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Abstract

Logically defined outcomes are commonly used in medical diagnoses and epidemiological research.

When missing values in the original outcomes exist, the method of handling the missingness can have

unintended consequences, even if the original outcomes are missing completely at random. Complicating

the issue is that the default behavior of standard statistical packages yields different results. In this paper,

we consider two binary original outcomes, which are missing completely at random. For estimating the

prevalence of a logically defined “or” outcome, we discuss the properties of four estimators: complete case

estimator, all-available case estimator, maximum likelihood estimator (MLE), and moment-based estimator.

With the exception of the all-available case estimator, the estimators are consistent.

A simulation study is conducted to evaluate the finite sample performance of the four estimators and an

analysis of hypertension data from the Sleep Heart Health Study is presented.

Keywords: All-Available Case Estimator, Complete-Case Estimator, Hypertension, Maxi-

mum Likelihood Estimator, Missing Data, Moment-Based Estimator
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1 Introduction

Logically defined outcomes arise frequently in biomedical practice and research. For ex-

ample, in epidemiologic studies, a common definition of hypertension requires systolic

blood pressure over 140 mmHg, diastolic blood pressure over 90 mmHg or use of antihy-

pertensive medications (see Nieto et al., 2000; Peppard et al., 2000; Banks et al., 2006,

for example). Estimation of the prevalence of the logically defined outcome is straight-

forward, if there is no missing information in the original outcomes (in this example, the

diagnosis criteria) or the missingness in the outcomes is completely concordant. However,

when there is missing information in one or more of the original outcomes, the estimation

of the prevalence may be complex. The most straightforward approach to addressing the

missing data is to discard all logical outcomes where any of the original outcomes have

missing values, referred to as the complete-case analysis. However, such an approach may

discard known logical outcomes. For example, if a subject has missing blood pressure

measurements, but is known to be taking anti-hypertensive medication, then he or she

is hypertensive, as per the operational definition; hence their logical outcome is known,

despite some of the original outcomes being missing. In this manuscript we investigate

the utility and problems arising from using logical outcomes where some of the original

outcomes are missing.

1.1 Mathematical Formulation

For ease of exposition, we only consider two binary (yes/no) outcomes, labeled Y (1) and

Y (2). We define the associated observed data 0/1 indicators as R(1) and R(2), where R(j)

equals one if Y (j) is observed. The logically defined outcome Y is 1 if Y (1) = 1 or Y (2) = 1;
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otherwise it is 0. Mathematically,

Y = Y (1)(1− Y (2)) + (1− Y (1))Y (2) + Y (1)Y (2).

Let πjk be the probability that Y (1) = j and Y (2) = k and γlm indicate the probability of

R(1) = l and R(2) = m (see Table 1), where
∑1

j=0

∑1
k=0 πjk = 1 and

∑1
l=0

∑1
m=0 γlm = 1.

We assume throughout that the original outcomes, Y (1) and Y (2), are independent of their

observed data indicators, R(1) and R(2); that is, the missingness is completely at random

(Rubin, 1976). However, the outcomes can be dependent, as well as the observed data

indicators.

Of scientific interest is estimation of

µ = P [Y = 1] = P [Y (1) = 1 or Y (2) = 1] = π11 + π01 + π10 = π1+ + π+1− π11 = 1− π00. (1)

In what follows we discuss the impact of the choice of R, the observed data indicator for

Y , on estimation of µ. A complete case analysis sets R = R∗ where

R∗ = R(1) ×R(2). (2)

This approach discards all of the available information from when Y (1) = 1 and R(2) = 0,

where Y is known to be 1 despite the missing Y (2) value, as well as all of the cases where

Y (2) = 1 and R(1) = 0. The observed data indicator that uses all of the known values of Y

sets R = R†, where

R† = R(1)R(2) + R(2)(1−R(1))Y (2) + R(1)(1−R(2))Y (1). (3)

