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ABSTRACT

Text classification attempts to assign written texts to specific group types that share the
same linguistic features. One class of features that have been widely employed for a wide
range of classification tasks is lexical features. This study explores the impact of stemming
on text classification using lexical features. To explore, this study is based on a corpus of
thirty texts written by six authors with topics that focus on politics, history, science,
prose, sport, and food. These texts are stemmed using a light stemming algorithm. In
order to classify these texts according to the topic by means of lexical features, linear
hierarchical clustering and non-linear clustering (SOM) is carried out on the stemmed
and unstemmed texts. Although both clustering methods are able to classify texts by topic
with two models produce accurate and stable results, the results suggest that the impact
of a light stemming on the accuracy of text classification by topic is ineffectual. The
accuracy is neither increased nor decreased on the stemmed texts, whereby the
stemming algorithm helped reducing the dimensionality of feature vector space model.
Keywords: stemming, classification, clustering, hierarchical, SOM, topic, content words

INTRODUCTION

The task of quantitative topic classification of written texts has become popular
with the huge increase and the variety of written texts of all kinds which may vary
according to the use, subject matter, author’s knowledge, and textual varieties, or events.
All of this has led to the study of different text types, such as narrative, non- fiction, poetry
and so on, all with their own lexical and syntactic patterns. A quantitative topic
classification relies on methods developed in natural language processing and machine
learning to analyse textual documents. While textual documents must be converted into
a quantitative form prior to analysing them, several conceptual issues in data creation

may hinder any quantitative textual data analysis. For example, the text data can in
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general be very sparse because of the large number of redundant lexical features. This
can be attributed to the fact the English language has several morphological variants of a
single word. Pre-processing procedures such as cleaning and preparing raw texts for
analysis, and word stemming are commonly carried out before applying an analytical
method to build a robust pattern. The principal is that it is essential to adjust text data by
removing repetition and transforming words to their common base or root form through
stemming. This is to reduce the dimensionality of the feature dimension to make it easier
to analyse and process text and help in grouping variations of words together, which can
be useful for tasks like text classification or clustering. However, word stemmer is known
to produce nonsense or incomplete words and this is very likely to skew the text data and
therefore the classification results based on it. By way of explanation, this study is based
on a corpus of thirty texts that focus on the topics of politics, history, science, prose, sport,
and food written by six authors. Multivariate analytical methods are used to extract a set
of lexical features that define each text so that the thirty texts can be classified using linear
hierarchical clustering and non-linear clustering method SOM. In topic classification by
lexical features, the time and complexity of classification process are two important
problems that affect data analysis. Although this is crucial, easy and short processing
should not be accepted at the cost of classification accuracy. As thus, this study is designed
to examine the impact of stemming on the text topic-based classification by analysing the
thirty texts with and without stemming to determine which courses are more accurate
than others. This will be discussed in detail in the subsequent sections.

Research Problems

Text classification attempts to assign written texts to specific group types that share
the same linguistic features. To do so, the basic or common approach to is to look at lexical
words and their frequencies in a given text. The analyst takes the text to be classified and
counts the frequencies of the words and select the most distinguishing words of a given
text, followed by some text pre-processing steps to keep the resulting data matrix of a
manageable size. Because lexical words and frequency play a role in text classification
based on clustering, this can cause conceptual issues in text data creation in at least two
ways: (1) the curse of dimensionality and (2) lexical redundancy/ambiguity.
Dimensionality is a key issue for data analysis in any given application (Moisl, 2015). In

this application the vector space model is used to represent texts and lexical features as
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vectors in a multi-dimensional space. Each dimension represents a unique lexical feature
frequency in the entire corpus of texts. For example, when analysing written texts verbs,
adjectives, nouns, adverbs, prefixes, suffixes, word length, word frequency, word cluster
and high frequency word distribution, etc could each be a dimension. Each dimension
corresponds to a unique feature, while the texts can be represented as a vector within
that space. As the number of lexical features increases, and thus the number of
dimensions, moves from low to high dimensional spaces, text data starts to behave

differently and make analytics more challenging, as shown in Figure (1) below.

