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Abstract

Binary outcomes defined by logical (Boolean) “and” or “or” operations on original continuous and

discrete outcomes arise commonly in medical diagnoses and epidemiological research. In this manuscript,

we consider applying the “or” operator to two continuous variables above a threshold and a binary

variable, a setting that occurs frequently in the modeling of hypertension. Rather than modeling the

resulting composite outcome defined by the logical operator, we present a method that models the original

outcomes thus utilizing all information in the data, yet continues to yield conclusions on the composite

scale. A stratified propensity score adjustment is proposed to account for confounding variables. A

Mantel-Haenszel style combination of strata-specific odds ratios is proposed to evaluate a risk factor. The

benefits of the proposed approach include easy handling of missing data and the ability to estimate the

correlations between the original outcomes. We emphasize that the model retains the ability to evaluate

odds ratios on the simpler and more easily interpreted composite scale. The approach is evaluated by

Monte Carlo simulations. An example of the analysis of the impact of sleep disordered breathing on a

standard composite hypertension measure, based on blood pressure measurements and medication usage,

is included.
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1 Introduction

Binary outcomes based on Boolean operations arise frequently in biomedical practice and

research. We refer to such outcomes as “Boolean outcomes”, from the British mathematician

George Boole who founded the basis for modern computer arithmetic. The principal

example of such an outcome for this manuscript is the standard epidemiologic definition

of hypertension, which requires a systolic blood pressure greater than or equal to 140 mmHg

or a diastolic blood pressure greater than or equal to 90 mmHg or the use of antihypertensive

medications (see Nieto et al., 2000; Peppard et al., 2000; Banks et al., 2006, for example).

This Boolean outcome is defined using two observed continuous outcomes and one binary

outcome. Similarly defined outcomes from logical operators arise in clinical trials, often

referred to as “composite endpoints”. For example, a composite endpoint could be comprised

of all-cause mortality, non-fatal myocardial infraction, and stroke. Using composite endpoints

in clinical trials can potentially increase the overall event rates, reduce the necessary sample

size to achieve a desired statistical power, and reduce the duration of the trials (Quan et al.,

2007).

Model based approaches to analyzing Boolean outcomes typically use a logit link to

associate the effects of covariates to the probability of a success. However, such an

approach disregards the correlation between the original outcomes, a potentially important

and informative component of the data. Moreover, as in the hypertension example, if

the Boolean outcome is either partially or completely comprised of continuous variables,
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important information is lost in the thresholding. In addition, appropriately handing missing

data remains a problem.

To elaborate on the latter point, missing values can cause problems for outcomes created

with logical operators, since informative missingness can be induced in the constructed

outcome, even when the original outcomes are missing completely at random. For example,

consider the fact that a missing value in one outcome, combined with a positive outcome in at

least one of the other outcomes yields a positive Boolean outcome for the “or” operator. This

problem has received some attention since the 1960’s. In particular, maximum likelihood

estimators of cell probabilities in two-dimensional contingency tables with both completely

and partially cross-classified data were considered by Chen and Fienberg (1974) and Hocking

and Oxspring (1974). Williamson and Haber (1994) extended this approach to three-

dimensional contingency tables. In order to estimate the proportion of successes for the

derived outcome with missing values, Li et al. (2007b) proposed four estimators, including

a maximum likelihood estimator. Similarly, Quan et al. (2007) considered treatment

comparisons from composite endpoints comprised of two original components with missing

data.

To address these issues with the prevalent method of analyzing Boolean outcomes, we

propose to jointly model the continuous and binary variables. The proposed approach

overcomes the above shortcomings, while retaining the ability to make odds-ratio conclusions

with respect to probabilities of the Boolean outcome.

Jointly modeling mixed (continuous and categorical) responses has been intensively

studied since the 1990’s. For example, when considering a single continuous and single

binary variable a common approach creates an underlying latent normal variable that, when
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thresholded, produces the observed discrete variable (notably, see Albert and Chib, 1993).

An early method to improve the efficiency of related probit models was addressed in Chesher

(1984). The author showed that a fully efficient maximum likelihood estimation of the probit

model with a continuous ancillary outcome can be achieved by a simple two-step procedure,

involving an ordinary least squares and a subsequent probit estimation. Conniffe (1997)

showed that when extra observations are available for the binary outcome, the standard

single-equation estimator of a linear regression for a continuous outcome could be improved

through joint estimation with a probit model.