This is the so-called all-available case analysis. While such an approach “seems” better,

because it does not discard known outcomes, it must be noted that the observed data

indicator now depends on the outcome, Y , so that this approach induces informative miss-

ingness, even if the original data are missing completely at random.
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1.2 Implementation in Statistical Packages

It should be mentioned that the default behavior of some of the popular statistical program

languages is not consistent. For example, the programs SAS and R (not to be confused with

our observed data indicator, R) deal with missing values differently in standard usage. By

default, SAS uses a complete case definition, as in (2), while the program R uses a all-

available case definition like (3). Of course, either program can be made to exhibit the

opposite behavior with appropriate care. Howeever, the main point is that many users are

probably unaware of which of the two schemes their program implements.

1.3 Illustration

To illustrate the distinction between the complete case and all-available case estimators,

suppose that we observe the 16 patterns with the frequencies given in Table 2. The esti-

mated prevalence using only the complete cases (2) is

n1 + n5 + n9 + n11

n1 + n5 + n9 + n11 + n13

;

whereas, using all-available cases (3), it is

n1 + n2 + n3 + n5 + n6 + n9 + n11

n1 + n2 + n3 + n5 + n6 + n9 + n11 + n13

.

Consider an extreme scenario in which n1, n5, n9 and n11 are equal 0 while n2, n3 and

n6 are large. Then, the complete case estimate is 0 while the all-available case estimate

is close to 1. Such data would occur if there was a high degree of negative correlation

in the individual observed data indicators, implying largely discordant missingness in the

two responses.
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1.4 Outline

The paper is organized as follows. In Section 2, we introduce four estimators of µ: com-

plete case, all-available case, moment-based, maximum-likelihood. We also derive their

asymptotic properties. In Section 3, we present a simulation study to evaluate the per-

formance of these estimators in finite samples. Section 4 is devoted to an analysis of

hypertension data from the Sleep Heart Health Study. The final section is devoted to a

discussion.

2 Four Estimators and their Asymptotic Properties

We assume that we have n independent and identically distributed copies of O = (R(1), R(2), R(1)·

Y (1), R(2) ·Y (2)). We reserve the subscript i to indicate individuals when necessary. We focus

on the following four estimators of µ:

Complete case µ̂c =

∑n
i=1 YiR

∗
i∑n

i=1 R∗
i

All-available case µ̂a =

∑n
i=1 YiR

†
i∑n

i=1 R†
i

Moment based µ̂m =

∑n
i=1 R

(1)
i Y

(1)
i∑n

i=1 R
(1)
i

+

∑n
i=1 R

(2)
i Y

(2)
i∑n

i=1 R
(2)
i

−
∑n

i=1 R
(1)
i R

(2)
i Y

(1)
i Y

(2)
i∑n

i=1 R
(1)
i R

(2)
i

Maximum likelihood µ̂ML

The first two estimators are simple averages of the observed values of Y ; µ̂c uses only the

instances where both of the original outcomes are observed while µ̂a uses all of the avail-

able logical outcomes. While the complete case estimator is consistent, the all-available

5
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case estimator converges in probability (see Appendix B) to

E[R†Y ]

E[R†]
=

γ11µ + γ10π1+ + γ01π+1

γ11 + γ10π1+ + γ01π+1

= µ + π00
γ10π1+ + γ01π+1

γ11 + γ10π1+ + γ01π+1

,

The second term indicates non-negative bias; it is zero if and only if γ11 = 1 (i.e., no

missing data) or µ = 1 (i.e., the probability that both Y (1) and Y (2) are both zero is zero,

π00 = 0). Notice that the bias converges to one when γ11 and π00 converge to one. As ratio

estimators, these estimators are asymptotically normal with an asymptotic variance of the

form:

Var[RY ]

{E[R]}2
− 2E[RY ]Cov[R,RY ]

{E[R]}3
+
{E[RY ]}2Var[R]

{E[R]}4
, (4)

where R = R∗ for the complete-case estimator and R = R† for the all-available case

estimator. In the complete case setting, this expression simplifies to π00(1−π00)
γ11

(see Appendix

A), which is the Bernoulli variance divided by the probability of observing a complete case.