Figure 1. Lexical features plotted on a 2- dimensional space

For example, lexical items such as ‘cat’, ‘cats’, ‘catty’, ‘cattery’, and so on which are
recognized as distinct lexical types or the morphological variants of the same word ‘CAT’
will be assigned four dimensions in the data matrix. If each of the four variables take
integer values in the range 1...10. The ratio of data points to possible valuesis 10/(10 x10
x10 x10) =0.001, that is, the data points occupy 0.1% of the data space. It is, therefore,
clear that lexical frequency text data will, in general, be very sparse on account of the
large number of very infrequent lexical type variables. The known resolution is that
dimensionality should be remained as low as possible appropriate to the need to define
the field of research suitably (Liideling and Kyt6: 2009).

The next problem is lexical ambiguity or redundancy which can result from various
aspects of English morphology such as the word’s stem, affixes, suffixes, bases, inflections
and derivations. Written texts generally contain several morphological variants of a
single word. As lexical frequency of occurrence is used in text data processing and

creation, the existence of many morphological variants of words has negative effects on
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the context of the word occurrence. There is an example of lexical ambiguity between two
or three or even four distinct lexical types when they are related to the same stem. For
example, words such as ‘man’, ‘manly’, ‘unmanly’, ‘manliness’, and so on are the
morphological variants of a stem ‘man’ but are treated as distinct lexical types and
therefore they will not be recognized as equivalent without the NLP tool gaining access
to linguistic information or semantic context about them. (Senders, 2021; Jenkins and
Smith, 2005). Some examples of lexical ambiguity come from a word includes a stem
which denotes to some basic idea of meaning and that particular affixes have been
attached to improve the meaning and/or to adjust the word for its syntactic structure.
Brown and Miller (1980), for example, use ‘cats’ and ‘attacked’ and suggest that ‘cat’ is
noun stem, -s is a plural marker (and pl. is a term in the grammatical category of
numbers). ‘Attack’ is a verb stem, -ed is a past tense marker (and past is a term in the
grammatical category of tense). These two examples are instances of inflectional
morphology: that part of morphology which deals with the way in which lexical stems are
brought together with grammatical markers like those for plural or past. Another
examples are ‘fearsome’ and ‘foolish’. The analysis of ‘fearsome’ as fear-some and of
‘foolish’ as fool-ish is equally clear and can be pursued in the same terms. The analysis of
‘fearsome’ and ‘foolish’, on the other hand, doesn’t represent a grammatical analysis but
describes the way lexical stems themselves are formed. In the case of fool-ish the addition
of adjective -ish to the lexical stem ‘fool’ forms the new lexical stem ‘foolish’. Similarly, in
fear-some the adjective formative -some added to the noun ‘fear’ produces the adjective
‘fearsome’. They are instances of derivational morphology, the part of morphology that
deals with the way lexical stems are formed. This is a significant problem for text
classification based on clustering, since the morphologically related words are treated
exactly the same as unrelated ones as shown in Figure (2) which shows words plotted in

a 2-dimensional space based on frequency and relevance.
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Figure 2. A cloud of most frequent unstemmed words plotted in a 2-dimensional space

The problem is that there is no difference between the semantic similarities among
morphological variants of a single stem on the one hand, and those between unrelated
stems on the other, for example, the semantic difference between 'likes’, ‘liking’, ‘unlike’,
‘catlike’, and ‘liked’ is taken to be the same as that between 'man' and 'order'. When facing
such a problem, the solution is usually to apply word stemming to improve text
classification and allow for more effective text analysis by reducing different forms of
words to their root or base form and reduce dimensionality by converting words to their
stems (Singh and Gupta, 2019). Basically, stemming involves simplifying the dataset or
projecting it from a multi-dimensional area into a low-dimensional area so that the low-
dimensional characterization takes some significant features of the original dataset, in
principle close to the number of features needed. In this study, I explore the impact of
stemming on text classification accuracy, focusing on two questions. First, does stemming
impact (increase, decrease, or neglect) the text classification’s accuracy? Second, can
stemming and be used along with a feature reduction method to simplify the number of
dimensions in a dataset?

Background and related work

Given its significance in different fields, such as information retrieval, text mining,
sentiment analysis, or content analysis, considerable research has been devoted to text

classification. Such studies focus on different approaches by using one or more steps of
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the classification research project, including text pre-processing, features construction,
feature weighting, feature selection, classification pattern and evaluation. Below is some
of the existing works in the field from recent years.