Although there is no clustering in our motivation data set, clustered/correlated data with

mixed outcomes are common in some fields, such as developmental toxicology. Statistical

methods have been developed for analyzing these data. Probit models for joint modeling

of clustered data comprised of one binary and one continuous response through marginal

and mixed effects models were proposed by Regan and Catalano (1999) and Gueorguieva

and Agresti (2001). Fitzmaurice and Laird (1995) developed regression models for bivariate

discrete and continuous outcomes with clustering using a generalized equation estimation

(GEE) approach. Joint modeling of cluster size, binary and continuous variables was studied

by Gueorguieva (2005). Bayesian latent variable models for clustered mixed outcomes and

associated Markov Chain Monte Carlo sampling algorithms were proposed by Dunson (2000)

and Dunson et al. (2003). Bivariate modeling of clustered continuous and ordered categorical

outcomes was studied in Catalano (1997) and Gueorguieva and Agresti (2006). In addition,

regression models for mixed Poisson and continuous longitudinal data have been developed

by Yang et al. (2007).

In this manuscript, motivated by the definition of hypertension, we consider joint modeling
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of two continuous outcomes and one binary outcome using maximum likelihood and a latent

probit variable structure. However, conclusions are then transferred onto the scale of the

resulting Boolean variable. As such, conclusions remain on the primary scale of interest,

while still capitalizing on the full information contained in the original outcomes. A dilemma

arises in that covariate adjustment renders transforming parameters to the appropriate scale

difficult. Our solution involves combining propensity-score adjusted bins using Mantel-

Haenzsel weighting of odds ratios for the Boolean outcome. This both eases the ability

to adjust for covariates and offers the benefits afforded to propensity score adjustments.

Propensity scores have been used widely in the analysis of observational studies.

Rosenbaum and Rubin (1983) proposed the propensity score as a balancing score to make

subjects in the “treatment” and “control” groups have as similar covariates as possible

and to adjust for observed confounding covariates in observational studies. The propensity

score is defined as the probability of treatment assignment given a vector of covariates. In

randomized studies this probability is a known quantity, while in observational studies the

treatment assignment probability is unknown and must be estimated. Ideally, matching

or subclassifying on the propensity score eliminates further need to consider the observed

covariates. However, this presumes a correctly specified and accurately estimated model

for the probability of treatment assignment (see Drake, 1993, for further discussion). We

note that propensity scores can do nothing in the presence of excessive correlation between

treatment assignment and one or more confounding variables. However, the use of propensity

scores makes this problem explicit, as opposed to linear models, which would compare the

uncomparable treated and untreated groups via unsupported linear extrapolations.

We note that in our application the “treatment” is really disease status (sleep disordered
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breathing), which is not actually or conceptually assignable. Hence we avoid any causal

discussion of our results, noting that propensity scores are frequently used as balancing

mechanisms without reference to causality (see Schneider et al., 2004; Li et al., 2007a, for

other examples).

This paper is organized as follows. In Section 2, we introduce a method to jointly model

two continuous outcomes and one binary outcome. We extend the method to estimate the

effects of treatment and the proportions of Boolean outcome for treated and untreated group

using propensity score method. In Section 3, we highlight the results of a simulation study.

In Section 4, we apply the proposed approach to hypertension. The final section is devoted

to a summary and discussion of directions for future research.

2 Statistical Methods

2.1 Notation

In this section, we define notation for our modeling approach. Let yik, i = 1, . . . , n, k = 1, 2, 3

be outcome k for subject i. We assume that yi1 and yi2 are observed continuous variables

while yi3 is a latent variable for which only a thresholded binary version is observed. For

example yi1 might be systolic blood pressure, yi2 might be diastolic blood pressure, and yi3

might be a latent variable whose thresholded value represents antihypertensive medication

usage. We treat each as conditionally independent normal outcomes with associated covariate

vector Xi = (xi1, xi2, . . . , xip)
′.
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The statistical models of interest are then

yi1 = Xiβ1 + ui12 + ui13 + εi1,

yi2 = Xiβ2 + ui12 + ui23 + εi2,

yi3 = Xiβ3 + ui13 + ui23 + εi3,

where β1, β2, β3 are fixed effect regression parameters to be estimated. The random

components, uijk, are shared Gaussian random intercepts between outcome j and k for

subject i, each having mean zero and variance σ2
ujk

. As such, these models induce a marginal

unstructured correlation matrix for the three outcomes, forcing non-negative correlations

between all three. This positive constraint causes no problem in data with three outcomes,

because non-negative correlations can always be reduced by changing the sign of one variable

if it is negatively correlated with the other two outcomes. We assume normality of the

error terms, εik ∼ N(0, σ2
k) and, for the moment, that all subjects have all three outcomes

observed. The presumption of a common design vector, Xi for all three outcomes is not

necessary, though is relevant in our application.