The corresponding form for µ̂a is more complicated, and is provided in Appendix B.

The moment-based estimator µ̂m is a direct estimator based on the fact that µ = π1+ +

π+1−π11. Because the first two terms depend only on the individual original outcomes, this

estimate makes use of more information than the complete case estimator. It is consistent

as the the first, second, and third terms converge in probability to π1+, π+1, and π11,

respectively. The estimator is asymptotically normal with an asymptotic variance given in

Appendix C.

The final estimator is based on maximum likelihood. Since (R(1), R(2)) is ancillary (Basu,

1977) for π = (π01, π10, π11)
′, the maximum likelihood estimator for π can be found by

maximizing the conditional likelihood for the observed data given (R(1), R(2)). The condi-
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tional likelihood contribution for an random individual with observed data O is

L(π; O) =
[
πY (1)Y (2)

11 π
Y (1)(1−Y (2))
10 π

(1−Y (1))Y (2)

01 (1− π01 − π10 − π11)
(1−Y (1))(1−Y (2))

]R(1)R(2)

×[
(π10 + π11)

Y (1)

(1− π10 − π11)
(1−Y (1))

]R(1)(1−R(2))

×[
(π01 + π11)

Y (2)

(1− π01 − π11)
(1−Y (2))

](1−R(1))R(2)

The overall conditional likelihood is
∏n

i=1 L(π; Oi). The first, second, and third terms

of the conditional likelihood function, L(π; O), are the contributions from observations

where: both Y (1) and Y (2) are observed, Y (1) is available and Y (2) is missing, and Y (1) is

missing and Y (2) is available, respectively. To obtain the maximum likelihood estimators

of π, one can maximize the likelihood numerically, using a quasi-Newton algorithm. It is

useful to re-parameterize π in terms of β = (β1, β2, β3)
′, where β1 = log{π10/(1 − π01 −

π10 − π11)}, β2 = log{π01/(1 − π01 − π10 − π11)}, and β3 = log{π11/(1 − π01 − π10 − π11)},

to eliminate boundary constraints. Assuming that the solution lies within the interior of a

compact set, the maximum likelihood estimate of π, π̂ = (π̂01, π̂10, π̂11)
′, will be consistent

and asymptotically normal with asymptotic variance equal to the inverse of the Fisher

information matrix (see Appendix E). By the invariance property, the maximum likelihood

estimator of µ is µ̂ML = π̂01+ π̂10+ π̂11. This estimator will be consistent and asymptotically

normal with asymptotic variance found using the delta method (see Appendix E).

The contour plots in Figure 1 assume π01 = π10, π00 = π11 and γ01 = γ10, γ00 = γ11. The

first row of Figure 1 shows the contours of the asymptotic variance of µ̂c and µ̂m relative to

that of µ̂ML. As expected, the MLE performs uniformly better than the complete-case and

moment-based estimators. The contour in the second row of Figure 1 shows the asymptotic

variance of µ̂m relative to that of µ̂c. When all π’s are equal to 0.25, the complete-cases

estimator has the same variance as the moment-based estimator. The complete-case has
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higher variance than the moment-based estimator when π01 = π10 is small and γ01 = γ10

are near to 0.25. On the other hand, the complete-case estimator has lower variance than

the moment-based estimator when π01 = π10 is close to 0.5.

To further explore the asymptotic efficiency of the complete-case estimator relative to

the moment-based estimator, in Appendix D, we present a general formula for the differ-

ence between the asymptotic variance of the moment-based estimator and the complete-

case estimator. We prove a proposition that shows that, when there is some discordant

missingness and the proportion of complete cases is small, the choice between the com-

plete case and moment based estimators relies on whether it is better to estimate π00 or

π11 with the complete cases. Specifically, the moment-based (complete-case) estimator is

dramatically more efficient if π11 (π00) is further from 0.5 than π00 (π11).

