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SUMMARY. In an increasingly common class of studies, the goal is to evaluate causal effects

of treatments that are only partially controlled by the investigator. In such studies there are

two conflicting features: (1) a model on the full cohort design and data can identify the causal

effects of interest, but can be sensitive to extreme regions of that design’s data, where model

specification can have more impact; and (2) models on a reduced design (i.e., a subset of the

full data), e.g., conditional likelihood on matched subsets of data, can avoid such sensitivity, but

do not generally identify the causal effects. We propose a framework to assess how inference is

sensitive to designs by exploring combinations of both the full and reduced designs. We show

that using such a “polydesign” framework generates a rich class of methods that can identify

causal effects and that can also be more robust to model specification than methods using only

the full design. We discuss implementation of polydesign methods, and provide an illustration

in the evaluation of a Needle Exchange Program.

KEY WORDS. anchor function; causal effects; needle exchange program; partially controlled

studies; polydesign; principal stratification.
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1. Introduction

A frequent goal is to evaluate causal effects of treatments in studies that can only be partially

controlled by the investigator. Such partially controlled studies have two conflicting features:

(1) a model on the full cohort design of data can identify the causal effect of interest, but can

be sensitive to extreme regions of that design’s data where model specification can have more

impact; (2) models induced to data from a reduced design, i.e., from a rule for selecting a subset

of the full data (e.g., a conditional likelihood on matched subsets of data), which can avoid such

sensitivity, do not generally identify the causal effects.

To make analogies to a motivating example of a partially controlled study, we consider an

evaluation of the Baltimore’s Needle Exchange Program (NEP), as originating from the com-

bination of the ALIVE and NEP studies (Vlahov et al., 1997; Strathdee et al., 1999). In the

ALIVE study, a cohort of injection drug users (IDUs) has been enrolled and is being followed,

with regular six month (semester) visits in which the subjects are offered clinic services, in-

cluding blood tests for HIV. In parallel to the clinic, the NEP study operates sites in Baltimore

where IDUs can exchange a used needle for a sterile one, with the hope of reducing HIV trans-

mission. The goal in the NEP evaluation is to estimate the degree to which exchanging versus

not exchanging needles reduces (if at all) HIV incidence among IDUs.

The NEP is partially controlled in the sense that (1) it does not directly control either who

exchanges needles or who provides outcome – HIV blood tests at the clinic, but (2) it directly

controls the placement of the NEP sites offering needles, hence the distance of the NEP sites

from the IDUs. If distance of the NEP sites to the subjects influences who exchanges at the NEP

and who provides HIV blood tests, these relations can be useful to evaluate the effect that dis-

tance has on HIV incidence and that is attributable to exchanging needles. However, a general

result for such studies (Frangakis and Rubin, 1999) implies that it is not appropriate to use stan-

dard evaluation of the NEP, such as by comparing exchangers with nonexchangers on observed
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HIV outcomes (e.g., Keende et al., 1993; van Ameijden et al., 1994; Drucker et al., 1998), or

by using distance of NEP to IDUs as a standard instrumental variable on the ”complete data”

(e.g., McClellan et al., 1994). In contrast, the framework of “principal stratification” (Frangakis

and Rubin, 2002) has been shown to allow both definition of more appropriate estimands, and

also to allow separation of the assumptions made for the mechanisms of the effects (structural

assumptions) from the assumptions made on the design of what data is being collected (e.g.,

Barnard et al., 2003; Gilbert, Bosch, and Hudgens, 2003; Frangakis et al., 2004).

Part (1) of the conflict stated in the first paragraph arises from the necessary relative com-

plexity of the models involved in principal stratification in partially controlled studies such as

the NEP. This complexity makes it important to investigate whether results are robust to the

design used. Particular relevance to alternative designs arises also when the outcome of inter-

est is rare. For example, in the NEP study, over an average follow-up of 9 semesters for 1170

subjects, 52 subjects underwent HIV seroconversion. With such low incidence, results can be

sensitive to the design and the model used, for example, in the region of controls’ covariates

that does not overlap with the covariates of the cases. One can argue that if such low incidence

is to exacerbate the consequences of a model misspecification, then a possible way to address

this can be to change the model to a semiparametric one, as Robins et al. (2001) adopted in

other settings. Semiparametric models may or may not have problems with complex structures,

depending on the choice of such model. However, in problems with such challenging structure

as with principal stratification, current semiparametric formulations cannot guarantee estima-

bility, and miss the advantages of efficiency of parametric models which can be justified even

from a non-parametric perspective (e.g., Frangakis and Rubin, 2001). More importantly, the

choice of a good design is central for the quality of the results no matter the methods of analy-

sis used. For this reason, we choose to explore sensitivity of the results to different designs,

an approach often preferred in epidemiology in other settings (e.g., Breslow and Day, 1980).

