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Abstract

In this paper, we consider estimation of the effect of a randomized treatment on

time to disease progression and death, possibly adjusting for high-dimensional baseline

prognostic factors. We assume that patients may or may not have a specific type of

disease progression prior to death and those who have this endpoint are followed for

their survival information. Progression and survival may also be censored due to loss to

follow-up or study termination. We posit a semi-parametric bivariate quantile-quantile

regression failure time model and show how to construct estimators of the regression

parameters. The causal interpretation of the parameters depends on non-identifiable

assumptions. We discuss two assumptions: the first applies to situations where it is

reasonable to view disease progression as well defined after death and the second applies

to situations where such a view is unreasonable. We conduct a simulation study and

analyze data from a randomized trial for the treatment of brain cancer.

KEYWORDS: Brain Tumors; Causal Inference; Censoring by Death; Estimating Equa-

tions
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1 Introduction

In randomized trials to evaluate treatment of life-threatening diseases, subjects are often

monitored for specific types of disease progression and survival. In such studies, a progres-

sion endpoint may be pre-empted by death or censored due to loss to follow-up or study

termination. Subjects who experience a progression event are also followed for survival,

which may be censored. Data of this form has been labeled semi-competing risks data (Fine,

Jiang, and Chappell, 2001). Our motivating example of a study which produces such data

is a randomized trial for the treatment of malignant brain tumors. In the study, one of the

important progression endpoints was based on deterioration, from baseline, of the cerebel-

lum. An important feature of this endpoint is that it is biologically plasuible that a subject

could die without cerebellar deterioration.

Robins (1995a, 1995b) and Lin et al. (1996) introduced a semi-parametric bivariate

location-shift model to describe the joint effect of treatment on progression and survival

in two-arm randomized studies. This model can be viewed as a bivariate linear regression

with log of the survival and progression endpoints as the response, correlated error terms,

and treatment indicator as the sole covariate. The regression parameter for survival is

estimated using the estimating function technique of Louis (1981), Wei and Gail (1983) and

Tsiatis (1990). Working on the residual death time scale, the estimating function is based

on the comparison of the observed treatment indicator at each death time to the expected

value of the treatment indicator among subjects at risk at that time. Lin et al. (1996)

noticed that application of this technique to the progression endpoint leads to a biased

estimating function because (1) progression can be pre-empted by death and (2) death and

progression are correlated events. To solve this problem, Lin et al. (1996) used an idea

originally introduced by Robins and Rotnitzky (1992, Appendix 4) and corrected the bias

of the estimating function by artificially censoring the progression residuals. This approach

works well for a low-dimensional covariate, such as a treatment indicator, but excessive

artificial censoring can occur when the covariates are high-dimensional. To address this
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latter problem, Peng and Fine (2006) introduced a new artificial censoring technique based

on pairwise ranking. While this technique represents an improvement over the approach

of Lin et al. (1996), it can, contrary to the suggestion of those authors, be less efficient

than the alternative method introduced in this paper. There has been increased use and

extension of the bivariate linear regression model in the analysis of recurrent event data and

repeated measures data subject to informative drop-out (see, for example, Chang (2000),

Joffe (2001), Ghosh and Lin (2003), Lin and Ying (2003), and Matsui (2004)). All these

approaches use the artificial censoring technique of Lin et al. (1996) and, as a result, have

difficulty dealing with high-dimensional covariates. In this paper, we introduce an alternative

estimating equation that does not rely on the artificial censoring technique.

The paper is organized as follows. In Section 2, we introduce the study that motivated

this research. In Section 3, we introduce the data structure, notation, and the generalized

bivariate quantile-quantile regression model and its special case the bivariate linear regres-

sion model. Section 4 discusses issues of identifiability and Section 5 discusses the causal

interpretation of the treatment effect regression parameters. Section 6 is devoted to estima-

tion, while Section 7 discusses large sample theory. In Section 8, we present the results of

a simulation study and Section 9 provides an analysis of the brain tumor trial. The final

section is devoted to a discussion. To ease the flow of presentation, proofs of lemmas and

theorems are placed in the Appendix. For readers who are less concerned with technical

details, Section 7 and the Appendix can be skipped without loss of continuity.

2 Brain Tumor Study

2.1 Gliomas

Gliomas are primary brain tumors. Treatment for glioma involves maximal surgical resection

of the tumor, followed by radiotherapy and chemotherapy. Prior to 1990, adjuvantchemother-
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apy for brain tumors was limited because of the difficulty in achieving adequate exposure

to the tumor site without causing systemic toxicity. In a phase 1 study, Brem et al. (1991)

showed this diificulty could be overcome by implanting at surgery local to the tumor, a

biodegradable polymers impreganted with the drug carmustine (BCNU), resulting in pro-

longed local exposure to BCNU with minimal systemic exposure.

2.2 Glioma Trial

The Phase I study was followed by a randomized trial, in which 222 patients with recurrent

malignant brain tumors scheduled for tumor resection were randomly assigned to receive

surgically implanted biodegradable polymer discs with or without 3.85% of carmustine (Brem

et al. 1995). Patients were included in the study if they had a single focus of tumor in

the cerebrum, a Karnofsky score greater than 60, completed radiation therapy, not taken

nitrosoureas within 6 weeks of enrollment, and did not have systemic chemotherapy within

4 weeks of enrollment.

All subjects were followed for 1 year and were clinically and radiologically assessed at

baseline and at least once every two months, thereafter. In particular, subjects were evalu-

ated on 11 pre-specified neuroperformance measures, including an examination of cerebellar

function. In the study, the primary endpoint was survival and secondary endpoints included

neurological progression. In our analysis, we focused on the cerebellar examination measure

as our secondary endpoint. Of the 219 subjects with complete baseline information, 204

were observed to die, 100 subjects were observed to progress on the cerebellar examination

prior to death, and of the 15 subjects who did not die, 4 were observed to have cerebellar

progression.

Besides treatment assignment, other important baseline prognostic factors included

age, race, Karnofsky performance score, local vs. whole brain radiation, “active” vs. “quies-

cent” tumors, percent of tumor resection, previous use of nitrosoureas, and tumor histology
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(glioblastoma, anaplastic astrocytoma, oligodendroglioma, or other) at implantation, For the

219 subjects with complete prognostic inofrmation, Table 1 compares summary statistics for

each of these factors, stratified by treatment group. In Section 7, we will precisely define

2.3 Scientific Objective

The main objective is to evaluate the joint causal effect of treatment both on time to death

and on time to cerebellar progression, while adjusting for apriori-defined baseline prognostic

factors. The proper definition, much less estimation, of the effect of treatment on cerebellar

progression is subtle and will be discussed briefly in the following section after we introduce

the necessary notation. An extensive discussion is deferred to Section 5.

3 Data and Model

3.1 Data

Let Z = (V, W ′)′, where V denotes a binary treatment indicator and W is a q-dimensional

bounded, random vector of additional regressors with a mixture of possibly discrete and

continuous components. We assume that the kth component of Z has support of [lk, uk],

where −∞ < lk < uk < ∞. Since the first component of Z is binary, l0 = 0 and u0 = 1. Let

Y 0 denote the logarithm of the time to death, X0 denote the logarithm of time of disease

progression, and C denote the logarithm of the censoring time due to random loss to follow-

up. X0 and Y 0 may be correlated. Let X = X0∧Y 0∧C, δ = I(X0 ≤ Y 0∧C), Y = Y 0∧C,

and ξ = I(Y 0 ≤ C). . The observed data for an individual are O = (X,Y, Z, δ, ξ). Note that

Y 0 censors X0 but not vice versa.
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3.2 Model

We specify our model without regard to censoring. We will address the issue of censoring in

the identifiability and estimation sections to follow.

We will assume, until Section 5, that X0 is well-defined for subjects with X0 6< Y 0.

When Y 0 denotes time to death, this assumption has been criticized by Kalbfleisch and

Prentice (1980), who argue that X0 should be considered as undefined. It is of interest to

consider estimation of causal effects under this latter assumption because

(i) in many studies, Y 0 does not denote time to death and the methodology developed

in this paper is applicable to such studies, e.g,, in a short-term study comparing the

effects of two antidepressant on time to first clinical improvement (X0) and to non-

compliance (Y 0), where scientific interest lies in regarding X0 as censored by Y 0 but

not vice-versa.

(ii) even when Y 0 is death time, settings may exist in which it is reasonable to regard X0

as well defined even when X0 ≮ Y 0. As in Robins and Greenland (2000), consider

a study in which a cohort of young children in a developing country are followed for,

say 5 years, for the development of abnormal blood pressure. Since children are highly

unlikely to die from hypertension, it might be reasonable to imagine the time that

they would have developed abnormal blood pressure had their death been prevented.