3 Simulation Study

A simulation study was performed to evaluate the finite-sample biases and variances of

the four estimates. Because our focus is on epidemiologic settings, large sample sizes of

n = 300, 400, 600, 800, and 1, 000 were used; in each case 1, 000 Monte Carlo simulations

were performed.

Estimated bias and mean squared error (MSE) results for the case when n = 300 are

shown in Table 3 (simulations with n = 400, 600, 800 or 1000 yielded similar results). The

first, second, third, and fourth panels (each consisting of four rows) show the results

for scenarios of increasingly discordant outcomes and increased prevalence. Within each

panel, the rows are ordered according to increasingly discordant missingness. By design,

the diagonals in the two-by-two tables in Table 1, are set to be equal (i.e., π01 = π10, π00 =

8
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π11, γ01 = γ10, γ00 = γ11). As expected, Table 3 shows that µ̂c, µ̂m, and µ̂ML have very little

bias, while µ̂a can be quite biased. In addition, the maximum likelihood estimator has

the smallest mean squared error. The moment-based estimator has smaller mean-squared

error than the complete-case estimator when π11 = π00 is 0.3 or 0.4. When π00 is 0.25 or

0.10, the mean squared error of the complete-case estimator is smaller than the moment-

based estimator. In each panel, as the degree of discordant missingness increases, the

mean squared error increases.

4 Hypertension

We use hypertension data from the Sleep Heart Health Study (see Quan et al., 1997) as an

illustration. The Sleep Heart Health Study is a multi-center cohort study with participants

recruited from the Atherosclerosis Risk in Communities Study, the Cardiovascular Health

Study, the Framingham Heart Study, the Strong Heart Study, and the Tucson Health and

Environment Study. Here (as in Peppard et al., 2000) hypertension in a subject is defined

as the presence of high systolic or diastolic blood pressure measurements or if the subject

is taking anti-hypertensive medications. Technically, the logical outcome is then the “or”

operator applied to three variables. However, because they were recorded at the same

time the missingness between the two blood pressure measurements was completely con-

cordant. Therefore, we combine these into one measurement, “High BP”. Table 4 shows

the counts for blood pressure and medication status.

The estimated prevalences of hypertension are µ̂c = 0.548, µ̂a = 0.549, µ̂m = 0.549, µ̂ML =

0.548 with standard errors all near 0.007. Because the number of observations with missing

outcomes is negligibly small, there is no difference between four different estimates. In

9

Hosted by The Berkeley Electronic Press



order to illustrate our proposed estimates, we artificially induce missingness completely

at random in this data set; a process that was replicated 1, 000 times. Table 5 shows the

mean estimates and standard deviations of the estimates from three different missingness

scenarios. The first three lines contain the results from data simulated with 20, 40, 60%

completely random missingness in Y (1) and Y (2), respectively, above and beyond the ex-

isting missingness in the original data set. The estimates µ̂c, µ̂m, and µ̂ML yield nearly

identical average estimates, with the ML estimate having the smallest standard deviation.

As the proportion of missingness increases, the standard deviations increase as well as the

bias in µ̂a. The final four lines show results from other interesting combinations of the four

components of γ. Again the average of the complete case, moment-based and maximum

likelihood estimators are very close with µ̂ML having the smallest standard deviation. The

estimate µ̂a can have very severe bias, especially when the missingness is very discordant.

Finally, we compare the normalized profile likelihood functions between the complete

case conditional likelihood and the full conditional likelihood from one simulation with 60

percent random missingness in each outcome. The MLEs from the full conditional likeli-

hood function are: π̂01 = 0.128, π̂10 = 0.233, and π̂11 = 0.176. Therefore, the maximum

likelihood estimate is µ̂ML = 0.537. The profile likelihood functions were obtained by per-

forming a grid search over 1000 × 1000 targeted values of π01 and π10 for each fixed value

of π00. Fig 2 shows the normalized profile likelihood functions from the two data sets and

associated 1/8 and 1/16 reference lines for the estimated prevalence of hypertension. The

benefit of considering these likelihoods is the ability to visualize the additional evidence

contained in the discordant missing cases.
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5 Discussion

Logically defined outcomes are commonly used in medical diagnosis and epidemiological

research. Without missing values in the original outcomes, the estimation of the prevalence

of the logically defined outcomes is straightforward. However, when there are missing

values in some of the original outcomes, the method of handling the missingness can have

unintended consequences, even if the original outcomes are missing completely at random.