3
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Specifically, we consider designs for selecting a subset of the full data, and which we call here

“reduced designs”.

Part (2) of the above stated conflict arises because the information lost in “reduced designs”

can be necessary for estimating the causal effects well in partially controlled studies. Suppose,

for example, for a “reduced design” in the NEP, we choose all the HIV cases, and, for each

case, we keep one control who closely matches the case on covariates, as in nested case-control

designs (Langholz and Thomas, 1990). Then the conditional likelihood that the model on the

full design induces on the data of the reduced design, unlike with a standard conditional logistic

regression likelihood, does not necessarily identify the causal effect, mainly because of a latent

structure inherent in the framework of principal stratification. A related inadequacy of the

standard conditional logistic regression also arises in the framework of sequential ignorability,

as indicated by Robins, Greenland and Hu (1999, Sec. 7). Also, if the reduced design is

based on matching on predefined covariate classes so that all probabilities of selection to the

reduced design are well away from 0 and 1, then inverse probability of selection methods may

recover sufficient lost information for estimation. However, more general settings can include

rules of selection to the reduced design conditionally on the full design that resemble more

a deterministic process than a probabilistic one, and then inverse probabilty methods are not

applicable. The question that arises then is how to explore results from different designs in a

way that preserves enough information to well estimate the causal effects.

We propose a class of methods that are based on the combination of the full design together

with reduced designs. The key of such “polydesign” methods is that they provide a continuum

between the full design and reduced designs. We show that the members of this continuum can

identify the causal effects and can achieve better robusteness to model specification than the

full design. Section 2 defines polydesigns, discusses inferential perspectives and main general

properties. Section 3 discusses implementation of polydesigns; Section 4 demonstrates the

4

http://biostats.bepress.com/jhubiostat/paper80



methods in an experiment; Section 5 applies the methods to the NEP study, and Section 6

provides remarks.

2. Polydesigns

Consider a cohort design IFULL for selecting units from the population and assigning them to

treatments, and let DFULL be the data arising from this design. We call IFULL and DFULL the “full”

design and “full” data. Let also prFULL(DFULL | θ) denote the likelihood of the full data based on

the full design, where θ represents the parameters describing the population of study, and where

the causal estimand of interest is some function of θ. We consider cases where θ is identifiable

from the likelihood of the full data, but where we wish to investigate sensitivity of estimation

to different designs.

To assess such sensitivity, consider first a “reduced” design IREDU, that is, a design that de-

scribes how to select a subset of the units from the full design IFULL, e.g., through a certain

matching rule as in case-control studies (Breslow and Day, 1980). Let DREDU denote the “re-

duced” data, including indicators of which units have been selected, that arise from this design.

For the reduced data, we consider a likelihood

prREDU(DREDU | θ) (2.1)

that is induced from the full likelihood when also taking into account the reduced design. We

allow that the reduced likelihood can be the marginal likelihood of the reduced data, but also

allow that it can be a conditional or a partial likelihood (Cox and Oakes, 1984) of the reduced

data, which is the reason for also distinguishing between the distributions prFULL and prREDU.

The reduced design can avoid sensitivity to specification of the full model on those features

of the full data that are not modeled in the likelihood (2.1). Nevertheless, estimation of the

causal effects of interest in partially controlled studies generally requires more information
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from the full data than does estimation of causal effects in studies that make more assumptions.

As a result, a reduced likelihood (2.1) is not generally sufficient to identify the causal effects.

The goal here is to provide an approach that assesses sensitivity to different designs for

inference on the parameters in θ for more general partially controlled studies. The idea is that,

although a reduced design may not identify the full parameter θ, it identifies some functions of

the parameter from (2.1), and thus can provide estimates of these functions that are robust to

data omitted from the reduced likelihood (2.1). This point suggests that it is useful to consider

the following definitions.