It would not be reasonable if, instead, we had followed a cohort of adults.

In Section 5.2.2, we provide conditions under which our method delivers consistent

estimates of the effect of treatment on X0, when X0 is considered undefined for subjects

X0 ≮ Y 0.

We now define the bivariate quantile-quantile regression model. The model is ex-

pressed as a quantile-quantile mapping between conditional distributions. Specifically, the

6

http://biostats.bepress.com/jhubiostat/paper137



model assumes that

SY 0(t|V = 1, W = w) = SY 0(r(t, w; η0a)|V = 0, W = w) (1)

SY 0(t|V = 0, W = w) = SY 0(r∗(t, w; η0b)|V = 0, W = 0) (2)

and

SX0(t|V = 1, Y 0 = r−1(u, w; η0a), W = w) = SX0(q(t, u, w; θ0a)|V = 0, Y 0 = u, W = w)

(3)

SX0(t|V = 0, Y 0 = r∗−1(u, w; η0b), W = w) = SX0(q∗(t, u, w; θ0b)|V = 0, Y 0 = u, W = 0)

(4)

where r(t, w; ηa), r∗(t, w; ηb), q(t, u, w; θa), and q∗(t, u, w; θb) are known increasing func-

tions of t with well defined inverses with respect to their first arguments, r∗(t, 0; η0b) = t,

q∗(t, u, 0; θ0b) = t,

• r(t, w; η0a) is the quantile-quantile mapping function between the distribution of time

to death among treated subjects with covariates w and the distribution of time to

death among untreated subjects also with covariates w (see Figure 1),

• r∗(t, w; η0b) is the quantile-quantile mapping function between the distribution of time

to death among untreated subjects with covariates w and the distribution of time to

death among untreated subjects with covariates W = 0,

• q(t, u, w; θ0a) is the quantile-quantile mapping between the distribution of time to pro-

gression among treated subjects with covariates w who die at r−1(u, w; η0a) and the

distribution of time to progression among untreated subjects with covariates w who

die at u (see Figure 2), and

• q∗(t, u, w; θ0b) is the quantile-quantile mapping between the distribution of time to

progression among untreated subjects with covariates w who die at r∗−1(u, w; η0b) and

7
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the distribution of time to progression among untreated subjects with covariates w

who die at u with covariates W = 0.

Define η0 = (η′0a, η
′
0b)

′ and θ0 = (θ′0a, θ
′
0b)

′ as the true parameter vectors with η0a,

η0b, θ0a, and θ0b variation independent. Note that the right hand side of (3) is conditioned

on untreated subjects who die at time u with covariates w, whereas the right hand side

is conditioned on treated subjects with covariates w who die at the same percentile of the

conditional death time distribution as those who are untreated (since, from (1), SY 0(u|V =

0, W = w) = SY 0(r−1(u, w; η0)|V = 1, W = w)).

The above model can be re-written as follows:

SY 0(t|V = 1, W = w) = SY 0(m(t, w; η0)|V = 0, W = 0) (5)

where m(t, w; η0) = r∗(r(t, w; η0a), w; η0b) and

SX0(t|V = 1, Y 0 = m−1(u, w; η0), W = w) = SX0(l(t, u, w; η0b, θ0)|V = 0, Y 0 = u, W = w)

(6)

where l(t, u, w; η0b, θ0) = q∗(q(t, r∗−1(u, w; η0b), w; θ0a), u, w; θ0b)

Define the following random variables

R̃(η0a) = V r(Y 0, W ; η0a) + (1− V )Y 0 (7)

M̃(η0) = V m(Y 0, W ; η0) + (1− V )r∗(Y 0, W ; η0b)

= M̃(Y 0, Z; η0) (8)

Q̃(η0a, θ0a) = V q(X0, R̃(η0a), W ; θ0a) + (1− V )X0 (9)

L̃(η0, θ0) = V l(X0, M̃(η0), W ; η0b, θ0) + (1− V )q∗(X0, M̃(η0), W ; θ0b)

= L̃(X0, M̃(Y 0, Z; η0), Z; θ0) (10)
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Under(1)-(6), we can prove the following lemma (see Appendix):

Lemma 1. (a) R̃(η0a) is independent of V given W ; (b) M̃(η0) is independent of Z; (c)

Q̃(η0a, θ0a) is independent of V given W and R̃(η0a); (d) L̃(η0, θ0) is independent of Z given

M̃(η0); (e) (M̃(η0), L̃(η0, θ0)) is independent of Z.

To link this model to other model forms, consider the following model:

Y 0 = V g1(W ; η0a) + g2(W ; η0b) + ν (11)

X0 = V h1(W, g2(W ; η0b) + ν; θ0a) + h2(W, ν; θ0b) + ε (12)

where g1, g2, h1 and h2 are specified functions of their arguments, g2(0; η0b) = 0, h2(0, ν; θ0b) =

0 and (ν, ε) are joint independent of Z. No restrictions are placed on the joint distribution

of ν and ε. This model is a special case of the bivariate quantile-quantile regression model

with

r(t, w; η0a) = t− g1(w; η0a)

r∗(t, w; η0b) = t− g2(w; η0b)

m(t, w; η0) = t− g1(w; η0a)− g2(w; η0b)

q(t, u, w; θ0a) = t− h1(w, u; θ0a)

q∗(t, u, w; θ0b) = t− h2(w, u; θ0b)

l(t, u, w; θ0, η0b) = t− h1(w, g2(w; η0b) + u; θ0a)− h2(w, u; θ0b)

M̃(η0) = ν

L̃(η0, θ0) = ε

9
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The following special case of the above model with

g1(W ; η0a) = η0a

g2(W ; η0b) = W ′η0b

h1(W, u; θ0a) = θ0a

h2(W, u; θ0b) = W ′θ0b

is the bivariate linear regression model:

Y 0 = V η0a + W ′η0b + ν (13)

X0 = V θ0b + W ′θ0b + ε (14)

Lin, Wei, and Robins (1996) considered the special case without covariates W . They referred

to their model as the bivariate location-shift model. Robins 1995 (a,b) and Peng and Fine

(2006) considered the case with covariates.

Henceforth, we again allow censoring by administrative censoring or loss to follow-up

C. Further, we assume that C and Z are jointly independent of M̃(η0) and L̃(η0, θ0).

4 Identifiability of η0 and θ0

4.1 Identifiability of η0

The parameter η0 in the bivariate quantile-quantile regression model is identifiable because

the conditional survivor function, SY 0(·|V = v, W = w), for v = 0, 1 and all w, is identifiable.

Under the independent censoring assumption and the fact that, given V and W , there is a
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one-to-one mapping between Y 0 and M̃(η0), and

λY 0(y|V = v, W = w) = λY 0(y|V = v, W = w, C ≥ y) (15)

where λY 0(y|·) = limdy→0 P [y ≤ Y 0 < y + dy|Y 0 ≥ y, ·]/dy is the hazard for Y 0 given ·.

The right hand side of (15) is the cause-specific hazard for death and is identifiable from the

distribution of the observed data. The conditional survivor function is identifiable since it

be written in terms of the cause-specific hazard as follows:

SY 0(t|V = v, W = w) = exp

(
−

∫ t

−∞
λY 0(y|V = v, W = w,C ≥ y)dy

)
,

Thus,

r(t, w; η0a) = S−1
Y 0 (SY 0(t|V = 1, W = w)|V = 0, W = w)

r∗(t, w; η0b) = S−1
Y 0 (SY 0(t|V = 0, W = w)|V = 0, W = 0)

m(t, w; η0) = S−1
Y 0 (SY 0(t|V = 1, W = w)|V = 0, W = 0)

We assume that the conditional distribution Y 0 given V = v and W = w has positive support

on (−∞, τ ] and P [C > τ |V = v, W = w] > 0, for some specified −∞ < τ < ∞ and for all

v and w. So, r(t, w; η0a), r∗(t, w; η0b), and m(t, w; η0) will be identifiable for t ∈ (−∞, τ ] for

all w. We only define these functions for t ∈ (−∞, τ ].