The implied marginal model is given by:
yi1

yi2

yi3

 ∼ N3




Xi1β1

Xi2β2

Xi3β3

 ,Σ


,

where,

Σ =


σ2

1 + σ2
u12

+ σ2
u13

σ2
u12

σ2
u13

σ2
u12

σ2
2 + σ2

u12
+ σ2

u23
σ2

u23

σ2
u13

σ2
u23

σ2
3 + σ2

u13
+ σ2

u23

 =

 ΣAA ΣAB

ΣBA ΣBB

 .
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Recall that the latent variable, yi3, is not observed. Instead only the binary realization

of whether the variable is above a threshold is observed. We choose zero for the threshold;

that is y∗i3 = I{y3 ≥ 0}. The parameter σ3 is not identified. Standard practice assumes that

σ2
3 = 1, which implies a conditional probit model for the observed binary outcome. That is,

P (Y ∗
i3 = 1 | ui13, ui23, β3,ΣAB, ΣBB)

= P (Yi3 ≥ 0 | ui13, ui23, β3,ΣAB, ΣBB)

= P (Xiβ3 + ui13 + ui23 ≥ −εi3 | ui13, ui23, β3,ΣAB, ΣBB)

= Φ(Xiβ3 + ui13 + ui23).

An alternative derivation of this model is obtained by dividing Yi3 by σ3, hence inducing the

conditional probit model for y∗i3. Therefore, under this derivation, the estimated β3 and σ13

and σ23 are interpreted relative to the non-identified σ3.

In our application, the “treatment” is a respiratory disturbance index (RDI, a measure of

severity of sleep-disordered breathing) value above a threshold and we consider a variation

of propensity score stratification to achieve covariate balance and account for observed

confounding variables. The rational for using propensity scores, rather than the original

covariates, is that we intend to estimate the effects of treatment on proportions of the

Boolean outcome (the comparison of the proportions between the treated and untreated

group). However, after controlling these confounding covariates, how to group subjects

for comparison remains a problem when there are continuous confounding covariates and

cut points for grouping may vary from data set to data set. In this case, the propensity

score method provides an convenient way to balance these observed covariates and to

facilitate a simple comparison on the Boolean outcome. The propensity score estimation

can be preformed by a logistic regression models of treatment status on the relevant

8

http://biostats.bepress.com/jhubiostat/paper165



covariates. We bin the estimated propensity scores into five categories. Therefore, we

assume that Xi contains an intercept, a treatment indicator, and indicators of propensity

score strata. Although it is straightforward to allow Xi to contain separate intercepts and

treatment indicators for each of the propensity score strata (interaction terms), driven by

the hypertension data, we do not include such terms. Note that this stratifies the treatment

effect across propensity score classification status. However, it does not stratify the variance

matrix, a point discussed in the data analysis.

2.2 Maximum Likelihood Estimation

For the purposes of fitting, we note that the joint marginal likelihood for the three responses

of subject i can be decomposed as

f(yi1, yi2, yi3 | β1, β2, β3,Σ) = f(yi1, yi2 | β1, β2, ΣAA)f(yi3|yi1, yi2, β1, β2, β3,Σ), (1)

where f is used to denote a generic density. The benefit of such a decomposition is the ability

to separate the latent variable distribution of y3 from the two observed variables. The first

term of (1) is the bivariate marginal normal distribution given previously. The second term

is the conditional density function given by

yi3|yi1, yi2 ∼ N
{
X iβ3 + ΣBAΣ−1

AA[(yi1, yi2)− (Xiβ1, Xiβ2)]
′,ΣBB −ΣBAΣ−1

AAΣAB

}
.

Given this formulation, it is easy to then derive the contribution of y∗i3 to the likelihood.

Specifically, we have:

P (Y ∗
i3 = 1 | Yi1, Yi2, β1, β2, β3,Σ) = P (Y3i ≥ 0|Yi1, Yi2, β1, β2, β3,Σ) (2)

= Φ

Xiβ3 + ΣBAΣ−1
AA[(yi1, yi2)− (Xiβ1, Xiβ2)]

′√
ΣBB −ΣBAΣ−1

AAΣAB

 .
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Therefore, we can write out the subject-specific contribution to the marginal likelihood for

(yi1, yi2, y
∗
i3) as the product of the marginal bivariate normal likelihood for (yi1, yi2) times

either the Bernoulli probability (2) or the probability of the complement, depending on

whether y∗i3 was a 1 or 0 respectively.

Note that following the simple strategy above, one can calculate the likelihood contri-

bution regardless of the subset of the three observations that was observed. That is, if

only yi1 and y∗i3 are observed (hence yi2 is missing), one need only calculate the conditional

distribution of yi1 given yi3 marginalized over the random effects, which then yields the probit

probability of y∗i3 given only yi1. Notationally, let ri1, ri2, ri3 be observed data indicators for

yi1, yi2 and y∗i3 respectively. Then the likelihood function with missing values can be written

as

n∏
i=1

f(yi1, yi2, y
∗
i3)

ri1ri2ri3f(yi1, yi2)
ri1ri2(1−ri3)f(yi1, y

∗
i3)

ri1(1−ri2)ri3f(yi2, y
∗
i3)

(1−ri1)ri2ri3

f(yi1)
ri1(1−ri2)(1−ri3)f(yi2)

(1−ri1)ri2(1−ri3)f(y∗i3)
(1−ri1)(1−ri2)ri3 ,

where f again denotes the appropriate density marginalized over the random effects and

dependence on the parameter values is omitted.