DEFINITION

(a) An anchor function A(θ) is a function that is identifiable from the likelihood of the reduced

design (2.1).

(b) A polydesign with respect to a full design IFULL of a population is a collection of the full

design together with one or more reduced designs IREDU.

An example of an anchor function is the conditional odds ratio (the exponential of the re-

gression coefficient of exposure) that is identifiable from the conditional likelihood of a logistic

regression model (Section 4).

In a polydesign, the reduced designs are, by definition, nested within the full design, but

do not need to satisfy a nesting structure among each other, and the data they produce can

overlap. We focus discussion here on basic polydesigns with one reduced design, although the

discussion can be extended to the more general case.

The purpose of a polydesign is to synthesize inference for anchor functions of the parame-

ter, identifiable from the reduced likelihood, with inference for the remaining parts of the pa-

rameter from the full likelihood. The former likelihood helps reduce dependence of inference
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to data omitted from the reduced design, whereas the latter likelihood, if needed, completes

identification of the causal effect. Such synthetic inference can be expressed with a Bayesian

or a maximum likelihood perspective. In the following, we assume that standard regularity

conditions such as for consistency of parametric maximum likelihood estimation hold.

Bayesian perspective.

From the full likelihood and a prior distribution, we obtain the full posterior distribution,

prFULL(θ|DFULL). For an anchor function A(θ) of the parameters, consider the decomposition of

the full posterior distribution, into the marginal distribution of A(θ) and the distribution of the

remaining functions, denoted by θ − A(θ), required to specify θ,

prFULL(θ|DFULL) = prFULL(θ − A(θ) | A(θ), DFULL) prFULL(A(θ)|DFULL). (2.2)

Also, from the reduced likelihood and the prior distribution, we can obtain the reduced

posterior distribution, prREDU(θ|DREDU), as if we had only observed reduced data DREDU. For

an anchor function A(θ), the resulting reduced posterior distribution prREDU(A(θ)|DREDU) is not

sensitive to specification of the prior in the sense that A(θ) is identifiable from the reduced

likelihood. It is then helpful to consider the “polydesign” distribution defined as

prPOLY(θ) = prFULL(θ − A(θ) | A(θ), DFULL)prREDU(A(θ)|DREDU). (2.3)

The distribution (2.3) is a recalibration of (2.2) to the posterior distribution of the anchor func-

tion that arises by the reduced design alone. In the special case where the reduced likelihood

prREDU(DREDU | θ) is a marginal distribution of the full likelihood, the factor prREDU(A(θ)|DREDU)

of (2.3) is proportional to an integrated likelihood.

The polydesign distribution can form a basics of estimating θ in a number of ways. To

demonstrate, we discuss here operating characteristics of the median of the distribution, al-

though similar results hold for more general summaries of this distribution. For any given
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polydesign IPOLY, Appendix 1 outlines a proof of the property for a parameter θ that can be well

approximated with fine enough discretizations.

PROPERTY 1

(a) If the assumed full likelihood is correct then, for any anchor function, the median of the

polydesign distribution (2.3) is consistent for the true parameter θ0.

(b) For any misspecification of the full likelihood, and with respect to any loss function for a

true parameter, there exists an anchor function so that the median of the polydesign distri-

bution (2.3) performs uniformly at least as well as the median of the posterior distribution

(2.2).

A proof of the first part is based on showing that the right multipliers in the right hand

side of both distributions (2.3) and (2.2) converge to the point mass at the anchor function’s

value at θ0. The proof of the second part is straightforward because the class of distributions

(2.3) generated by a polydesign provides a continuum that contains the distribution (2.2) in the

trivial case when A() is free of θ. In fact, part (b) would hold even if we relaxed identifiability

of A(θ) from the reduced likelihood, which is, nevertheless, desired to allow for use of diffuse

prior distributions, and, hence, for more dependence on the data. Moreover, the optimum can be

achievable within the continuum, i.e., with a nonconstant anchor function. Finding an analytic

function giving the optimum depends on how a misspecification is expressed, and is not here

our goal. A more practical implication of the property is that use of an anchor function A(θ) in

the polydesign will focus its estimation to be from the reduced design and to not depend on the

structure of the remaining data.