4.2 Identifiability of θ0

The identification argument for θ0 in bivariate quantile-quantile regression model is more

subtle. The conditional survivor function SX0(·|V = v, Y 0 = y, W = w) is only identifiable

on the support (−∞, y]. Under the independent censoring assumption and the fact that,
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given V and W and Y 0, there is a one-to-one mapping between X0 and L̃(η0, θ0),

λX0(x|V = v, Y 0 = y, W = w) = λX0(x|V = v, Y 0 = y, W = w, C ≥ y) (16)

where λX0(x|·) = limdx→0 P [x ≤ X0 < x + dx|X0 ≥ x, ·] is the hazard for X0 given ·. The

right hand side of (16) is identifiable from the observed data distribution for x ≤ y. Thus,

the conditional survivor function is identifiable on (−∞, y] since, we can write it as

SX0(t|V = v, Y 0 = y, W = w) = exp

(
−

∫ t

−∞
λX0(x|V = v, Y 0 = y, W = w, C ≥ y)dx

)
,

We assume that the conditional distributon of X0 given V = v, Y 0 = y, and W = w has

positive density on (−∞, y]. Since the right and left hand sides of (3,4,6) are conditioned on

different times of death, the quantile-quantile mapping functions q(t, u, w; θ0a), q∗(t, u, w; θ0b),

and l(t, u, w; η0b, θ0) are only identified, respectively, on the sets

Aq = {(t, u, w) : t ≤ min{r−1(u, w; η0a), q(u, u, w; θ0a)}}

Aq∗ = {(t, u, w) : t ≤ min{r∗−1(u, w; η0a), q
∗(u, u, w; θ0b)}}

Al = {(t, u, w) : t ≤ min{m−1(u, w; η0), l(u, u, w; η0b, θ0)}}

Since, by definition,

q(t, u, w : θ0a) = S−1
X0(SX0(t|V = 1, Y 0 = r−1(u, w; η0a), W = w)|V = 0, Y 0 = u, W = w)

q∗(t, u, w : θ0b) = S−1
X0(SX0(t|V = 0, Y 0 = r∗−1(u, w; η0b), W = w)|V = 0, Y 0 = u, W = 0)

l(t, u, w : η0a, θ0) = S−1
X0(SX0(t|V = 1, Y 0 = m−1(u, w; η0), W = w)|V = 0, Y 0 = u, W = w)

we can see that these functions may not be identified off their respective sets above. For

example, if we had specified the model

q(t, u, w; θa) = (t− θa1) I ((t, u, w) ∈ Aq) + (t− θa2) I ((t, u, w) /∈ Aq)
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where θa = (θa1, θa2), θa1 and θa2 variation independent and θ0a = (θ0a1, θ0a2), then θ0a1 would

be identified but θ0a2 would not be. However, for most specifications for q(t, u, w; θ0a), the

function q(t, u, w; θ0a) even restricted to Aq uniquely determines θ0a and thus (by extrapola-

tion), the function the q(t, u, w; θ0a) on the complement of Aq as well. It follows that, under

such a specification, q(t, u, w; θ0a) is globally identified. We can make similar arguments for

the global identification of q∗(t, u, w; θ0b) and l(t, u, w; θ0). Identification of these functions

will imply that θ0 is identified.

5 Causal Interpretation of η0a and θ0a

To talk about causality, it is very useful to think in terms of potential outcomes (Rubin,

1974). Define Y 0(v) to be the logarithm of time to death if the subject, possibly contrary

to fact, had been given treatment v (v = 0, 1). Define X0(v) to be the logarithm of time to

disease progression under treatment v. We will discuss causal interpretations when X0(v) is

and is not well defined after Y 0(v).

Under randomization, V is independent of (W, Y 0(0), Y 0(1), X0(0) : X0(0) ≤ Y 0(0), X0(1) :

X0(1) ≤ Y 0(1)).

5.1 Interpretation of η0a

Under randomization, Model (1) can be written as

SY 0(1)(t|W = w) = SY 0(0)(r(t, w; η0a)|W = w) (17)

where SY 0(z)(·|W = w) is the continuously, differential conditional survivor function of Y 0(z)

given W = w. As a result, r(t, w; η0a) can be interpreted as the quantile-quantile mapping

function between the distribution of death under treatment and the distribution of death

13
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under no treatment, among subjects with covariates w (see Figure 1). Since the quantile-

quantile mapping function is a comparison of the distributions of potential outcomes on the

same cohort of subjects, namely those with covariates w, the function and its parameters

are causally interpretable. In contrast, the function r∗(t, w; η0b) and η0b are not causally

interpretable because W is not randomized.

It is useful to note that

r(t, w; η0a) = S−1
Y 0(0)(SY 0(1)(t|W = w)|W = w)

and

r(Y 0(1), w; η0)
D(w)
= Y 0(0)

where
D(w)
= denotes equality in distribution given W = w.

Under the bivariate linear regression model (13,14), we have that r(t, w; η0) = t−η0a.

So, we see that η0a is the constant additive shift in the death time distribuion due to the causal

effect of treatment. Since W was not randomized η0b does not have a casual interpretation.

5.2 Interpretation of θ0a

We now consider conditions under which θ0a has a causal interpretation under randomization.

In Section 5.2.1, we assume X0 is well-defined for all subjects. In Section 5.2.2, we assume

X0 is defined only in subjects with X0 ≤ Y 0.

5.2.1 X0 is well-defined for all subjects.

Under randomization, model (1,3) can be written as

SX0(1)(t|Y 0 = r−1(u, w; η0a), W = w) = SX0(0)(q(t, u, w; θ0a)|Y 0 = u, W = w) (18)
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Further, suppose q(t, u, w; θ0a) = q(t, w; θ0a) is free of u for all (t, u, w). Then,

SX0(1)(t|W = w) = SX0(0)(q(t, w; θ0a)|W = w) (19)

So, when X0 is well defined for all subjects, q(t, w; θ0a) can be interpreted as the quantile-

quantile mapping function between the distribution of progression under treatment and the

distribution of progression under no treatment, among subjects with covariates w. That is,

q(t, w; θ0a) is the causal conditional quantile-quantile function S−1
X0(0)(SX0(1)(t|W = w)|W =

w).

Now, suppose that q(t, w, u; θ0a) depends on u. Then, in general, q(t, w, u; θ0a) does

not have a causal interpretation. This reflects the fact that, except under special circum-

stances described in the next subsection, the subset of the population defined by the event

{Y 0 = r−1(u, w; η0a), W = w} will generally differ in the distribution of counterfactuals

{X0(0), X0(1)} than the subset of the population defined by the event Y 0 = u, W = w. It

follows that, even under the sharp null hypothesis

X0(1) = X0(0) with probability 1

of no treatment effect of X0, we would not expect q(t, u, w; θ0a) = t to hold for all (u, w).

Thus, q(t, u, w; θ0a) would not have a causal interpretation.

To understand the implications of this result, consider the bivariate regression model

specified in (11,12) where h1(w, u; θ0a) = h1(w; θ0a1) does not depend on u. Then, q(t, u, w; θ0a) =

t − h1(w; θ0a1). A goodness of fit test can be based on an expanded model in which

h1(w, u; θ0a) = h1(w; u; θ0a1) + θ0a2u in model (11,12). If the hypothesis θ0a2 = 0 is re-

jected, then q(t, u, w : θ0a) in the expanded model does not have a causal interpretation.

Even if the hypothesis is not rejected, and q(t, u, w; θ0a) = t− h1(w; θ0a1) on Aq, it is always
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possible that

q(t, w, u; θ0a) = (t− h1(w; θ0a1)I((t, u, w) ∈ Aq) + g(t, u, w; θ0a3)I((t, u, w) 6∈ Aq)

for some function g(t, u, w; θ0a3) defined on Ac
q. If g(t, u, w; θ0a3) 6= t − h2(w; θ0a1) for some

(t, u, w) ∈ Ac
q, then q(t, u, w; θ0a) 6= t− h1(w; θ0a,1) for all (t, u, w). Thus, q(t, u, w; θ0a) does

not have a causal interpretation. Furthermore, since q(t, u, w : θ0a) is only identified on Aq,

we cannot test from the data whether q(t, u, ; : θ0a) 6= t− h1(w; θ0a1) on Ac
q.

5.2.2 If X0 is not defined for subjects with X0 � Y 0

In the previous subsection we saw that if X0 is well-defined for all subjects, then (i)

q(t, u, w; θ0a) is well defined for all (t, u, w) but only identified onAq and (ii) if q(t, u, w; θ0a) =

q(t, w; θ0a) for all (t, u, w) then q(t, w; θ0) had a causal interpretation as the causal quantile-

quantile function S−1
X0(0)(SX0(1)|W=w(t|W = w).

If X0 is undefined for subjects with X0 � Y 0, then (i) q(t, u, w; θ0a) is only defined

and identified on Aq and (ii) the distributions SX0(1)(t|W = w) and SX0(0)(t|W = w) are not

well-defined and thus, even if q(t, u, w; θ0a) = q(t, w; θ0a) where defined, q(t, w; θ0a) does not

have a causal interpretation, except under special circumstances. These circumstances are

that the following rank preservation assumption (Robins, 1995a) holds:

r(Y 0(1), w; η0) = Y 0(0) with probability 1(w)

This assumption implies that the rank ordering of subjects by Y 0 in the absence of treatment

is preserved under treatment.