Dogan and Uysal (2020) proposed a novel supervised term weighting scheme called
TF-MONO and SRTF-MONO and compared its performance against the existing term
weighting schemes in the literature using two different classifiers such as SVM and KNN
applied on three different datasets named Reuters-21578, 20-Newsgroups, and WebKB.
The findings from seven distinct schemes demonstrated that, on average, SRTF-MONO
performed better than the other schemes across the three datasets. Furthermore, in
comparison to the other five benchmark term weighting techniques, TF-MONO had
guaranteed both Micro-F1 and Macro-F1 results, particularly on the Reuters-21578 and
20-Newsgroup’s datasets. In their work, HaCohen-Kerner et al. (2020) performed an
extensive and systematic set of text classification experiments to assess the impact of all
possible combinations of five/six basic preprocessing techniques on the four examined
corpora using three machine learning methods. They concluded that it is always
advisable to perform an extensive and systematic variety of preprocessing methods
combined with text classification because it contributes to improve classification
accuracy. In their study, Hartmann et al. (2019) compared the performance of five
lexicon-based and five machine learning methods across forty-one social media datasets.
The results showed that given small sample numbers, RF consistently performs well for
three-class emotion, NB. SVM never performed better than the other techniques. In
comparison to machine learning, all lexicon-based methods performed badly, with LIWC
performing the worst. Accuracy margins in certain applications were marginally better
than chance. The findings implied that marketing research can profit from taking into
account NB and RF since additional factors of text classification choice were also in their
favour. Wan et al. (2019) conducted a text classification study by using syntactic and
unigrams features to obtain what is known as syntax augmented bi- grams (SAB). The
experiments showed that the use of syntax was useful in text classification problems.
They concluded that it can be used to extract stable phrases for some NLP tasks, like
question answering and machine translation, and the x2.rcf evaluation method of such
composite features can assist in reducing the dimensionality of the document vectors by

discarding redundant features. In quantitative literary analysis, the work by Ardanuy and

209


https://jolcc.org/index.php/jolcc/index

JOURNAL OF LINGUISTICS, CULTURE AND COMMUNICATION
Vol.02, No.02, 2024: December: 204-224, E-ISSN:2988-1641
https://jolcc.org/index.php/jolcc/index

Sporleder (2014) revolved around the task of text clustering by building social networks
from novels. Instead of clustering the selected novels by means of content-based features,
the authors constructed a vector of features by quantifying their plots and structures. The
results of this experiment showed that using such features can be useful in text clustering
by topic or authors. In their work on topic identification, Worsham and Kalita (2018)
addressed the topic identification problem, which is a very long text classification task
that requires both syntactic and thematic analysis in order to assign a literary genre to a
book from a corpus. They assigned the literary classification to a full-length book
belonging to a corpus of literature, where the works on average are well over 200,000
words long and genre is an abstract thematic concept. Along with the genre identification
problem, different machine learning approaches were addressed and evaluated as
solutions for assigning genre. The study found that for the task of classifying long full-
length books by genre, gradient boosting trees are superior to neural networks, including
both CNNs and LSTMs. The study not only demonstrated that the use of words from all
chapters was beneficial for the classification task, but it also showed that traditional
machine learning methods can achieve a better performance than more complex deep
learning models.
Materials and procedure
1. Corpus

The examined corpus in this study were thirty electronic essays that focus on the
topics of politics, history, science, prose, sport, and food collected from
https://www.ukessays.com/. The composition of corpus material is the following: (five
politics texts), (five science texts), (five prose texts), (five sport texts), (five food texts),
and (five history texts). These texts were saved in text.doc format. There was
considerable variation in the lengths of these texts available for a given article. To
equalize the lengths among the different texts, [ sampled the texts from 850 up to a
maximum of 1000 words to make them comparable to each other or about the same size
accordingly. Here I built a corpus of thirty texts that are truly representative of each topic,
and the size of each text is in harmony with each other prior to analyzing it. The text

corpus of the study is shown in the Table below.
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Table 1. Corpus of thirty texts