We believe that this potential problem is largely unknown. Complicating the issue is that

the default behavior of standard statistical packages yields different results.

In this manuscript, we considered two binary outcomes, which were assumed to be

missing completely at random, and discussed four estimators of the prevalence of a logi-

cally defined “or” outcome. We derived the asymptotic properties of our estimators. The

maximum likelihood estimator was shown to be the optimal choice, though it requires the

use of numerical optimization techniques. Regardless, we would recommend its general

use in these problems. We would hesitate to ever recommend the all-available case estima-

tor, though it is probably the most commonly used in practice. This is especially true when

the missing data patterns are particularly discordant. In the event where the missingness

is largely concordant, all of the estimators are nearly identical.

In this manuscript we reduced the missing data problem to the simplest setting. For fu-

ture work more complicated logical structures involving more than two original outcomes

should be considered. Such structures arise frequently is medical research, such as in more

general definitions of hypertension. In addition, regression models for logical outcomes

that address the missing data issue, is also a potentially fruitful area for future research.
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Appendix

Let ξ = (π′, γ ′), where γ = (γ00, γ01, γ10, γ11)
′.
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The asymptotic variance for µ̂c and µ̂a is given in formula (4). To utilize this formula,

it is sufficent to write expressions for E[R] and E[RY ]. This is because Var[R] = E[R](1 −

E[R]), Var[RY ] = E[RY ](1− E[RY ]), and Cov[RY, R] = E[RY ](1− E[R]).

A Asymptotic Variance of µ̂c

E[R∗] = E[R(1)R(2)] = γ11

E[R∗Y ] = E[R∗]E[Y ] = (1− π00)γ11

Therefore the asymptotic variance of µ̂c in Eq. (4) can be simplified to

π00(1− π00)

γ11

. (5)

B Asymptotic Variance of µ̂a

E[R†] = E[R(1)R(2) + R(1)(1−R(2))Y (1) + (1−R(1))R(2)Y (2)]

= γ11 + γ10π1+ + γ01π+1

E[R†Y ] = E[R(1)R(2)(Y (1) + Y (2) − Y (1)Y (2))] +

E[R(1)(1−R(2))Y (1)] + E[(1−R(1))R(2)Y (2)]

= γ11(π1+ + π+1 − π11) + γ10(π11 + π10) + γ01(π11 + π01)

The asymptotic variance of µ̂a in Eq. (4) can be easily computed, but is too long to

display here.
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C Asymptotic Variance of µ̂m

Let

Z = (R(1)Y (1), R(1), R(2)Y (2), R(2), R(1)R(2)Y (1)Y (2), R(1)R(2))′

and

µZ = (E[R(1)Y (1)], E[R(1)], E[R(2)Y (2)], E[R(2)], E[R(1)R(2)Y (1)Y (2)], E[R(1)R(2)])′

= (γ1+π1+, γ1+, γ+1π+1, γ+1, γ11π11, γ11)

By the multivariate central limit theorem, we know

√
n

(
Z − µZ

) D→ MV N6(0, Σ(ξ))

14
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where Z = 1
n

∑n
i=1 Zi, Σ(ξ) is a 6 × 6 matrix whose row i, column j components are

denoted by Σij(ξ), and

Σ11(ξ) = Var[R(1)Y (1)] = γ1+π1+(1− γ1+π1+)

Σ22(ξ) = Var[R(1)] = γ1+(1− γ1+)

Σ33(ξ) = Var[R(2)Y (2)] = γ+1π+1(1− γ+1π+1)

Σ44(ξ) = Var[R(2)] = γ+1(1− γ+1)