Under rank preservation and randomization, we can now write model (1,3) as

SX0(1)(t|Y 0(0) = u, W = w) = SX0(0)(q(t, u, w; θ0a)|Y 0(0) = u, W = w) (20)
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for (t, u, w) ∈ Aq. Thus, q(t, u, w; θ0a) is, for (t, u, w) ∈ Aq, the quantile-quantile mapping

function between the distribution of disease progression under treatment and the distribution

of disease progression under no treatment, among subjects who die at time u under no

treatment and have covariates w (see Figure 2). Since the quantile-quantile mapping function

is a comparison of the distributions of the potential outcomes on X0(1) and X0(0) for a fixed

subset of subjects, namely those with die at time u under no treatment and covariates w,

the function and its parameters are causally interpretable. Thus, under rank preservation,

q(t, u, w; θ0a) has a causal interpretation even when it depends on u. Robins (1986, Section

12.2, 1995ab, 2000) introduced this idea of defining causal contrasts conditional on functions

of counterfactual survival times to deal with censoring by death. Frangakis and Rubin (2001)

later discussed the same idea under the rubric of “principal stratification.”

In many settings, the assumption of rank preservation is untenable. In that case,

when X0 is not defined for subjects with X0 6≤ Y 0, the causal effect of treatment on X0

will generally not be identfied in any subset of the study population. Sensitivity analysis

or bounding methods would be required,. As of now, the development of formal sensitivity

analysis methods that use all available failure time information remains an open problem.

6 Estimation

6.1 More Notation

Our objective is to use the observed data to draw inference about β0 = (θ0, η0). We assume

β0 lies in the interior of a compact set β. For notational covenience, let

NY 0(u; η) = I(M̃(Y, Z; η) ≤ u, ξ = 1)
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and

NX0(u; θ, η) = I(L̃(X, M̃(Y, Z; η), Z; θ) ≤ u, δ = 1)

Let H(·, ·) denote the joint c.d.f. of Z and Y , FM̃,L̃(·, ·) denote the joint c.d.f. of M̃(η0) and

L̃(η0, θ0), and ΛM̃(·) and fM̃(·) denote the cumulative hazard and density functions of M̃(η0).

Let FZ denote the cumulative distribution function of Z, and SC and ΛC denote the survivor

and cumulative hazard functions of C, respectively. Let NC(t) = I(Y ≤ t, ξ = 0) and

MC(t) = NC(t) −
∫ t

−∞ I(Y ≥ u)dΛC(u)du. Throughout, true distributions are subscripted

by zero and expectations without subscripts are taken with respect to the true law of the

observed data, P0.

6.2 Estimating Function for η0

Consider the following estimating function for η0;

U1(O; β, H) =

∫ ∞

−∞
{a(Z)− EH [a(Z)|M̃(Y, Z; η) ≥ u]}dNY 0(u; η)

=

∫ ∞

−∞
{a(Z)− EH [a(Z)I(M̃(Y, Z; η) ≥ u)]

EH [I(M̃(Y, Z; η) ≥ u)]
}dNY 0(u; η)

=

∫ ∞

−∞
{a(Z)−

∫
z,y

a(z)I(M̃(y, z; η) ≥ u)dH(z, y)∫
z,y

I(M̃(y, z; η) ≥ u)dH(z, y)
}dNY 0(u; η)

where a(Z) is a bounded function of Z with the same dimension as η.

Let V1(β, P ) =
∫

U1(o; β, H)dP (o), where H is a function of P , the probability mea-

sure assigned to O. In the Appendix, we prove the following lemma;

Lemma 2. V1(β0, P0) = E[U1(O; β0, H0)] = 0.

The above estimating function is a generalization of one proposed by Tsiatis (1990)

for classic linear regression with censored outcomes. For this special case, the estimating
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function, with a(Z) = Z, reduces to:

U1(O; β, H) =

∫ ∞

∞

{
Z − EH [ZI(Y − Z ′η ≥ u)]

EH [I(Y −W ′η ≥ u)]

}
dNY 0(u)

Working the residual death time scale, this estimating function compares, for a subject who

has been observed to die, his observed covariate vector to the expected value of the covariate

vectors of subjects still at risk for death at that time. When covariates W are excluded,

the resulting estimating function is the same one proposed by Louis (1981), Wei and Gail

(1983), and subsequently utilized by Lin, Robins, and Wei (1996) and Peng and Fine (2006).

6.3 Estimating Function of θ0

Assume η0 is known. Now, consider the following estimating function:

U2(O; θ, η0,H)

=
∫ ∞

−∞

∫ ∞

−∞

{
b(Z, s, u)− EP [b(Z, s, u))|L̃(Y, M̃(Y,Z; η0), Z; θ) ≥ u, M̃(Y,Z; η0) = s, ξ = 1]

}
dNX0(u; θ, η0)dNY 0(s; η0)

=
∫ ∞

−∞

∫ ∞

−∞

{
b(Z, s, u)− EP [b(Z, s, u)I(L̃(Y, s, Z; θ) ≥ u)|M̃(Y, Z; η0) = s, ξ = 1]

EP [I(L̃(Y, s, Z; θ) ≥ u)|M̃(Y,Z; η0) = s, ξ = 1]

}
dNX0(u; θ, η0)dNY 0(s; η0)

=
∫ ∞

−∞

∫ ∞

−∞

{
b(Z, s, u)− EP [b(Z, s, u)I(L̃(M̃−1(s, Z; η0), s, Z; θ) ≥ u)|M̃(Y, Z; η0) = s, ξ = 1]

EP [I(L̃(M̃−1(s, Z; η0), s, Z; θ) ≥ u)|M̃(Y,Z; η0) = s, ξ = 1]

}
dNX0(u; θ, η0)dNY 0(s; η0)

=
∫ ∞

−∞

∫ ∞

−∞

{
b(Z, s, u)− EH [b(Z, s, u)I(L̃(M̃−1(s, Z; η0), s, Z; θ) ≥ u)|M̃(Y,Z; η0) ≥ s]

EH [I(L̃(M̃−1(s, Z; η0), s, Z; θ) ≥ u)|M̃(Y, Z; η0) ≥ s]

}
dNX0(u; θ, η0)dNY 0(s; η0)

=
∫ ∞

−∞

∫ ∞

−∞

{
b(Z, s, u)− EH [b(Z, s, u)I(L̃(M̃−1(s, Z; η0), s, Z; θ) ≥ u, M̃(Y, Z; η0) ≥ s)]

EH [I(L̃(M̃−1(s, Z; η0), s, Z; θ) ≥ u, M̃(Y, Z; η0) ≥ s)]

}
dNX0(u; θ, η0)dNY 0(s; η0)

=
∫ ∞

−∞

∫ ∞

−∞

{
b(Z, s, u)−

∫
z,y

b(z, s, u)I(L̃(M̃−1(s, z; η0), s, z; θ) ≥ u, M̃(y, z; η0) ≥ s)dH(z, y)∫
z,y

I(L̃(M̃−1(s, z; η0), s, z; θ) ≥ u, M̃(y, z; η0) ≥ s)dH(z, y)

}
dNX0(u; θ, η0)dNY 0(s; η0)

where b(Z, s, u) is a specified function of Z, s and u with the same dimension as θ.

Let V2(β, P ) =
∫

U2(o, β,H)dP (o). In the Appendix, we prove the following lemma:
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Lemma 3. V2(β0, P0) = E[U2(O; β0, H0)] = 0.

In the context of the bivariate linear regression model, the above estimating function,

with b(Z, s, u) = Z, reduces to

U2(O; θ, η, H) =

∫ ∞

−∞

∫
−∞

{
Z − EH [ZI(Z ′(η − θ) ≥ u− s, Y − Z ′η ≥ s)]

EH [I(Z ′(η − θ) ≥ u− s, Y − Z ′η ≥ s)]

}
dNX0(u; θ)dNY 0(s; η)

In this estimating function, one compares, for a subject who is observed to die and progress,

his observed covariate vector to the expected value of the the covariate vectors for subjects

who are observed to die and share the same observed death time (on the residual death time

scale) and who at are risk for death at the progression time (on the residual progression

scale).

Without covariates W , this latter estimating function is different than that proposed

by Lin, Robins, and Wei (1996). The extension of their estimating function to covariates W

would be ∫ ∞

−∞
{Z − EP [Z|X̃(β) ≥ u]}dÑX0(u; β)

where X̃(β) = min(X0 − Z ′θ, Y − Z ′η − d(β)), δ̃(β) = I(X0 − Z ′θ ≤ Y − Z ′η − d(β)),

ÑX0(u; β) = I(X̃(β) ≤ u, δ̃(β) = 1), d(β) =
∑q

k=1(θk − ηk){I(θk − ηk > 0)uk + I(θk − ηk <

0)lk}. The function d(β) is chosen so that (1) it does not depend on Z and (2) δ̃(β0) = 1

implies that δ = 1. As a result, progression events are artificially censored. The above

estimating function can be shown to have mean zero at the truth. The problem with their

estimating function is that it is not practically useful for the setting in which high-dimensional

covariates W are included. In this setting, there will be excessive artificial censoring.