Maximum likelihood perspective.

Analogously to the Bayesian perspective, we consider a synthetic estimation of θ = (θ −
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A(θ), A(θ)) by basing estimation for the anchor function A(θ) on the reduced likelihood, and

estimation for the remaining part of the parameter on the full likelihood. Specifically, define:

θPOLY := ((θ − A)FULL, AREDU), where (2.4)

pr{DREDU | [θ − A(θ),A(θ)]} is maximum at [(θ − A)REDU, AREDU], and

pr{DFULL | [θ − A(θ), AREDU]} is maximum at [(θ − A)FULL, AREDU]

The estimator θPOLY, therefore, is the maximizer of the full likelihood after having profiled

(Murphy and van der Vaart, 2000) that likelihood on the value of the anchor function that max-

imizes the reduced likelihood. Standard errors for θPOLY can be obtained by the delta method, by

bootstrap, or by simulation from the model. In the special case where the reduced likelihood

prREDU(DREDU | θ) is a marginal distribution of the full likelihood, the estimator A(θ)REDU is a

“marginal” (or “restricted”, Patterson and Thompson, 1971) likelihood estimator. The reason

why AREDU but not (θ − A)REDU is used in θPOLY is because the latter is not generally unique and

not necessarily a good estimate.

In analogy to the Bayesian perspective, for any given polydesign IPOLY, the following prop-

erty holds for a sufficiently fine discretized approximation of the parameter.

PROPERTY 2

(a) If the assumed full likelihood is correct then, for any anchor function, the polydesign esti-

mator θPOLY defined in (2.4) is consistent for the true parameter θ0.

(b) For any misspecification of the full likelihood, and with respect to any loss function for a

true parameter, there exists an anchor function so that the polydesign estimator θPOLY per-

forms uniformly at least as well as the maximum likelihood estimator of the full likelihood.

Part (a) can be shown using a variation of Wald’s proof for consistency of maximum like-

lihood. The proof of part (b) is again straightforward by analogous arguments to those of
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Property 1(b).

Thus, polydesigns offer estimation, from either the Bayesian or the maximum likelihood

perspective, that shares qualitatively two main properties. It provides an alternative inference

to the full design that (a) is valid if the assumed model is correct; and (b) focuses estimation of

a selected component of the estimand, namely the anchor function, to be based on a reduced

design of the full data. Therefore, polydesigns also offer a way to assess how sensitive the

results are to using different designs to estimate different components of the model. If results

differ substantially between the full design and the polydesign, this would suggest the model is

mispecified. On the other hand, similarity between the results of the full design with those of

a polydesign with an anchor function that depends on the estimand, would be more reassuring

than simply relying of results of the full design. This does not mean that any polydesign gives

better inference than any full design, and justification in terms of principles such as matching

is needed to make a case for choosing a polydesign.

3. Implementation

Obtaining the value of θPOLY defined in (2.4) is a maximization problem, although possibly a

challenging one in terms of computational stability if the anchor function is complicated.

In contrast, the polydesign distribution (2.3) can be relatively easily obtained through the

following simulation.

Step 1: Approximate prFULL(A(θ)|DFULL). To do so, one can simulate a large number, N , of

random draws from the normal approximation based on the MLE of θ of the full likelihood,

and then simulate NFULL(< N) random draws from prFULL(θ|DFULL) using sampling importance

resampling (SIR, Rubin, 1987). For each draw, calculate A(θ) and estimate prFULL(A(θ)|DFULL),

e.g., with a kernel approximation.

Step 2: Approximate prREDU(A(θ)|DREDU). Because maximization of the reduced likelihood
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to obtain a normal approximation may be unstable with multiple modes of θ, one can start

from the random draws of prFULL(θ|DFULL) obtained in step 1, and then simulate NREDU(< NFULL)

random draws from prREDU(θ|DREDU) using SIR. For each draw, calculate A(θ) and then estimate

prREDU(A(θ)|DREDU) as in step 1.

Step 3: Approximate the function r(θ) = prREDU(A(θ)|DREDU)/prFULL(A(θ)|DFULL), which is the

importance ratio of the polydesign distribution prPOLY(θ) in equation (2.3) to prFULL(θ|DFULL) in

equation (2.2). This is obtained by simply dividing the two functions obtained in steps 1 and 2.