= food 1.t = food2tit | food3t
= foodd it = food3ait =] hisTbxt
=] his2tet =] his3tet =] hisd txt
=] hisitet = poltt | pollixt
=] pol3t = poldt | polixt
= prolixt | pro2ixt | pro3et
=] prodixt =] proatxt =] seilet
= seilixt =] seistt =] scidet
= seisdxt = spol bt = spodint
= spo3at = spodit = sposiut

2. Pre-processing

To prepare the text data for text classification, pre-processing was performed
before transforming it into numerical features. Four text pre-processing steps were
involved in the current application. These are: cleaning raw texts, data generation, feature
extraction and selection, and stemming.
A. Data cleaning

To enhance the quality of the text data, the raw text documents were cleaned from
words or characters that do not add any value to the meaning of the whole text data,
including punctuation marks, page numbers, non-standard formatting, titles, URLs,
HTML tags, extra spaces, and so on.
B. Data generation

The thirty texts were broken into lexical tokens. These lexical tokens were used
with their co-occurrence frequencies. The co-occurrence frequencies were converted
into numerical vectors, where every lexical feature corresponds to the words in the
corpus and every value to their respective frequencies, in which every dimension
represents a word and every row vector represents a text.

C. Stemming

In Natural Language Processing (NLP) use applications such as text classification or
clustering, thematic analysis, sentiment analysis, language translation, etc., getting word
stem, base, or root form is important to help in the preprocessing of text and can also be
used for query expansion. This is where stemming comes into play. Stemming is a process
that removes prefixes and suffixes from words, reducing them into their stem, base or

root form, generally known as a written word form. The general aim is to transform the
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morphological variants of the words like chooses, choosing, chose, chosen to get linked
to the word ‘choose’, or the words cats, catlike, cattery, catty to get linked to the word
‘cat’. In stemming, transformation of morphological variants of a word to its stem can be
created based on the assumption that each variant is semantically related for the purpose
of textual analysis and information retrieval. The stem need not be an existing word in
the lexicon but all its variants should link to this form after the stemming has been
completed. However, the results of stemming are not always morphologically right forms
of words. Some stemmers may produce nonsense or incomplete words (Jivani, 2011;
Jayanthi and Jeevitha, 2015). For example, a stemmer may reduce the words argue,
argued, argues, arguing, and argus to just the stem ‘argu’ or the words’ introduction,
introducing, introduces to get linked to just the word ‘introduc’, and that is because
stemmer does not check on grammatical rules during the stemming process. For this
reason, a lot of different stemmers or stemming programs have been developed to
produce morphological variants of a root/base word. UEAstemmer (2005) is one of the
most widely used stemmer. Other types of stemmers include, for example, Lovins
Stemmer (1968), Porter (1980), Paice-Husk Stemmer (1980), Lancaster Stemmer (1990),
Snowball Stemmer (2000), and Regular expression Stemmer, Each of these stemmers
comes with its own set of strengths and weaknesses in a way that each of which differs in
respect to performance and accuracy. Some stemmers may remove recognized suffixes
based on the assumption that most suffixes in English are considered to be potentially
removable. Other stemmers may remove some affixes and alter the meaning of a word so
greatly and thus throw vital information away. However, elimination of prefixes doesn't
basically appear to be useful in text data processing, except in certain domains, and thus
is not relevant to the present application. In general, the stemming algorithms used have
exhibited two shortcomings or limitations generally known as stemming errors
(Paice:1994):

1. Under-stemming errors, happen when words which denote to the same concept

or meaning are not converted to the same stem, as in data and datum.
2. Over-stemming errors, happen when words are reduced to the same stem even
though they denote to different concept, as in author and authoritarian.

Where stemming errors can result in a loss of information and hinder text analysis, as

here, a stemmer’s limitation and advantage must be taken into account. More specifically,
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the author suggests that cluster analysis methods are considered distance-based
measures, since the inclusion of nonsense or incomplete words may change the clusters,
thus, making it essential to choose a stemmer that meets a specific need or answers a
particular question. While there are many stemmers to execute word stemming, the
present study is oriented towards the following two rules while selecting a stemming
algorithm to best suit it:

v Morphological variants of a word are presumed to have the same concept and
therefore must be linked to the same stem. The implication is that if the base
meaning or concept is the same but the word form is different it is essential to
distinguish each word form with its root form.

v Morphological variants of a word that do not have the same concept must be

kept apart.