Arguing that excessive artificial censoring with high-dimensional covariates is caused

by the fact that d(β) is invariant across subjects, Peng and Fine (2006) introduced a U-

statistic based estimating function that performs artificial censoring within pairs of subjects

and then sums over all possible pairs. Their approach allows the trimming to be differ across
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pairs of subjects, thus reducing the level of artificial censoring. Specifically, for pair (i, j),

the contribution to the estimating function is

(Zi − Zj)
{

δ̃ij(β)I(X̃j(β) ≥ X̃i(β) + δ̃ji(β)I(X̃i(β) ≥ X̃j(β)
}

where X̃ij(β) = min(X0
i − Z ′

iθ, Yi − Z ′
iη − dij(β)), δ̃ij(β) = I(X0

i − Z ′
iθ ≤ Yi − Z ′

iη − dij(β))

and dij(β) = max{0, (θ−η)′Zi, (θ−η)′Zj}. The continuing need for artificial censoring could

possibly adversely affect the efficiency of their estimator compared to ours. See below for

further discussion of this issue.

6.4 Estimation of β0

Let V (β, P ) = (V1(β, P ), V2(β, P ))′. Since V (β, P0) is continuous and differentiable in β and

V (β0, P0) = 0, it is natural to think of estimating β0 as the solution to V (β, Pn) = 0, where Pn

is the empirical distribution of the observed data. Unfortunately, V (β, Pn) is discontinuous

in β. Thus, we propose to estimate β0 as the maximizer, βn, of Qn(β) = −V (β, Pn)′V (β, Pn).

In the next section, we show that βn is a consistent and asymptotically normal estimator of

β0 and we construct a consistent estimator of its asymptotic variance.

7 Large Sample Theory

Our results rely on high-level framework for large sample estimation developed by Newey

and McFadden (NM;1994). For convenience, in Section 5.1, we reproduce their Theorems

7.1, 7.2 (with W = I), and 7.4. In Section 5.2, we introduce regularity conditions. In section

5.3, we present two lemmas that pave our way for the main large sample results, which are

stated as two Theorems in Section 5.4. In what follows, let Q0(β) = −V (β, P0)
′V (β, P0).
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7.1 Theorems of Newey and McFadden

Theorem 1 (7.1 of NM). If there is a function Q0(β) such that (i) Q0(β) is uniquely

maximized at β0; (ii) β is compact; (iii) Q0(β) is continuous; (iv) Qn(β) converges uniformly

to Q0(β), then βn converges in probability to β0

Theorem 2 (7.2 of NM). Suppose (i) βn converges in probability to β0; (ii) V (β0, P0) = 0;

(iii) V (β, P0) is differentiable at β0 with derivative G(β0, P0); (iv) β0 is in the interior of

β; (v)
√

nV (β0, Pn)
D→ N(0, Σ(β0, P0)); ( vi) for any εn → 0, sup‖β−β0‖≤εn

√
n‖V (β, Pn) −

V (β0, Pn)− V (β, P0)‖/{1 +
√

n‖β − β0‖}
P→ 0. Then,

√
n(βn − β0)

D→ N(0, G(β0, P0)
−1Σ(β0, P0)G(β0, P0)

−1′).

Let G†(βn, Pn)) be a numerical derivative estimator of G(β0, P0), where the jth column

of G†(β, Pn)) is

G†
j(β, Pn) = {V (β + ejεn, Pn)− V (β − ejεn, Pn)}/(2εn) (21)

and ej is the jth unit vector.

Theorem 3 (7.4 of NM). Suppose εn → 0 and εn

√
n →∞. If the conditions of Theorems

1 and 2 hold, then G†(βn, Pn)
P→ G(β0, P0).

7.2 Regularity Conditions

Let

f1(z, y, u; β) ≡ I(M̃(y, z; η) ≥ u)

f2(z, y, u, s; β) ≡ I(L̃(M̃−1(s, z; η), s, z; θ) ≥ u, M̃(y, z; η) ≥ s).

22

http://biostats.bepress.com/jhubiostat/paper137



Partition Z into its continuous components Zc and its discrete components Zd.

RC1: Let the parameter space of β be a Euclidean sphere, that is, β = {β :‖ β ‖≤ M} for

some M < ∞.

RC2: β0 lies in the interior of β

RC3: V (β, P0) = 0 has only one solution in β.

RC4: For some L, ‖Z‖ < L with probability 1.

RC5: Assume that

G1 ≡ {O → U1(O, β, H) : β, H} is a uniformly bounded P0-Donsker class,

F1 ≡ {(z, y) → f1(z, y, u; β) : u, β} is a uniformly bounded H0-Donsker class,

and with probability 1,

I(ξ = 1)

∫
f1(z, y, M̃(Y, Z; η); β)dH0(y, z) > δ > 0

for some δ > 0 uniformly in β ∈ β.

RC6: Assume that

G2 ≡ {O → U2(O; β, H) : β, H} is a uniformly bounded P0-Donsker class,

F2 ≡ {(z, y) → f2(z, y, u, s; β) : u, s, β} is a uniformly bounded H0-Donsker class,

Fb ≡ {z → b(z, s) : s} is a uniformly bounded H0-Donsker class,

and with probability 1,

I(δ = ξ = 1)

∫
f2(z, y, L̃(X, M̃(Y, Z; η), Z; θ), M̃(Y, Z; η); β)dH0(y, z) > δ
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for some δ > 0, uniformly in β ∈ β.

RC7: Within all the possible levels of (δ, ξ, Zd), the sub-distribution of (X, Y, Zc) is absolutely

continuous w.r.t. Lebesgue measure.

RC8: The derivative (with respect to β) of V (β, P0), G(β, P0), exists, is invertible and con-

tinuous at β0

The regularity conditions RC1-RC4 are standard, and state, beyond boundedness

conditions on the parameter space for β and Z, that the estimating equation asymptotically

uniquely identifies the true parameter value. RC7 and RC8 are also standard smoothness

condition necessary to make our estimator a smooth enough function of the empirical dis-

tribution so that it is asymptotically linear, and thus asymptotically normally distributed

(that is, it behaves as a sample mean in first order).

The Donsker class conditions RC5 and RC6 are necessary in order to establish the

wished asymptotic linearity. For a given class (e.g., G1), it holds, if each of the functions in

this class, considered as a multivariate real valued function in (x, y, zc), given (δ, ξ, Zd), have

a uniform sectional variation norm bounded by a universal constant (Gill, van der Laan,

Wellner, 1994). The uniform sectional variation norm of a multivariate function is defined

as the supremum over all its sections of the regular variation norm of the given section

of the function, where a section of a multivariate function is one of the lower dimensional

functions one obtains by fixing one or more of the coordinates. To establish such a result

one typically assumes that, within levels of (δ, ξ, Zd), the support of (X, Y, Zc) is compact.

In words, these classes are Donsker classes if, within levels of (δ, ξ, Zd), they are reasonably

smooth (regarding changes in value, e.g. number of jumps) functions in (X, Y, Zc), and that

(X, Y, Zc) has compact support. We refer to van der Vaart, Wellner (1996) for many more

examples of Donsker classes.
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7.3 Two Lemmas

The following lemmas provide us with a linear expansion of V (β, Pn)− V (β, P0) uniform in

β, which will be fundamental in proving consistency and asymptotic normality of βn. The

proof of Lemma 4 is provided in the Appendix. Lemma 3 follows the same logic. We will

use the notation Pf =
∫

f(x)dP (x).

Lemma 4. Under regularity conditions RC4 and RC5,

V1(β, Pn)− V1(β, P0) = (Pn − P0)IC1(· | β, P0) + Rn,1(β, P0),

where

IC1(O | β, P0) = U1(O; β, H0)−
∫

a(Z)f1(Z, Y, u; β)∫
f(z, y, u; β)dH0(y, z)

E[dNY 0(u, η0)]+∫
f1(Z, Y, u; β)

∫
a(z)f1(z, y, u; β)dH0(y, z)(∫

f1(z, y, u; β)dH0(y, z)
)2 E[dNY 0(u, η0)],

{O → IC1(O | β, P0) : β ∈ β} is a P0-Donsker class, and sup
β∈β ‖ Rn,1(β, P0) ‖=

oP0(1/
√

n).