Maximization was performed on this marginal likelihood using quasi-Newton algorithms.

Numerical estimates of the Hessian of the log-likelihood were used to get standard error

estimates.

2.3 Further Modeling Considerations

Generally, when considering Boolean outcomes, practitioners are primarily interested in

the probabilities of the aggregated variables. After estimation, such probabilities can be

calculated post-hoc. For example, for hypertension data one would be interested in the
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probability

h(β1, β2, β3,Σ) = P [(Y1 ≥ 140) ∪ (Y2 ≥ 90) ∪ (Y3 ≥ 0) | β1, β2, β3,Σ] , (3)

where Y1, Y2 and Y3 represent conceptual values of the three variables. Given estimates for

the parameters, and values for the design matrices, this probability is simply a multivariate

normal calculation, with easily calculated standard errors using the delta method via

numerical derivatives. That is, if β̂1, β̂2, β̂3, Σ̂ are the ML estimates with inverse observed

information matrix Ω, then we can calculate a confidence interval for the Boolean outcome

using variance estimate

h′(β̂1, β̂2, β̂3, Σ̂)tΩh′(β̂1, β̂2, β̂3, Σ̂),

where the derivatives, h′, are calculated numerically.

We focus in particular on the instance when the design matrix contains only a treatment

indicator and indicators for propensity score strata. We then use Mantel-Haesnzel style

weighting to combine estimates of the probabilities of the Boolean outcome.

Given the discretized nature of the propensity score strata, one could fit a separate Σ

for each of the J categories. This would correspond to fitting completely separate models

for each strata. However, unless there is evidence to the contrary, we typically retain a

common Σ across propensity score strata. This small concession to parsimony drastically

reduces the number of variance component parameters fit. However, we did investigate

allowing for separate variance matrices for the treated and control groups, as differences in

the relationship between outcomes for the two groups are of primary interest.
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3 Monte Carlo Simulation Study

We conducted a simulation study to investigate the performance of our approach. We

simulated the data from an assumed model motivated by the directed acyclic graph in Figure

1. The outcomes Yij, j = 1, 2, 3 for subject i were generated from a multivariate normal

distribution based on the joint model in Section 2 and covariates X i = (1, Xi1, Xi2, Xi3, Ti).

Here, Xi1 is a confounder that is associated with outcomes and treatment, Ti; Xi2 is only

associated with the original outcomes, but not with the treatment. The variable, Xi3 is only

associated with treatment assignment, but not with outcomes. The first three covariates were

simulated as independent standard normals. The treatment indicator, Ti, was generated from

the logit model logit [p(Ti = 1)] = α0 + α1Xi1 + α2Xi2 +α3Xi3. This set up has been used

in univariate regression problems in Brookhart et al. (2006). Two sets of slope coefficients

β, (−2, 1, 0.5, 0, 1)t, and (−2, 1, 0.5, 0, 2)t were considered; these represent strong

and weak effects of treatment on outcomes. The same slope coefficients were used for all

three outcomes. Similarly, two sets of α = (α0, α1, α2, α3) coefficients, (−1, 1, 0, 1.5)t, and

(−1, 0.5, 0, 1)t were used.

We first fit the simulated data using a correctly specified model to evaluate the convergence

of our estimating algorithms and the performance of the approach. These simulation results

are described in the Appendix. Secondly, we fit the simulated model using propensity scores

estimated by a logistic regression of T on X1 and X3. Hence, the design vector for the

fitted mixed outcome model included a propensity score strata indicator and a treatment

indicator (inclusion of interaction terms is straightforward; however, for simplicity, we do

not consider them here). Five strata were created, as motivated by Cepeda et al. (2003).

We also considered a model where the individual outcomes were combined into a single
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Boolean outcome, which was used in a logistic regression model that included an intercept,

a treatment indicator and the indicator terms for the five category propensity score strata.

One thousand subjects were assumed, with three outcomes, two continuous and one binary,

in each simulation. Simulations were repeated one thousand times.

We emphasize that the model used to generate the data is not the propensity score

model fit to each simulated data set. Therefore, true values for the regression parameters

and variance components were not available for comparison. However, we do compare these

fitted parameters with the averaged values from simulations (see Austin, 2007). Let p1 and p0

be these true success probabilities for the treatment and control group, respectively. Hence,

differences, ratios and odds ratios of these probabilities represent treatment effects to be

estimated. Using this approach, we can investigate the feasibility of using subclassification

by propensity score in Boolean outcome analysis.