Σ55(ξ) = Var[R(1)R(2)Y (1)Y (2)] = γ11π11(1− γ11π11)

Σ66(ξ) = Var[R(1)R(2)] = γ11(1− γ11)

Σ12(ξ) = Σ21(ξ) = Cov[R(1)Y (1), R(1)] = γ1+π1+(1− γ1+)

Σ13(ξ) = Σ31(ξ) = Cov[R(1)Y (1), R(2)Y (2)] = γ11π11 − γ1+γ+1π1+π+1

Σ14(ξ) = Σ41(ξ) = Cov[R(1)Y (1), R(2)] = γ11π1+ − γ1+γ+1π1+

Σ15(ξ) = Σ51(ξ) = Cov[R(1)Y (1), R(1)R(2)Y (1)Y (2)] = π11γ11(1− γ1+π1+)

Σ16(ξ) = Σ61(ξ) = Cov[R(1)Y (1), R(1)R(2)] = γ11π1+ − γ1+π1+γ11

Σ23(ξ) = Σ32(ξ) = Cov[R(1), R(2)Y (2)] = γ11π+1 − γ1+γ+1π+1

Σ24(ξ) = Σ42(ξ) = Cov[R(1), R(2)] = γ11 − γ1+γ+1

Σ25(ξ) = Σ52(ξ) = Cov[R(1), R(1)R(2)Y (1)Y (2)] = γ11π11(1− γ1+)

Σ26(ξ) = Σ62(ξ) = Cov[R(1), R(1)R(2)] = γ11 − γ1+γ11

Σ34(ξ) = Σ43(ξ) = Cov[R(2)Y (2), R(2)] = γ+1π+1 − γ2
+1π+1

Σ35(ξ) = Σ53(ξ) = Cov[R(2)Y (2), R(1)R(2)Y (1)Y (2)] = γ11π11(1− γ+1π+1)

Σ36(ξ) = Σ63(ξ) = Cov[R(2)Y (2), R(1)R(2)] = γ11π+1(1− γ+1)

Σ45(ξ) = Σ54(ξ) = Cov[R(2), R(1)R(2)Y (1)Y (2)] = γ11π11(1− γ+1)

Σ46(ξ) = Σ64(ξ) = Cov[R(2), R(1)R(2)] = γ11 − γ+1γ11

Σ56(ξ) = Σ65(ξ) = Cov[R(1)R(2)Y (1)Y (2), R(1)R(2)] = γ11π11 − γ2
11π11
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Now, define f(x) = x1

x2
+ x3

x4
− x5

x6
, where x = (x1, . . . , x6)

′. By the multivariate delta

method, we know that

√
n

(
f

(
Z

)
− f (µZ)

)
=
√

n(µ̂m − µ)
D→ N

(
0,5f (µZ)′ Σ(ξ)5 f (µZ)

)
where

5f (x) =

(
1

x2

,−x1

x2
2

,
1

x4

,−x3

x2
4

,− 1

x6

,
x5

x2
6

)′

The asymptotic variance can be simplified to:

π1+(1− π1+)

γ1+

+
π+1(1− π+1)

γ+1

+
π11(1− π11)

γ11

+2
γ11(π11 − π1+π+1)

γ1+γ+1

−2
π11(1− π1+)

γ1+

−2
π11(1− π+1)

γ+1

D Comparison of the Asymptotic Efficiency of µ̂m vs. µ̂c

The difference between the asymptotic variance of µ̂m and µ̂c is

∆(ξ) =
π1+(1− π1+)

γ1+

+
π+1(1− π+1)

γ+1

+
π11(1− π11)− π00(1− π00)

γ11

+

2
γ11(π11 − π1+π+1)

γ1+γ+1

− 2
π11(1− π1+)

γ1+

− 2
π11(1− π+1)

γ+1

Proposition: Assume that γ10 > 0 and γ01 > 0. Suppose that π11(1−π11) > (<)π00(1−π00)

and γ11 → 0, then ∆(ξ) converges to +(−)∞.