Lemma 5. Under regularity conditions RC4 and RC6,

V2(β, Pn)− V2(β, P0) = (Pn − P0)IC2(· | β, P0) + Rn,2(β, P0),

where

IC2(O | β, P0) = U2(O; β, H0)−
∫

b(Z, s, u)f2(Z, Y, u, s; β)∫
f2(z, y, u, s; β)dH0(y, z)

E[(dNX0(u, θ)dNY 0(s, η0))]+∫
f2(Z, Y, u, s; β)

∫
b(z, s)f2(z, y, u, s; β)dH0(y, z)(∫

f2(z, y, u, s; β)dH0(y, z)
)2 E[(dNX0(u, θ)dNY 0(s, η0))],

{O → IC2(O | β, P0) : β ∈ β} is a P0-Donsker class, and sup
β∈β ‖ Rn,2(β) ‖= oP0(1/

√
n).
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Thus, we have that

V (β, Pn)− V (β, P0) = (Pn − P0)IC(· | β, P0) + Rn(β, P0),

where IC(· | β, P0) = (IC1(· | β, P0), IC(· | β, P0))
′ and Rn(β, P0) = (Rn,1(β, P0), Rn,2(β, P0))

′.

7.4 Large Sample Results

7.4.1 Consistency

Under conditions RC1 and RC3, we know that conditions (i) and (ii) of Theorem 1 are

satisfied. Furthermore, under condition RC7, we have that V (β, P0) is continuous in β, and

thus condition (iii) of the general consistency Theorem 1 holds. Finally, under RC4-RC6 (i.e,

the conditions of Lemmas 3 and 4, we have sup
β∈β ‖ V (β, Pn) − V (β, P0) ‖= OP0(1/

√
n).

This tells us that condition (iv) of Theorem 1 holds. Thus, we are in the position to state

the following theorem:

Lemma 6. Under conditions RC1,RC3-RC7, Theorem 1 applies and βn is asymptotically

consistent.

7.4.2 Asymptotic Normality

We now work on the verification of the conditions of the general asymptotic normality

Theorem 2. Lemma 5 verifies condition (i) of Theorem 2. Lemmas 1 and 2 verify condition

(ii). Conditions (iii) and (iv) hold by assumptions RC2 and RC8. From Lemmas 3 and 4,

we know that

√
n{V (β0, Pn)− V (β0, P0)} =

1√
n

n∑
i=1

IC(Oi | β0, P0) + oP0(1),
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where IC(O | β, P0) = (IC1(O | β, P0), IC2(O | β, P0))
>. This proves condition (v) of

Theorem 2 with Σ(β0, P0) = E[IC(O | β0, P0)IC(O | β0, P0)
>].

Regarding condition (vi) of Theorem 2, we note that

δ(n) ≡ V (β0 + εn, Pn)− V (β0, Pn)− V (β0 + εn, P0)

= V (β0 + εn, Pn)− V (β0 + εn, P0)− {V (β0, Pn)− V (β0, P0)} .

This shows that the term δ(n) in condition (vi) can be expected to be second order for

any sequence εn converging to zero, and thus that condition (vi) of Theorem 2 is a natural

condition. By application of the linear expansions of Lemmas 3 and 4 at β0 + εn and β0,

respectively, we have that

V (β0 + εn, Pn)− V (β0 + εn, P0) = (Pn − P0)IC(· | β0 + εn, P0) + oP0(1/
√

n)

V (β0, Pn)− V (β0, P0) = (Pn − P0)IC(· | β0, P0) + oP0(1/
√

n).

Thus,

δ(n) = (Pn − P0){IC(· | β0 + εn, P0)− IC(· | β0, P0)}+ oP0(1/
√

n).

Lemmas (3) and (4) also teach us that {O → IC(O | β, P0) : β} is a P0-Donsker class. It is

well known from empirical process theory that, if 1) fn falls in a Donsker class with proba-

bility tending to 1, and 2)
∫

f 2
n(o)dP0(o) converges to zero in probability, then

∫
fn(o)d(Pn−

P0)(o) = oP0(1/
√

n) (van der Vaart, Wellner, 1996). Consequently, δ(n) = oP0(1/
√

n) if∫
{IC(O | β0 + εn, P0)− IC(O | β0, P0)}2dP0(O) → 0 in probability. It is easy to verify that

the latter holds under the regularity conditions (in particular, RC8). Now, we can state the

following lemma:

Lemma 7. Under conditions RC1-RC8, Theorem 2 applies and βn is asymptotically linear

with influence curve

−G(β0, P0)
−1IC(O | β0, P0).
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In particular,
√

n(βn − β0)
D⇒ N(O, G(β0, P0)

−1ΣG(β0, P0)
−1′), where Σ(β0, P0) = E[IC(O |

β0, P0)IC(O | β0, P0)
′].

7.4.3 Variance Estimation

Under RC1-RC8, Theorem 3 tells us that we can estimate G(β0, P0) by G†(βn, Pn) given

in Equation (3). We can also estimate Σ(β0, P0) by Σ(βn, Pn). Thus, we can consistently

estimate the asymptotic variance of βn by G†(βn, Pn)−1Σ(βn, Pn)G†(βn, Pn)−1>. The consis-

tency of this estimate of the asymptotic variance follows under the same conditions as we

needed for the asymptotic linearity of βn.

8 Simulation Studies

We conducted two simulation studies to evaluate the performace of our estimator. For each

study, we simulated three covariates (Z = (Z(1), Z(2), Z(3))′) in a sequential fashion: Z(1) was

generated as a Bernoulli random variable with probability 0.5, Z(2) given Z(1) was generated

as a truncated (at 2 and 7.5) normal random variable with mean 4.5+0.5Z1 and variance 1,

and Z(3) given Z(1) and Z(2) was generated as a Bernoulli random variable with probability

0.3 + 0.2 ∗ Z1. The true value of θ0 and η0 in (1) and (2) was set equal to (0.4,−0.1,−0.2)

and (0.2,−0.3,−0.4), respectively. We assumed that the censoring time was independent

and followed the log of a uniform (0,c) random variable. 1000 simulated datasets of 250

independent subjects were created for each study.

In the first simulation study, exp(ε) and exp(ν) were generated from a bivariate

exponential with hazard rates 1.0 and 0.2, respectively, and correlation coefficient 0.25. We

set c =??. On average, the censoring rate for death and disease progression was 23.2% and

44.36%, respectively; both progression and death were observed on 40.4% of subjects. 1.8%

of the simulations failed to converge. The results of the converged simulations are presented
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to Table 2 (a). As we see, our estimator of the regression parameters has low bias. This is

seen by comparing the Monte Carlo average (M.C. Avg.) over simulations to the truth. In

addition, our influence-based standard error estimator works well; the Monte Carlo average

of the estimated standard errors (Avg. Est. S.E.) is close to the Monte Carlo standard

deviation (M.C. S.D.) of the simulated estimates. Finally, the coverage rate (Cov. Prob.) of

95% Wald-based confidence is close to the nominal level.

In the second simulation study, ε and ν were generated from a bivariate normal

with means 0.0 and 1.5, respectively, variances 1 and correlation 0.25. Here, we set c = 8.

On average, the censoring rate for death and disease progression was 21.6% and 44.1%,

respectively; both progression and death were observed on 44.8% of subjects. 1.1% of the

simulations failed to converge. As seen in Table 2 (b), our estimation procedure performs

well.

9 Analysis of Glioma Trial

In our analysis of the glioma trial, V is the indicator of assignment to the carmustine ploymer

arm and W is a 10× 1 vector of prognostic factors including resection greater than 75%, age

in years (continuous), white, Karnofsky score greater than 70, local radiation, previous use

of nitrosoureas, active tumor histology, anaplastic astrocytoma subtype, oliodendroglioma

subtype, and other subtype. To evaluate whether a causal interpretation can be (statis-

tically) ruled out, we first fit model (11,12) with g1(W ; η0a) = η0a, g2(W ; η0b) = W ′η0b,

h1(W, u; θ0a) = θ0a1 + θ0a2u and h2(W, u; θ0b = W ′θ0b and tested whether the null hypothesis

θ0a2 = 0 can be rejected at the 0.05 level. In our estimating function, we let a(Z) = Z and

b(Z, s, u) = (Z ′, V u)′. The resulting estimate of θ0a2 is -0.0079, with standard error 0.21.

Using a Wald test, we are unable to reject the null.

Next, we fit the reduced model (13,14). For this model, we used our estimating
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function approach (SRL) and that of Peng and Fine (2006;PF). The results of are shown

in Table 2. Both approaches produce the same inference for regression coefficients of the

death model (see final column). Carmustine ploymer appears to increase the time to death

relative to placebo polymer (95% CI: 0.06,0.50). These results are consistent with Brem et

al. (1995), who fit a proportional hazards regression version of our model for death and

found an adjusted hazard ratio of 0.67 (95% CI: 0.51 -0.90).