Table 2 shows the results from jointly modeling two continuous variables and one binary

variable treating propensity score quintile as a categorical variable in the regressions. The

mean observed (unadjusted) p1 is 0.696, and p0 is 0.389. The mean observed (unadjusted)

difference in proportions is 0.307; and the mean observed (unadjusted) OR is 3.61. The

adjusted mean difference in probabilities, p1 − p0, is 0.186, where the fitted probabilities

p1 and p0 are estimated by averaging the fitted stratum-specific probabilities across the

propensity score strata by treatment, from which an ORadj is calculated directly. The Mantel-

Hanszel OR (ORMH) is calculated using the fitted cell frequencies derived from the estimated

regression parameters. The simulated data show an improved performance over strictly

modeling the Boolean outcome (see Appendix). Especially, the confidence interval coverage

rates are much closer to the nominal values. In addition, the treatment effects on Y1 and Y2,
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β14, β24, are closer to their true values; while the effect on Y3,β34 shows a slight bias. Note

the standard error for ORMH was also calculated from the estimates from regressions using

numerical derivative. The simulations from other input values yielded similar results (not

shown here). The mean estimated correlation between Y1 and Y2, Y1 and Y3, and Y2 and

Y3 are 0.28, 0.38, 0.38, respectively, compared to the true values 0.17, 0.24, 0.24. However,

recall that the joint models with propensity scores as covariates are actually misspecified

models, so that some bias is expected. However, the relative sizes of three correlations are

close to those of the true values (1:1.36:1.36, compared to 1:1.41:1.41), suggesting that the

correlation is being adequately addressed.

4 Application to the Sleep Heart Health Study

We use data from the multi-center Sleep Heart Health Study (see Quan et al., 1997) as

an illustration. Hypertension (as in Peppard et al., 2000) in a subject is defined as the

presence of a high systolic (greater than or equal to 140 mmHg) or diastolic blood pressure

(greater than or equal to 90 mmHg) measurement or if the subject is taking anti-hypertensive

medications (AHM). Interest lies in the association between sleep-disordered breathing and

hypertension. Sleep-disordered breathing was quantified by the respiratory disturbance

index (RDI), defined as the number of apneas plus hypopneas per hour of sleep, measured

by in-home polysomnography (Gottlieb et al., 1999). A total of 5, 681 of the total 6, 441

subjects had RDI values. Of these, 5, 015 had complete values for race, age, sex, weight,

Epworth Sleepiness Score, body mass index, current smoking (yes=1, no/other=0), hip, neck

circumference, total sleep time, waist, RDI, and at least one of systolic or diastolic blood

pressure or medication. All of the above potentially confounding variables, except blood
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pressure and medication use, were used in the estimation of the propensity of having a RDI

in the highest quartile (RDI=1). Here, RDI=1 represented the “treatment” group. The

observed prevalence of hypertension for the low RDI category (RDI=0) was 49%, and 61%

for the high one, yielding an unadjusted odds ratio of 1.64 with a 95% confidence interval of

[1.41, 1.91].

Two-by-two tables derived from the five propensity score strata are shown in Table 3.

The propensity score density of high RDI by RDI group is shown in Figure 2. For the

high RDI group, the mean propensity score was 0.37 versus 0.17 for the low RDI group.

The propensity score adjusted hypertension prevalence rates were 50%, and 57%, for low

and high RDI, respectively, resulting in an overall odds ratio of 1.28. The Mantel Haenzsel

OR based on cell frequencies stratified by propensity score quintile was 1.14 with a 95%

confidence interval of [0.96, 1.34]. The test of homogeneity in ORs by the Mantel-Hanszel

or Breslow-Day method is not statistically significant (p-value=0.136, 0.133, respectively).

Thus a combined OR can be used to summarize the effects of RDI on hypertension across

the propensity score strata. By comparison, the odds ratio for hypertension comparing high

RDI values versus low ones from a logistic regression model of the composite outcome using

standard logistic regression including the confounding variables as linear covariates was 1.07

with a 95% confidence interval of [0.90, 1.28].

The regression coefficients from the joint modeling of systolic blood pressure, diastolic

blood pressure, and taking anti-hypertensive medications with propensity score quintile,

and RDI as covariates are shown in Table 4. The Mantel-Hanszel estimated odds ratio

was 1.13 (with a confidence interval of [0.96, 1.33]); p0adj=0.53, p1adj=0.56, ORadj=1.13.

After adjusting for the propensity score, the dichotomized RDI was not associated with
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systolic blood pressure and diastolic blood pressure. However it was statistically significantly

associated with the latent anti-hypertensive medication use.

The estimated correlation between systolic blood pressure and diastolic blood pressure

was 0.41, and between systolic blood pressure and the latent medication use variable was

0.32. Interestingly, the diastolic blood pressure and the latent medication use variable were

much less correlated (estimated as 5.7× 10−7).