Proof: This lemma follows since, when γ10 and γ01 are strictly positive, all terms except

the third term on the right hand side of the above equation are finite and the third term

converes to +(−)∞ when π11(1− π11) > (<)π00(1− π00).

E Asymptotic Variance of µ̂ML

Let `(π; O) = log L(π; O). The Fisher information matrix (i.e., minus the expected value

of the second derivative of `(π; O) with respect to π), I(π) is a 3× 3 matrix with ith row,
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jth column denoted by Iij(π), where

I11(π) =

(
γ11

1− π01 − π10 − π11

+
γ01

1− π01 − π11

+
γ01

π01 + π11

+
γ11

π01

)
I12(π) = I21(π) =

γ11

1− π01 − π10 − π11

I13(π) = I31(π) =

(
γ11

1− π01 − π10 − π11

+
γ01

1− π01 − π11

+
γ01

π01 + π11

)
I22(π) =

(
γ10

1− π10 − π11

+
γ10

π10 + π11

+
γ11

1− π01 − π10 − π11

+
γ11

π10

)
I23(π) = I32(π) =

(
γ10

1− π10 − π11

+
γ10

π10 + π11

+
γ11

1− π01 − π10 − π11

)
I33(π) =

(
γ10

1− π10 − π11

+
γ10

π10 + π11

+
γ01

1− π01 − π11

+
γ11

1− π01 − π10 − π11

+
γ01

π01 + π11

+
γ11

π11

)
.

By the theory of maximum likelihood, we know that
√

n(π̂ − π)
D→ MV N3(0, I(ξ)−1).

Let g(y) = y1 + y2 + y3, where y = (y1, y2, y3)
′. By the multivariate delta method, we know

that

√
n (g (π̂)− g (π)) =

√
n(µ̂ML − µ)

D→ N
(
0,5g (π)′ I(π)5 g (π)

)
where 5g (y) = (1, 1, 1)′.
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Figure 1: Asymptotic variances of the complete case and moment-based estimators relative to maximum

likelihood estimator of the prevalence of the logically defined outcome and asymptotic variances of the

complete case relative to moment-based estimator. By design π01 = π10, π00 = π11, γ01 = γ10, γ00 = γ11.
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Figure 2: Normalized profile likelihood functions from complete-case conditional likelihood function and full

conditional likelihood function from data with 60% completely at random missingness in original outcomes

hypertension and anti-hypertensive medication from Sleep Heart Health Study
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Outcome Observed Indicator

Y (2) R(2)

Y (1) 0 1 R(1) 0 1

0 π00 π01 π0+ 0 γ00 γ01 γ0+

1 π10 π11 π1+ 1 γ10 γ11 γ1+

π+0 π+1 γ+0 γ+1

Table 1: Outcome probabilities and data availability probabilities
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Table 2: Possible binary original outcomes Y (1), Y (2), logical outcomes Y , and values of the observed data

indicators using (3) and (2).

R

Y (1) Y (2) Y R(1) R(2) R∗ R† Freq

1 1 1 1 1 1 1 n1

1 1 1 1 0 0 1 n2

1 1 1 0 1 0 1 n3

1 1 1 0 0 0 0 n4

1 0 1 1 1 1 1 n5

1 0 1 1 0 0 1 n6

1 0 1 0 1 0 0 n7

1 0 1 0 0 0 0 n8

0 1 1 1 1 1 1 n9

0 1 1 1 0 0 0 n10

0 1 1 0 1 1 1 n11

0 1 1 0 0 0 0 n12

0 0 0 1 1 1 1 n13

0 0 0 1 0 0 0 n14

0 0 0 0 1 0 0 n15

0 0 0 0 0 0 0 n16
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Table 3: Monte Carlo estimated biases and mean square errors of the four estimators of the prevalence

of a logically defined outcome. Sample size n = 300, π01 = π10, π00 = π11 for original outcomes, and