For cerebellar progression, inference about the effect of carmustine ploymer depends

on the estimation technique. Our estimating function approach, using a(Z) = Z and

b(Z, s, u) = Z, shows, under rank preservation, that carmustine polymer also increases the

time to progression (95%: 0.07,0.68). In contrast, the approach of Peng and Fine (2006),

who use a resampling-based standard error estimator, do not suggest a benefit of treatment

with carmustine on cerebellar progression (95% -0.23,0.92) 1. In fact , 9 of 11 standard error

estimates are smaller using our approach than that of Peng and Fine (2006). Our progression

results are consistent with Westphal et al. (2003), who reported the results of a follow-up

clinical trial.

10 Discussion

In this paper we have imbedded the bivariate linear regression model for the analysis semi-

competing risks data into a more general quantile-quantile regression model. The use of this

more general model allowed us to clarify the conditions under which the model parameters

have a causal interprestation. Specifically, in settings in which X0 is well-defined even

when X0 ≮ Y 0, we showed in Section 5.2.1 that, even in a randomized experiment, if the

quantile-quantile function q (t, u, w; θ0a) depends on u, the parameter θ0a does not have a

causal interpretation and, in fact, no progression-related causal contrast is identified from

semi-competing risks data. Now the bivariate linear regression model is a special case of

1We are grateful to Limin Peng for conducting this analysis
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our quantile-quantile model for which q (t, u, w; θ0a) is free of u and thus θ0a has a causal

interpretation. However, the dependence of q (t, u, w; θ0a) on u is testable from the data.

Thus we recommend that one never use a bivariate linear regression model without first

testing whether q (t, u, w; θ0a) is free of u. If the test rejects, one should also reject the

bivariate linear regression model and any causal interpretation for θ0a.

In settings in which X0 is not defined when X0 ≮ Y 0, we showed that, in a random-

ized study, the quantile-quantile function q (t, u, w; θ0a) has a causal interpretation, even if

it depends on u, under a strong rank preservation assumption. As this rank preservation

assumption is often unlikely to hold, it would be useful to develop a sensitivity analysis

methodology for our model depending on a non-identified sensitivity-parameter that could

be used estimate the quantile -quantile function linking the distribution of the progression

counterfactual X0 (1) with the counterfactual X0 (0) given Y 0 (0) = u, W = w on the set

where X0 (1) and X0 (0) are well-defined.

Finally in this paper we have not attempted to construct a semiparametric efficient

estimator of θ0a, although we plan to do so in subsequent work. Even so, in our empirical

example, our estimator of θ0a had an estimated variance much smaller than did the rank

estimator of Peng and Fine (2006). The reader may find this suprising because Peng and

Fine (2006) reported results of a simulation study that, in a setting of 2-dimensional Z,

demonstated that their rank estimator had better finite-sample effiiciency properties than

even the semiparametric efficient estimator of Tsiatis in the smaller model that assumes

that X0 and Y 0 are independent given Z . However, the semiparametric efficient estimator

depends on a smoothed estimate of the derivative of the log hazard of X0 − θT
0 Z. Peng and

Fine’s (2006) method of selecting their smoothing parameter resulted in a small bandwidth

and thus large second order variance terms in the expansion of the semiparametric efficient

estimator, resulting in a loss of efficiency in finite samples. The performance of the semi-

parametric efficient estimator could have been improved, possibly considerably, by either

using a larger bandwidth or by using a low dimensional parametric model for the hazard
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of X0 − θT
0 Z that included the truth. This latter estimator would be referred to as locally,

but not globally, semiparamtric efficient. Since we did not attempt to construct a semi-

parametric efficient estimator, our estimator did not require us to estimate any non- root-n

estimable function (such as the derivative of a log hazard) and thus does not include second

order variance terms in its expansion. As a consequence, it would not be suprising for our

estimator to be more efficient than Peng and Fine’s (2006), although we have not carried

out either a detailed comparison, either analytically or by simulation.

Appendix

Proof of Lemma 1:

Part (a) follows since

P [R̃(η0a) > t|V = 1, W = w]
(7)
= P [r(Y 0, W ; η0a) > t|V = 1, W = w]

= P [Y 0 > r−1(t, w; η0a)|V = 1, W = w]

(1)
= SY 0(t|V = 0, W = w)

P [R̃(η0a) > t|V = 0, W = w]
(7)
= SY 0(t|V = 0, W = w)

Part (b) follows since

P [M̃(η0) > t|V = 1, W = w]
(8)
= P [Y 0 > m−1(t, w; η0)|V = 1, W = w]

(5)
= SY 0(t|V = 0, W = 0)

P [M̃(η0) > t|V = 0, W = w]
(8)
= P [Y 0 > r∗−1(t, w; η0b)|V = 0, W = w]

(2)
= SY 0(t|V = 0, W = 0)
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Part (c) follows since

P [Q̃(η0a, θ0a) > t|V = 1, R̃(η0a) = u, W = w]

(7,9)
= P [q(X0, R̃(η0a), w; θ0a) > t|V = 1, r(Y 0, w; η0a) = u, W = w]

= P [X0 > q−1(t, R̃(η0a), w; θ0a)|V = 1, Y 0 = r−1(u, w; η0a), W = w]

(3)
= SX0(t|V = 0, Y 0 = u, W = w)

P [Q̃(η0a, θ0a) > t|V = 0, R̃(η0a) = u, W = w]
(7,9)
= SX0(t|V = 0, Y 0 = u, W = w)

Part (d) follows since

P [L̃(η0, θ0) > t|V = 1, M̃(η0) = u, W = w]

(8)
= P [L̃(η0, θ0) > t|V = 1, Y 0 = m−1(u, w; η0), W = w]

(10)
= P [X0 > l−1(t, u, w; η0b, θ0)|V = 1, Y 0 = m−1(u, w; η0), W = w]

(6)
= SX0(t|V = 0, Y 0 = u, W = 0)

P [L̃(η0, θ0) > t|V = 0, M̃(η0) = u, W = w]

(8,10)
= P [q∗(X0, u, w; θ0b) > t|V = 0, Y 0 = r∗−1(u, w; η0b), W = w]

= P [X0 > q∗−1(t, u, w; θ0b)|V = 0, Y 0 = r∗−1(u, w; η0b), W = w]

(4)
= SX0(t|V = 0, Y 0 = u, W = 0)

Part (e) follows from results (b) and (d).
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Proof of Lemma 2:

V1(η0, P0) = E[

∫ ∞

−∞
{a(Z)− E[a(Z)I(M̃(Y, Z; η0) ≥ u)]

E[I(M̃(Y, Z; η0) ≥ u)]
}dNY 0(u; η0)]

=

∫ ∞

−∞
{E[a(Z)dNY 0(u; η0)]−

E[a(Z)I(M̃(Y, Z; η0) ≥ u)]

E[I(M̃(Y, Z; η0) ≥ u)]
E[dNY 0(u; η0)]}

=

∫ ∞

−∞
{E[a(Z)I(M̃(Y, Z; η0) ≥ u)]dΛM̃(u)−

E[a(Z)I(M̃(Y, Z; η0) ≥ u)]

E[I(M̃(Y, Z; η0) ≥ u)]
E[I(M̃(Y, Z; η0) ≥ u]dΛM̃(u)}

= 0

Proof of Lemma 3:

V2(θ0, η0, P0)

= E

[∫ ∞

−∞

∫ ∞

−∞
{b(Z, s, u)− E[b(Z, s, u)|L̃(Y, M̃(Y, Z; η0), Z; η0) ≥ u, M̃(Y, Z; η0) = s, ξ = 1]}

dNX0(u; θ0)dNY 0(s; η0)]

=

∫ ∞

−∞

∫ ∞

−∞
E[b(Z, s, u)dNX0(u; θ0)dNY 0(s; η0)]− (22)∫ ∞

−∞

∫ ∞

−∞

E[b(Z, s, u)I(L̃(Y, M̃(Y, Z; η0), Z; η0) ≥ u, M̃(Y, Z; η0) = s, ξ = 1)]

E[I(L̃(Y, M̃(Y, Z; η0), Z; η0) ≥ u, M̃(Y, Z; η0) = s, ξ = 1)]
E[dNX0(u; θ0)dNY 0(s; η0)]

(23)

Now, note that, for any function k(Z, s),

E[k(Z, s)dNX0(u; θ0)dNY 0(s; η0)]

= E[I(M̃(Y0, Z; η0) ∈ ds)I(L̃(X0, M̃(Y 0, Z; η0), Z; θ0) ∈ ds)k(Z, s)I(M̃−1(s, Z; η0) ≥ L̃−1(u, s, Z; θ0), C ≥ M̃−1(s, Z; η0))]