5 Discussion

In this manuscript, we considered joint modeling of continuous and discrete variables for

the purpose of evaluating a Boolean outcome. We proposed stratified propensity scores

as a method for solving the practical problem of creating odds-ratio estimates on the

composite scale. Our approach easily handles the missing data problems present in these

settings. In addition, significance of the treatment or disease on the individual outcomes

is performed simultaneously with the analysis of the Boolean outcome. Also, important

covariance estimates are produced to investigate associations between the original outcomes.

We present a random effect structure to produce an unstructured covariance matrix that

is easily maximized while handling the constraints forced by the latent continuous variable

used to model the dichotomous original outcome.

Our simulation studies suggest that this more flexible model can, at times, outperform

working on the Boolean scale in terms of confidence interval coverage performance. We note

that these potential gains come along with the increased flexibility and added information

produced by the model. The application of the proposed approach to hypertension data from

Sleep Heart Health Study provided new insights on the association of RDI and hypertension
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and the correlation between systolic blood pressure, diastolic blood pressure, and the use of

anti-hypertensive medications.

For future research it would be interesting to consider more general missing data

mechanisms other than completely at random missingness. Other approaches, such as,

weighted likelihood, multiple imputations (Rubin, 1987) may be used in this setting. In

addition, the effects of missing covariate data on estimation of logically defined outcome is

also of interest. Another possible extension of the joint modeling includes investigating other

correlation structures for random effects with extensions to longitudinal data.

References

Albert, J. H. and Chib, S. (1993). Bayesian analysis of binary and polychotomous response

data. Journal of the American Statistical Association, 88:669–679.

Austin, P. C. (2007). The performance of different propensity score methods for estimating

marginal odds ratios. Statistics in Medicine, 26(16):3078–3094.

Banks, J., Marmot, M., Oldfield, Z., and Smith, J. P. (2006). Disease and disadvantage in the

united states and in england. Journal of the American Medical Association, 295(17):2037–

2045.

Brookhart, M. A., Schneeweiss, S., Rothman, K. J., Glynn, R. J., Avorn, J., and Sturmer, T.

(2006). Variable selection for propensity score models. American Journal of Epidemiology,

163:1149–1156.

Catalano, P. J. (1997). Bivariate modelling of clustered continuous and ordered categorical

outcomes. Statistics in Medicine, 16(8):883–900.

17

Hosted by The Berkeley Electronic Press



Cepeda, M. S., Boston, R., Farrar, J. T., and Strom, B. L. (2003). Comparison of logistic

regression versus propensity score when the number of events is low and there are multiple

confounders. American Journal of Epidemiology, 158(3):280–287.

Chen, T. and Fienberg, S. E. (1974). Two-dimensional contingency tables with both

completely and partially cross-classified data. Biometrics, 30(4):629–642.

Chesher, A. (1984). Improving the efficiency of probit estimators. The Review of Economics

and Statistics, 66(3):523–527.

Conniffe, D. (1997). Improving a linear regression through joint estimation with a probit

model. The Statistician, 46:487–493.

Drake, C. (1993). Effects of misspecification of the propensity score on estimators of

treatment effect. Biometrics, 49(4):1231–1236.

Dunson, D. B. (2000). Bayesian latent variable models for clustered mixed outcomes. Journal

of the Royal Statistical Society. Series B (Statistical Methodology), 62(2):355–366.

Dunson, D. B., Chen, Z., and Harry, J. (2003). A bayesian approach for joint modeling of

cluster size and subunit-specific outcomes. Biometrics, 59:521–530.

Fitzmaurice, G. M. and Laird, N. M. (1995). Regression models for a bivariate discrete

and continuous outcome with clustering. Journal of the American Statistical Association,

90(431):845–852.

Gottlieb, D., Whitney, C., Bonekat, W., Iber, C., James, G., Lebowitz, M., Nieto, F., and

Rosenberg, C. (1999). Relation of sleepiness to respiratory disturbance index: the sleep

heart health study. American Journal Respirtory Critical Care Medicine, 159(2):502–507.

18

http://biostats.bepress.com/jhubiostat/paper165



Gueorguieva, R. V. (2005). Comments about joint modeling of cluster size and binary and

continuous subunit-specific outcomes. Biometrics, 61(3):862–866; discussion 866–867.

Gueorguieva, R. V. and Agresti, A. (2001). A correlated probit model for joint modeling of

clustered binary and continuous responses. Journal of the American Statistical Association,

96(455):1102–1112.

Gueorguieva, R. V. and Agresti, A. (2006). Joint analysis of repeatedly observed continuous

and ordinal measures of disease severity. Statistics in Medicine, 25(8):1307–1322.

Hocking, R. R. and Oxspring, H. H. (1974). The analysis of partially categorized contingency

data. Biometrics, 30(3):469–483.

Li, F., Zaslavsky, A., and Landrum, M. (2007a). Propensity score analysis with hierarchical

data. Technical Report, Harvard.