γ01 = γ10, γ00 = γ11 for observed data indicators

Parameter Estimated Bias (%) Mean Squared Error (×100)

π01 π11 γ01 γ11 µ µ̂c µ̂a µ̂m µ̂ML µ̂c µ̂a µ̂m µ̂ML

0.10 0.40 0.10 0.40 0.60 0.1 13.4 0.2 0.1 0.189 0.785 0.162 0.151

0.10 0.40 0.20 0.30 0.60 0.3 26.9 0.3 0.3 0.256 2.715 0.171 0.142

0.10 0.40 0.25 0.25 0.60 -0.2 33.3 0.1 0.0 0.338 4.091 0.229 0.168

0.10 0.40 0.40 0.10 0.60 -0.3 53.3 0.3 0.0 0.788 10.268 0.614 0.235

0.20 0.30 0.10 0.40 0.70 -0.1 8.5 0.0 -0.1 0.175 0.473 0.154 0.140

0.20 0.30 0.20 0.30 0.70 -0.1 17.1 0.1 0.0 0.236 1.527 0.203 0.156

0.20 0.30 0.25 0.25 0.70 -0.1 21.4 -0.4 -0.3 0.285 2.327 0.245 0.171

0.20 0.30 0.40 0.10 0.70 0.1 34.3 0.3 0.2 0.789 5.806 0.701 0.335

0.25 0.25 0.10 0.40 0.75 -0.2 6.5 -0.2 -0.2 0.161 0.349 0.171 0.144

0.25 0.25 0.20 0.40 0.75 0.0 13.3 -0.1 0.0 0.211 1.086 0.213 0.157

0.25 0.25 0.25 0.25 0.75 -0.1 16.6 0.0 -0.1 0.230 1.616 0.250 0.149

0.25 0.25 0.40 0.10 0.75 0.1 26.7 -0.2 -0.1 0.666 4.029 0.644 0.304

0.40 0.10 0.10 0.40 0.90 0.0 2.2 -0.2 0.0 0.075 0.089 0.112 0.071

0.40 0.10 0.20 0.30 0.90 0.0 4.5 0.0 0.0 0.099 0.199 0.190 0.090

0.40 0.10 0.25 0.25 0.90 -0.1 5.5 -0.2 -0.1 0.126 0.280 0.219 0.109

0.40 0.10 0.40 0.10 0.90 -0.3 8.8 -0.2 -0.2 0.315 0.645 0.443 0.216
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Table 4: Cross tabulation of high blood pressure and anti-hypertensive medication status for subjects from

Sleep Heat Health Study

Medication

High BP No (0) Yes (1) Missing

No (0) 2482 1310 2

Yes (1) 724 978 3

Missing 8 13 10

Table 5: Four estimates (standard deviations) of hypertension prevalence with different data missingness in

hypertension and anti-hypertensive medication from Sleep Heart Health Study

γ00 γ01 γ10 γ11 µ̂c µ̂a µ̂m µ̂ML

0.04 0.16 0.16 0.64 0.548 (0.0051) 0.618 (0.0040) 0.549 (0.0038) 0.548 (0.0035)

0.16 0.24 0.24 0.36 0.547 (0.0091) 0.696 (0.0065) 0.549 (0.0070) 0.548 (0.0062)

0.36 0.24 0.24 0.16 0.547 (0.0158) 0.784 (0.0086) 0.549 (0.0118) 0.548 (0.0096)

0.20 0.30 0.40 0.10 0.547 (0.0202) 0.871 (0.0071) 0.548 (0.0155) 0.548 (0.0110)

0.30 0.40 0.10 0.20 0.546 (0.0135) 0.773 (0.0075) 0.548 (0.0099) 0.548 (0.0085)

0.40 0.10 0.20 0.30 0.547 (0.0102) 0.686 (0.0078) 0.548 (0.0084) 0.548 (0.0076)

0.10 0.20 0.30 0.40 0.547 (0.0080) 0.686 (0.0057) 0.548 (0.0065) 0.548 (0.0055)
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