Step 4: Simulate from the polydesign distribution prPOLY(θ). To do so, use simulations of

prFULL(θ|DFULL) from step 1, and use SIR by noting that the ratio of the target (polydesign) to

candidate (full) distributions is the function r(θ) of step 3. When enough draws from the target

distribution have been obtained, quantiles, moments, and other summaries can be computed.

The fourth step is an alternative description, from an implementation perspective, that the

polydesign distribution is a recalibration of prFULL(θ|DFULL) to be such that the marginal distribu-

tion of the anchor function A(θ) be equal to the posterior distribution arising from the reduced

likelihood prREDU(A(θ)|DREDU).

4. Demonstration in a simple example

In this section, we demonstrate the polydesign in a simple experimental example as also sug-

gested by reviewers.

Estimand. Consider individuals each of which can be assigned one of two treatments, d = 0, 1,

in which case the potential outcomes (Rubin, 1974, 1978) will be Yi(d), which we assume here

are binary. For example, the “treatment” can be a medical therapy, or the location of the NEP

site, depending on the context, and the outcome can be living status or HIV, respectively. We
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wish to estimate the marginal causal odds ratio Q:

Q =
pr(Yi(1) = 1)/pr(Yi(1) = 0)

pr(Yi(0) = 1)/pr(Yi(0) = 0)
(4.1)

Because treatment is not generally randomized, it is important to express Q using distributions

conditional on a covariate,

Q(θ0) =
∑

x pr(Yi(1) = 1 | Xi = x, θ0)pr(x | θ0)∑
x pr(Yi(0) = 1 | Xi = x, θ0)pr(x | θ0)

(4.2)

×
∑

x pr(Yi(0) = 0|Xi = x, θ0)pr(x | θ0)∑
x pr(Yi(1) = 0 | Xi = x, θ0)pr(x | θ0)

,

where θ0 denotes the true joint distribution of all variables. For this section, we allow that the

actual assignment of treatments Di is ignorable only after conditioning on the covariate Xi in

the sense of Rubin (1978). Then, the potential outcome distributions pr(Y i(d) = 1 | Xi = x, θ0)

are equal to pr(Y obs
i = 1|Di = d, Xi = x, θ0), which involve only observable data (Rubin,

1978), and so by replacing the former with estimates of the latter in (4.2) allows in principle

estimation of Q. We use this example to reflect the situation where, although a standard case-

control design can estimate some interesting aspects of the distribution, the estimand of interest,

here Q, is only partly specified by those aspects, and needs also some other aspects from the

full design, as we see below.

Model, and full- and polydesign methods used for analyses. A discrete three level (0.0, 0.5,

and 1.0) variable is used as the covariate X . The model that is used here for analysis assumes

that potential outcomes conditionally on X have the logistic regression

logit pr(Yi(d) = 1|Xi = x, θ) = g(x, θ) + βd d (4.3)

where g(x, θ) = βc + βx x. (4.4)

To estimate the odds ratio (4.2), here we discuss a full design and a polydesign method

from the maximum likelihood perspective, because it is feasible and makes easier connection
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to existing case-control arguments. The full design is a simple random sample of individuals

from the population. Using this design, the odds ratio (4.2) is estimated by its MLE Q(θ FULL)

by replacing the MLE of β for the outcome distributions given the covariate, and the observed

proportions of the distribution of the covariate X .

For the polydesign method, we consider the same individuals of the full design, and, among

those, we form a nested case-control design, by matching every case from the full design,

Y obs = 1, to a control from the full design with the same covariate. Note that since polydesings

can combine different likelihoods of the model corresponding to different designs, polydesigns

are not necessarily restricted to 1-1 matching, and one could use also a polydesign with more-

than 1 to 1 matching for each case. The 1-1 matching here, though, better represents practical

situations where at most one control can be well matched.