These two assumptions are practical enough as long as stemming or the stemming
program stems and groups words according to the same semantic root or concept. As the
interest lied in text classification by topic using lexical features, for this experiment, only
simple or light stemming was performed, i.e., only suffixes that added or attached to the
end of a base word were removed. For this reason, UEA stemmer was used since it is
intended to stem conservatively to orthographically correct word forms and recognizing
words which do not need to be stemmed, such as proper nouns. So it is more probable to
produce much fewer classes and that the stemmed words will still share the same
meaning. It is available for research use in Perl and Java implementations at
http://www.cmp.uea.ac.uk/research/stemmer. Figure 3 shows the stemmed corpus of

thirty texts used for this study.
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Figure 3. Stemmed corpus of thirty texts

D. Feature extraction/selection

Feature extraction is the task of detecting and selecting the most significant features from
a dataset. Where feature selection removes redundant lexical features, in essence it
removes text data matrix dimensions and therefore allow clustering methods to make
more accurate classifications. Topic text clustering depends on there being variability in
the frequency of the occurrences of values from each of the thirty texts in the dataset;
similar texts having the same lexical features can’t be logically clustered. Where the thirty
text documents to be classified are defined by lexical features, then the lexical features
are only helpful for the purpose if there is significant variation in the weight values that
they take. In the early stages of the extraction process, all function words were removed
as they coincide with content words. In the present application, thus, we looked for
content words with considerable variation in their word count frequency weights, and
removed content words with small or no variation. Content words with no or small
variation were eliminated from the text data as they included small semantic details and
would sophisticate cluster analysis by creating more multi-dimensional data than it

should be. The simplest approach of determining the weight value is variance. The weight
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value of each lexical feature was calculated by its variance. This means the variance of

lexical feature weight values is the average deviation of those weights from their mean.

V= (L =D

If we have dataset of n weight values {x1, x2...x} allocated to a lexical feature x. The mean

of these weight values p is (x1 + x2 + ... + xn) / n. The magnitude by which any given value

xi differs from p is then x; - . The average difference from p across all values is thus Zi=1.»

(xi-p) /n.
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Figure 4.Variance lexical frequency

Here a conservative dimensionality reduction was made by keeping the 40 highest-

frequency content words and removing the rest on the basis that they account for only a

small fraction of the differences among the thirty texts. The selected 40 highest-frequency

content words are shown in Table (2):

Table 2. Forty content-based words extracted by variance

Table 2. Forty

words extracted by

crucial believe changed causes
ago makes increase gone
content-based
reguire | remained able become
variance
end human present COMmeE
give taken allow large
available clear far always
evidence grow including beauty
alike especially feel according
basic important done same
used perform CONCErn improve
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Feature selection and extraction through applying variance and UEA stemming
were able to reduce dimensionality by trimming down the number of features from 200
to 40.

3. Methods and analysis

In this study, we applied two clustering methods using a bag of words. The
motivation of using two different methods is to compute similarity between any two
clusters in different ways: one is linear hierarchical, the other is non-linear clustering
SOM. The most common use of cluster analysis is text classification (Fielding: 2006). The
aim of cluster analysis is to classify written texts together into groups that share similar
characteristics as determined by some measure of similarity. Euclidian distance was used
to measure the distance between each pair of texts, where distance between each pair of
texts means some similarity/proximity measure over the whole set of characteristics.
This is used most commonly. It simply measures the distances between the pairs of text
data points by calculating the square root of the sum of the squared differences between

the measurements for each lexical feature. This is expressed by the function:

length(z) = +/(length(x))? + (length(y))?