= FM̃,L̃(du, ds)E[k(Z, s)I(M̃−1(s, Z; η0) ≥ L̃−1(u, s, Z; θ0), C ≥ M̃−1(s, Z; η0))]
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and

E[k(Z, s)I(L̃(Y, M̃(Y, Z; η0), Z; η0) ≥ u, M̃(Y,Z; η0) = s, ξ = 1)] (24)

= E[k(Z, s)I(M̃(Y 0, Z; η0) ∈ ds)I(M̃−1(s, Z; η0) ≥ L̃−1(u, s, Z; θ0), C ≥ M̃−1(s, Z; η0))]

= FM̃ (ds)E[k(Z, s)I(M̃−1(s, Z; η0) ≥ L̃−1(u, s, Z; θ0), C ≥ M̃−1(s, Z; η0))]

where the last equalities in (6) and (7) follow by the joint independence of (M̃(η0), L̃(η0, θ0))

and (C, Z). Using (6) and (7) with k(Z, s) set equal to b(Z, s, u) and 1, respectively, we can

then plug the relevant expectations into (4) and (5). We then obtain that

V2(θ0, η0, P0) =
∫ ∞

−∞

∫ ∞

−∞
E[b(Z, s, u)I(M̃−1(s, Z; η0) ≥ L̃−1(u, s, Z; θ0), C ≥ M̃−1(s, Z; η0))]Fε,ν(du, ds)−∫ ∞

−∞

∫ ∞

−∞

E[b(Z, s, u)I(M̃−1(s, Z; η0) ≥ L̃−1(u, s, Z; θ0), C ≥ M̃−1(s, Z; η0))]
E[I(M̃−1(s, Z; η0) ≥ L̃−1(u, s, Z; θ0), C ≥ M̃−1(s, Z; η0))]

×

E[I(M̃−1(s, Z; η0) ≥ L̃−1(u, s, Z; θ0), C ≥ M̃−1(s, Z; η0))]Fε,ν(du, ds)

Note the cancellation of the cancelation of like terms in the numerator and the denominator

in the second term of the substraction. The remaining terms in the subtraction are now

identical, yielding that V2(θ0, η0, P0) = 0.

Proof of Lemma 5:

Note that we can write EPn [U2(O; β, Hn)]− E[U2(O; β, H0)] is equal to

EPn−P0 [U2(O; β, Hn)−U2(O; β, H0)]+EPn−P0 [U2(O; β, H0)]+E[U2(O; β, Hn)−U2(O; β, H0)].

(25)

Under the condition that G2 is a P0-Donsker class (RC5), we know by empirical process
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theory (van der Vaart and Wellner, 1996), that if

∫
{U2(O; β, Hn)− U2(O; β, H0)}2 dP0(O)

P0→ 0 (26)

then the first and second terms in (25) are oP0(1/
√

n) and OP0(1/
√

n), respectively. Result

(9) follows straightforwardly from the consistency of Hn as an estimator of H0, and the

techniques (integration by parts) used in our proofs. Now, the third term on the right hand

side can be written as:

−
∫ ∫

b(z, s)f2(z, y, u, s;β)d(Hn −H0)(y, z)∫
f2(z, y, u, s;β)dH0(y, z)

E[dNX0(u, θ)dNY 0(s, η0)]+∫ ∫
b(z, s)f2(z, y, u, s;β)dHn(y, z)∫

f2(z, y, u, s;β)dHn(y, z)
∫

f2(z, y, u, s;β)dH0(y, z)
×∫

f2(z, y, u, s;β)d(Hn −H0)(y, z)E[dNX0(u, θ)dNY 0(s, η0)] (27)

To control the asymptotic behavior of the empirical process terms of the form
∫

fd(Hn−H)

in (6), we assume that F2 and Fb are uniformly bounded H0-Donsker classes (RC6). By

Example 2.10.8 of van der Vaart and Wellner (1996), we then know that Fb × F2 is also a

uniformly bounded H0-Donsker class. Let

F∗
2 ≡ {(z, y) → f ∗2 (z, y, u, s; β) = b(z, s)f2(z, y, u, s; β) : u, s, β}

Under the above conditions conditions, we then have that supf2∈F2
|
∫

f2d(Hn −H0) | and

supf∗
2∈F∗

2
|
∫

f ∗2 d(Hn −H0) | are OP0(1/
√

n). To control the behavior of the denominator of

(6), we assume that, with probability 1,

I(δ = ξ = 1)

∫
f2(z, y, L̃(X, M̃(Y, Z; η), Z; θ), M̃(Y, Z; η); β)dH0(y, z) > δ
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for some δ > 0, uniformly in β ∈ β (RC6). It then follows by empirical process theory (van

der Vaart and Wellner, 1996) that (6) can be expressed as

−
∫ ∫

b(z, s)f2(z, y, u, s;β)d(Hn −H0)(y, z)∫
f2(z, y, u, s;β)dH0(y, z)

E[dNX0(u, θ)dNY 0(s, η0)]+∫ ∫
b(z, s)f2(z, y, u, s;β)dH0(y, z){∫

f2(z, y, u, s;β)dH0(y, z)
}2

∫
f2(z, y, u, s;β)d(Hn −H0)(y, z)E[dNX0(u, θ)dNY 0(s, η0)]+

oP0(1/
√

n).

This proves the lemma.
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Captions

Table 1: Prognostic Baseline Factors, Stratified by Treatment Group

Table 2: Results of Simulation Studies

Table 3: Regression Estimates and Standard Errors (Subscripted) from Bivariate Linear

Regression Model Using SLR and PF.

Figure 1: The function r(t, w; η0a) represents the quantile-quantile mapping function between

these distributions of death.The distributions without [ ] are equal to the distributions with

brackets under randomization.

Figure 2: The function q(t, u, w; θ0a) represents the quantile-quantile mapping function be-

tween distributions of progression. The distributions without [ ] are equal to the adjacent

distributions with brackets under randomization and rank preservation
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Table 1:

Carmustime Placebo
Polymer Polymer

Prognostic Factor (n = 110) (n = 109)
Resection > 75 74.5% 73.4%
Age 48.1 47.3
White 90.9% 91.7%
Karnofsky > 70 55.5% 51.4%
Local Radiation 74.5% 79.8%
Previous Nitrosoureas 49.1% 44.0%
Active Tumor Histology 93.6% 90.8%
Glioblastoma Subtype 69.1% 66.1%
Anaplastic Astrocytoma Subtype 12.7% 13.8%
Oliodendroglioma Subtype 13.6% 17.4%
Other Subtype 4.5% 2.8%

Table 2:

(a) Bivariate Exponential
M.C. Avg. M.C. Cov.

Truth Avg. Est. S.E. S.D. Prob.
θ1 0.4 0.4005 0.3218 0.3048 94.3%
θ2 -0.1 -0.1014 0.1603 0.1541 95.9%
θ3 -0.2 -0.1928 0.3208 0.3110 94.8%
η1 0.2 0.1972 0.1540 0.1551 94.4%
η2 -0.3 -0.2990 0.0765 0.0753 94.0%
η3 -0.4 -0.4024 0.1525 0.1538 94.7%

(b) Bivariate Normal
M.C. Avg. M.C. Cov.

Truth Avg. Est. S.E. S.D. Prob.
θ1 0.4 0.3874 0.2371 0.2344 94.7%
θ2 -0.1 -0.0951 0.1173 0.1150 94.7%
θ3 -0.2 -0.2095 0.2345 0.2413 94.9%
η1 0.2 0.1992 0.1518 0.1516 94.4%
η2 -0.3 -0.2966 0.0741 0.0738 93.8%
η3 -0.4 -0.3963 0.1500 0.1475 94.8%
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Table 3:

Cerebellar Progression Death
Covariate SRL PF SLR/PF
Treatment 0.3770.155 0.3450.293 0.2800.111

Resection > 75 0.4460.181 0.3540.272 0.3390.130

Age (in decades) −0.2700.074 −0.2140.200 −0.1720.047

White −0.2120.281 −0.3970.319 −0.4210.206

Karnofsky > 70 0.0750.170 0.0640.330 0.2920.120

Local Radiation 0.4660.174 0.2440.402 0.3990.120

Previous Nitrosoureas −0.6060.176 −0.4440.367 −0.2740.121

Active Tumor Histology −0.1520.343 0.0300.291 −0.4580.283

Anaplastic Astrocytoma Subtype 1.0220.285 0.6060.409 0.4710.152

Oliodendroglioma Subtype 1.2040.323 1.1320.405 0.8390.230

Other Subtype 0.8990.590 0.8520.316 0.8160.276
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Figure 1:
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Figure 2:
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