Li, X., Caffo, B., and Scharfstein, D. (2007b). On the potential for illogic with logically

defined outcomes. Biostatistics, 8(4):800–804.

Nieto, F., Young, T., Lind, B., Shahar, E., Samet, J., Redline, S., D’Agostino, R., Newman,

A., Lebowitz, M., and Pickering, J. (2000). Association of sleep-disordered breathing,

sleep apnea, and hypertension in a large community-based study. Journal of the American

Medical Association, 283:1829–1836.

Peppard, P., Young, T., Palta, M., and Skatrud, J. (2000). Prospective study of the

association between sleep-disordered breathing and hypertension. New England Journal

of Medicine, 342(19):1378–1384.

Quan, H., Zhang, D., Zhang, J., and Devlamynck, L. (2007). analysis of a binary composite

endpoint with missing data in components. Statistics in Medicine.

19

Hosted by The Berkeley Electronic Press



Quan, S., Howard, B., Iber, C., Kiley, J., Nieto, F., O’Connor, G., Rapoport, D., Redline,

S., Robbins, J., Samet, J., and Wahl, P. (1997). The sleep heart health study: design,

rationale, and methods. Sleep., 20(12):1077–1085.

Regan, M. M. and Catalano, P. J. (1999). Likelihood models for clustered binary and

continuous outcomes: Application to developmental toxicology. Biometrics, 55(3):760–

768.

Robins, J., Breslow, N., and S, G. (1986). Estimators of the mantel-haenszel variance

consistent in both sparse data and large-strata limiting models. Biometrics, 42:311 –323.

Rosenbaum, P. R. and Rubin, D. B. (1983). The central role of the propensity score in

observational studies for causal effects. Biometrika, 70(1):41–55.

Rubin, D. B. (1987). Multiple Imputation for Nonresponse in Surveys. Wiley, New York.

Schneider, E., Zaslavsky, A., and Epstein, A. (2004). Use of high-cost operative procedures

by medicare beneficiaries enrolled in for-profit and not-for-profit health plans. New England

Journal of Medicine, 350(2):143–150.

Williamson, G. D. and Haber, M. (1994). Models for three-dimensional contingency tables

with completely and partially cross-classified data. Biometrics, 50(1):194–203.

Yang, Y., Kang, J., Mao, K., and Zhang, J. (2007). Regression models for mixed Poisson

and continuous longitudinal data. Statistics in Medicine, 26(20):3782–3800.

20

http://biostats.bepress.com/jhubiostat/paper165



Appendix

Monte Carlo simulations with propensity score subclassification

Table 1 shows the results from propensity score subclassification using only the composite

data. That is, the original outcomes are discarded once the Boolean outcome is constructed

and the Boolean outcome is cross-tabulated with categorical propensity scores. Displayed

are the true values and the average estimates of the these parameters across simulations.

Without using the propensity score, the mean observed difference in proportions is 0.696−

0.389 = 0.307, and the mean odds ratio is 3.61, between the treated and untreated groups.

After employing propensity score subclassification, the mean adjusted difference is 0.198

and the mean odds ratio is 2.30. The estimated proportions are somewhat close to the true

values, with less than a 1.2% error. The mean asymptotic standard errors of the estimated

proportions and difference in proportions are consistent with their empirical standard

deviations. However, the coverage of the confidence intervals is slightly conservative, mainly

due to the biases in estimation, which may partly be attributable to the fact that the

propensity score does not eliminate all confounding. For ORadj, which is calculated from

estimated p1 and p0, its non-normal distribution might also play a role in un-satisfactory

coverage; the asymptotic standard error is not close to the empirical standard deviation from

the simulations. Similarly, the standard error of ORMH , obtained using the delta method

and Robins method for the variance of log ORMH (Robins et al., 1986), is lower than the

empirical standard deviation too, which partially explains the poor coverage of the confidence

interval for ORMH .
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Table 1: Estimated proportions, difference in proportion, odds ratio, and Mantel-Hanzsel odds ratio, using

5-category propensity score subclassification and observed composite outcome

True Estimate Bias% Std. Dev. Std. Error 95% CI Coverage

p0 0.431 0.427 -0.9 0.022 0.022 0.953

p1 0.618 0.625 1.1 0.047 0.046 0.896

p1 − p0 0.186 0.198 6.5 0.051 0.049 0.917

ORadj 2.16 2.30 6.5 0.522 0.202 0.986

ORMH 2.16 2.29 6.0 0.443 0.155 0.902

βj0 = −2, βj1 = 1, βj3 = 0, j = 1, 2, 3;α0 = −1, α1 = 1, α2 = 0, α3 = 1.5

(σ1, σ2, σ3, σu12, σu12, σu13) = (2, 2, 1, 1, 1, 1).