When performing cluster analysis, we assign the characteristics of written texts to each
group to compute and the semantic distance/similarity in-between the text data. Written
texts are separated into groups (called clusters) based on the basis of how closely
associated they are so that each written text is more similar to other texts in its group
than to texts outside the group. As the hierarchical cluster method, Ward linkage
clustering (known as minimal increase of sum-of-squares) is used because it is most
frequently used in studies where clusters are expected to be solid, compact, and even-
sized. It was used along with the clustering tendency to determine whether the resulted
clusters have a grouping structure. Ward linkage method specifies the amount of
proximity between any couples of texts data in the matter of decreasing of changeability
based on a criterion which takes two estimates: relative to a cluster A, (1) the error sum
of squares (ESS) is the sum of squared differences of the data vectors in A from their
group’s mean, and (2) the total error sum of squares (TESS) of a set of p clusters is the

sum of the ESS of the p clusters. At each successive clustering step, the ESS of the p
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clusters available for fusing at that step is computed. For each original amalgamation of
cluster couples the increase in TESS is noted, and the couple which leads to the smallest
increase in TESS is fused into a single cluster (Romesburg, 2004). The analysis was done
in two stages: the first was conducted on the original text documents (i.e. no word
stemming done) and the second was conducted on the stemmed texts. The results of the

hierarchical clustering and the clustering tendency are shown in Figure(5).

Clusmn™

Clustan™
Poll.txt

Poll.txt
Poli2 txt Poli2.txt
Polid txt Poli3.txt
Dotid tut Poli4.txt | I
Polis.txt Fokstxt
Hizl.txt il bxt
His2 txt el
. Hish.txt
Hl_—SS'““ Hisd txt
i.s;-.txt Seil.bxt
-Ixt Seil.bxt
Zeid txt SeiS bxt
BeiS bt | Sei3 ext
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Pru—1-. txct Prod.t
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Food3.txt Foods.tx

Food3.txt

Figure 5. Ward linkage clustering and clustering tendency

The text membership of the hierarchical analysis is shown in the table that follows.
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Table 3. Text membership of Ward linkage clustering

Cluster Membership
1 Polil Poli2 Poli3 Polid Polis His1
2 His2 His3 His4
3 Seil Scil Seis Seid Scid
4 Spol Spo4 Spel Spe3
5 His3 Prod Pro3 Pro2 Pro3 Prol
[ Spol Foodl Food2 Food3 Food4 Food3

As for the non-linear cluster method, SOM is used to build a topology preserving
map from a high-dimensional input area onto a map unit so that relative distances
between text data points are preserved. SOM computes the nonlinear distances between
text data points and is introduced with various coloring charts. It preserves the
topological information about a set of data in a two-dimensional visual image. Given a
relevant measure of similarity, text data points which are located closely to one another
in multi-dimensional space are located close to one another in their two-dimensional
map, and text data points which are located relatively away from one another in multi-
dimensional space are clearly set apart leading to a well-built pattern (Kohonen, 2001;
Oja, et al,, Vesanto, 1999). The analysis was a two-level procedure. The first was the
teaching SOM by uploading all the text data into the input area. The second was the
creation of the two-dimensional pattern on the plane. For each text data, the weight
values in the input area were generated through all the connections to the units in the
lattice. Because of the difference in connection weight, a given text data started up one
unit more robustly than any of the others, whereby linking each text data with a specific
unit in the lattice. Once all the text data had been plotted in that manner, the outcome was
a pattern of activation across the lattice. The SOM output used the relative distance
between connection text data to search for group borderlines. The Euclidean distances
between the connection text data related to each map unit and the connection text data
of the directly adjoining units were calculated and figured, and the outcome for each was
arranged in a new matrix model, having the same dimensions as the original. The text
data was uploaded using a color chart to constitute the relative amounts of the weight
values in which a dark chart between the text data correlates to a big distance and,

therefore, constitutes a gap between the weight values in the input area. A bright chart is
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the borderlines between groups, showing that the texts data are close to each other in the
input area. Bright regions correspond to groups and dark regions group dividers. Any
outstanding group borderlines will be detectable. The colour range is shown close to the
right side of the map, which includes numbers indicating the values of texts data and that
of the distances between adjacent texts data (Moisl, 2015). As above, the analysis was
done in two stages: the first was conducted on the original text documents (i.e. no word
stemming done) and the second was conducted on the stemmed texts. The result of SOM

is shown in Figure (6):

SOM for the 30 stemmed texts

=107

06

05

04

03

02

01

Figure 6. SOM of the thirty texts

The text membership of the SOM analysis is shown in the table that follows.

