

characteristics of the school and community. In the current study we have dealt with this by

incorporating both individual-level measures as well as characteristics of the schools. In other

cases, where individual-level data is available, a more direct way of doing so would be to use a

multilevel/hierarchical framework, in which the relationship between participation in the trial and

the individual and context level characteristics are modeled at separate levels: one for individuals

and one for the context. This is discussed in the context of randomized experiments in Brown et al.

(2008) and Hong and Raudenbush (2006).

The methods described in this paper assume that all the effect moderators are observed (uncon-

founded sample selection). This is a crucial assumption, and it is important to assess the validity

of it. In the case of PBIS, there has been very little research into the effectiveness of PBIS, and in

fact the Maryland trial was only the second randomized trial of PBIS done in the country (the other

is described in Horner et al., 2009). Therefore, relatively little is known about potential school-

level moderators of the effects of PBIS. The theory of the PBIS intervention, and of school-based

interventions in general, leads us to believe that we likely observe most of the major variables that

may affect the effectiveness of the PBIS intervention (e.g., academic achievement, school size).

However, some important variables, such as the schools’ organizational capacity to implement
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the program (Bradshaw et al., 2009), the principals’ support for PBIS (Kam et al., 2003), or the

reasons why the principals volunteered the school to participate in the trial are missing from these

analyses. Although some of this data is available for the schools in the trial, unfortunately none are

available state-wide. A potential consequence of these possible unobserved confounders is that the

methods described in this paper may be more appropriate for some outcomes than for others. For

example, we repeated the analyses for 5th grade test scores and found that there were still substan-

tial differences between the weighted control schools’ outcomes and the average outcomes across

the state. One potential explanation for this varied performance across grades is possible unob-

served differences in discipline problems between the schools in the trial and those across the state.

Schools that volunteered to participate in the trial may have done so in part because of relatively

high disciplinary problems, which tend to manifest themselves more in the later elementary school

years (Koth et al., 2009); the principals of the participating schools may have felt more of a need

to participate in the trial to have the possibility of getting the PBIS intervention. Thus, even when

weighted using the characteristics in Table 1, the 5th graders in the trial schools may have been

more different from those across the state, especially as compared to 3rd graders. This would be

an example of an unmeasured characteristic that differs between the sample and population, which

in particular may impact 5th grade scores more than 3rd grade scores. The diagnostics presented

here can help determine when the weights are sufficient for generalization, or when unobserved

variables are likely to cause a problem, as seen for the 5th grade test scores. Future work will also

investigate methods to assess the sensitivity of effect estimates to an unobserved moderator, along

the lines of Rosenbaum and Rubin (1983a).

As more and more high-quality effectiveness trials are carried out, the clear next research

questions will involve external validity and generalizing the results from those trials. Some recent

work has started investigating weighting methods to generalize results to target populations, but

diagnostics are first needed to help determine when such generalization is reasonable. The methods

propose here provide a first step towards assessing the similarity of participants in a trial to those

in a population, allowing researchers to begin to examine the extent to which the results seen in
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trials may generalize more broadly.
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