Mean (SD): p1obs = 0.696(0.025), p0obs = 0.389(0.019),ORobs = 3.61(0.52).

Monte Carlo simulations with correctly specified joint models

In order to examine the performance of the proposed joint modeling approach, we performed

Monte Carlo simulation with original covariates X1, X2, X3, and X4, which were used to

generate the original outcomes, with same or different covariance matrix for the treated and

untreated group, respectively. All regression models were correctly specified in the sense

that data were generated and analyzed using the same set of covariates. Simulations show

that if σ2
3 is correctly specified, the estimated coefficients and variances and covariates are

unbiased and coverage of 95% CI for each estimate is 93.4%–96.3%. When σ2
3 is not correctly

specified, the estimated coefficients and variances and covariates related with outcome Y3

were scaled estimates. Since σ2
u12

and σ2
u13

were scaled, σ2
1 and σ2

2 are also affected and not

close to their true values. Estimated coefficients and covariances related only to outcomes

Y1 and Y2 (σ2
u12

) are unbiased. However, regardless of the fixed values for σ2
3, the coverage of

95%CI covering its scaled mean estimate for each estimate is 93.4%–96.3%. The estimated
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correlation between two outcomes are unbiased, and the estimated probabilities of logically

defined outcome for T = 0 and T = 1 are very close to the observed values. These results

were in agreement with our expectations and indicate that the MLE estimation worked very

well with two continuous variables and one binary variable.

In addition, we examined the performance of the proposed method for data with different

covariance matrix. Suppose the treated and untreated group have the following covariance

matrix

Σ + I(X4 = 1)


∆11 ∆12 ∆13

∆12 ∆22 ∆23

∆13 ∆32 ∆33

 .

In simulations the data were generated from the model with this covariance matrix. we

set ∆12 and ∆13 equal to 1, all other ∆ij are 0. In joint model regression, for identifiability,

we fixed ∆33 at its true value. Alternatively it could be fixed at any values which make a

valid covariance matrix for the treated group. With correctly specified constraints in the

covariance matrices, all mean regression estimates are very close to their true values, and

the coverage of 95% CI for each parameter is close to the nominal level. The mean standard

errors for parameters are close to standard deviations of their corresponding parameters from

the Monte Carlo simulations. With an estimate and standard error, it is possible to test

whether or not a ∆ij is statistically significant by the Wald test.
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Figure 1: Casual diagram for simulation study
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Table 2: Estimated treatment effects, difference in proportion, odds ratio, and Mantel-Hanzsel odds ratio,

using 5-category propensity score in jointly modeling three outcomes

True Estimate Bias% Std. Dev. Std. Error 95% CI Coverage

β14 1.000 1.064 6.4 0.207 0.215 0.965

β24 1.000 1.055 5.5 0.205 0.215 0.963

β34 1.000 1.288 28.8 0.270 0.277 0.961

p1 − p0 0.186 0.198 6.5 0.027 0.030 0.944

ORadj 2.15 2.26 5.2 0.261 0.283 0.957

ORMH 2.15 2.34 8.8 0.271 0.295 0.971

βj0 = −2, βj1 = 1, βj3 = 0, j = 1, 2, 3;α0 = −1, α1 = 1, α2 = 0, α3 = 1.5

(σ1, σ2, σ3, σu12, σu12, σu13) = (2, 2, 1, 1, 1, 1).

Mean (SD): p1obs = 0.696(0.025), p0obs = 0.389(0.019),ORobs = 3.61(0.52).
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Table 3: Observed hypertension frequencies by RDI and propensity score quintile

PS quintile 1 2 3 4 5

RDI Low High Low High Low High Low High Low High

Hypertension=0 645 9 510 28 436 45 333 92 192 174

Hypertension=1 337 11 425 39 456 67 466 113 320 317

Proportion(%) 34.3 45.0 45.5 58.2 51.1 59.8 58.3 55.1 62.5 64.6

OR 1.57 1.70 1.42 0.88 1.08

Figure 2: Propensity score of high RDI by RDI
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Table 4: Regression coefficients (standard errors) from jointly modeling two continuous

outcomes and one binary outcome with RDI and propensity score quintiles

SBP DBP AHM

Intercept 122.73(0.59) 71.33(0.33) -4.04(0.32)

PS2 6.86(0.83) 0.71(0.47) 1.79(0.37)

PS3 7.75(0.83) 1.24(0.47) 2.29(0.37)

PS4 9.14(0.84) 1.60(0.48) 3.04(0.38)

PS5 10.1(0.90) 2.20(0.51) 3.69(0.42)

RDI 0.15(0.76) 0.11(0.43) 0.66(0.31)

σ11 = 15.2(0.18), σ22 = 5.65(0.22), σ12 = 8.91(0.16),

σ13 = 5.98(0.29), σ23 = 0.60× 10−4(0.42)
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