Table 4. Text membership of SOM clustering
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Cluster Membership
1 Spo2 Spo3 Spo4 Spo5
2 Spol Food1 Food2 Food3 Food4 Food5
3 Scil Sci2 Sci3 Sci4 Sci5
4 Prol Pro2 Pro3 Pro4 Pro5
5 His1 His2 His3 His4 His5 Poli3 Poli5
6 Polil Poli2 Poli4
RESULTS & DISCUSSION

To explore whether executing word stemming can improve classification’s
accuracy, two sets of analyses were carried out at two stages. The study first attempted
to examine the original text documents with no word stemming executed using
hierarchical clustering and SOM. In the second test, the study attempted to examine the
thirty texts with word stemming executed. These texts were analysed for all the possible
combinations of text pairs in which the order of texts in each analysis did not matter. This
is because various clustering algorithms may produce different clusters on the same
dataset and the principal is that texts in the same cluster are more similar to each other
than they are to texts in another cluster. In Figure (5) and Figure (6), the analyses enabled
to identify six main groups of texts according to the content of their work: one group for
politics, the second group for history, the third group for food, the fourth group for sport,
the fifth group for prose, and the sixth group for science. These six clusters of texts were
identified as having similarity in each cluster and it can therefore be assumed that their
topic is related. Table 5 shows a good degree of correspondence between the six main

clusters of hierarchical analysis and the clusters in the six main SOM clusters:

Table 5. Tabulation of texts in hierarchical clustering and SOM
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Hierachical analysis S50M
Cluster 6 Cluster 2
Cluster 3 Cluster 3
Cluster 4 Cluster 1
Cluster 5 Cluster 4
Cluster 1 Cluster &
Cluster 2 Cluster 3

The results obtained from the hierarchical match those identified in the SOM
despite the low marginal differences, but the whole picture is clear. The agreement
between the methods ensures the accuracy of experimental results to support the validity
of classification results. Based on these results, the researcher was able to notice that
execution of word stemming had a negligible impact on the classification of the thirty text
documents; the results were the same for the stemmed and unstemmed texts since the
stemmer used here is a light stemmer which has been developed to stem words to root
forms which are lexically full words. Table (6) below shows the result of stemming 24

words by UEA stemmer:

Table 6. 24 sample words stemmed by means of UEAStemmer

UEAStemmer Results
Original Stemmed Original Stemmed Original Stemmed
Word Word Word Word Word Word
sings se loved love foolish foole
played played unhelpful unhelpful fearsome fearsome
playing playing seeing seeing manly manly
unreal unreal sung sung friendlies friendlies
helpful helpful performance performance indefinitely indefinitely
unmanly unmanly runly runly experiment experiment
axes axes dries dries manliness manline
ran ran yond yond misled misled

In Table (6), itis evident that UEA stemmer produces smaller categories permit words to
keep their meaning by limiting the number of inaccurate stemming results. This is
particularly useful when using stemming in text classification. Such a result will provide
an opportunity to advance our knowledge of the link between light stemming and text

classification.
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CONCLUSION

The primary purpose of the present study was to explore the impact of word
stemming on topic-based text classification. Thirty text documents were classified using
hierarchical clustering and SOM and applying UEA stemming algorithm. The results
demonstrated that the word stemming process had little effect on the classification of
these texts; that is, since the stemmer being used here is a light stemmer designed to stem
words to root forms that are lexically full words, the clustering results for the texts that
were stemmed and those that weren't showed no difference in clustering. Because there
does not seem to be much difference between stemmed texts and unstemmed texts
included in the analyses by means of hierarchical clustering and SOM, word stemming
appears to have a negligible impact on the text classification accuracy. This conclusion
requires further testing, however, particularly on stemming method in which one might
argue that many similarities of text topics may not necessarily be the result of negligible
impact of word stemming and may merely represent general text topic similarities that
would have existed even in the absence of a stemming algorithm but are subsequently
attributed to it. Such testing may suggest the use of other stemming algorithm to
determine whether this will impact (increase or decrease or neglect) text classification’s
accuracy as noticed with UEA stemmer in this study. [t seems clear that a systematic test
will only be possible by collecting a large balanced dataset for each text type with a larger

number of features that doesn’t yet exist in current study efforts.
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