By standard results under this design and the assumed model, βd is estimable from the

conditional (reduced) likelihood. Unlike a usual setting, though, the reduced likelihood does

not fully identify the estimand Q, because Q also involves other parameters. Instead, βd can be

used as an anchor to obtain a polydesign estimator as in (2.4). Specifically, to do this, we (i)

estimate βd by the maximizer, βd,POLY, of the conditional likelihood of the case-control design;

(ii) estimate βc, βx by the maximizers βc,POLY, βx,POLY of the full likelihood after having replaced

βd,POLY for βd; (iii) estimate the distribution of the covariate X by the observed proportions; and

(iv) estimate the odds ratio (4.2) by Q̂(θPOLY) by replacing the estimates from (i)-(iii) in (4.2).

Experiment and results. By the virtue of matching on X , the anchor βPOLY is estimated consis-

tently by the polydesign estimator, but not by the full design estimator, whether or not the func-

tion g(x, θ) is correctly specified. Moreover, although Q(θ) depends on the function g(x, θ) and

not just on βd, under the null hypothesis H0 : βd = 0, the odds ratio Q(θ) is also 1. By continu-

ity, this implies that, at least around H0 , Q(θ) will be estimated will less bias by the polydesign

Q(θPOLY) than by the full design Q(θFULL).

13
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We examined how different the performance can be between the two estimators in con-

ditions that satisfy the model (4.4), and in conditions where the model is violated, as fol-

lows and as reflected in Table 1. For the former conditions, we set pr(Y (0) | X = x)(=

expit(g(x))) = (1%, 8%, 40%), for x = 0.0, 0.5, 1.0 respectively, which satisfies approx-

imately the logistic linear model (4.4) with βx = 2.15; to reflect conditions violating the

model, we interchange the second and third values of the above probability, that is, we set

pr(Y (0) | X = x)(= expit(g(x))) = (1%, 40%, 8%) for x = 0.0, 0.5, 1.0 respectively. For

each such condition, we vary the conditional odds ratio βd = 0.5, 1.00 (null H0), and 2.0. The

parameters we fix across conditions are: a total sample size of 1000 individuals; the distrib-

ution of the covariate, pr(Xi = x) = (80%, 10%, 10%) and the probability of assignment to

treatment d = 1, pr(Di = 1 | Xi = x) = (10%, 50%, 20%), for x = (0.0, 0.5, 1.0) respectively,

to induce rare prevalence and non-linearity of assignment. For the resulting conditions, Table

1 gives, the induced true marginal odds ratio Q; the median of the full design and polydesign

estimators for Q, Q(θFULL) and Q(θPOLY) respectively; the standard deviation (empirical, over

the simulations) of the estimators for log Q and their mean squared error; and the coverages

of log Q (equal to those of Q) by the nominal 95% confidence intervals using the empirical

standard deviations of the estimators. The results are based on 2500 simulations.

In the conditions of Table 1 where the model (4.4) is correctly specified, both the full design

and polydesign methods give, as expected, medians essentially equal to the true odds ratio Q.

Moreover, the full design estimator is associated with smaller root MSEs, which reflects the fact

that full design method makes more use of the data and more use of the model assumptions. On

the contrary, in the conditions of Table 1 where the model (4.4) is misspecified, the full-design

method has a poor median under both null and non-null effects, whereas the polydesign method

is relatively correctly centered. Moreover, even though the method based on the full design has

smaller variance, it has poor overall accuracy as judged by the root MSEs. In contrast, the
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increased dependence of the polydesign method on the reduced design allows it to preserve

relatively good overall accuracy.

In summary, while there are settings where the polydesign does not perform as well as the

full design, it can perform better when model misspecification becomes important for the target

estimand.

5. Application to Needle Exchange Program Evaluation

5.1 Causal estimand and full design

We now return to the NEP study introduced in Section 1. We first give some further back-

ground needed to define the causal effect of interest and the full likelihood in terms of potential

outcomes; any omitted details from here on the background and assumptions can be found in

Frangakis et al. (2004).

For a person-semester unit i, a needle exchange site can be placed at distances indexed

by d = 1, ..., dmax. Define the principal stratum Si to be the shortest distance of the needle

exchange site, Si = 0, ..., dmax, beyond which that person would not exchange needles at that

site during that semester. That is, the person’s exchange indicator Ei(d) equals 1 if and only if

d ≤ Si. Denote Yi(d), Ci(d) to be the potential outcomes of HIV status and of censoring of the

HIV status, respectively, if the NEP site is placed at distance d. Also denote Di to be the actual

distance between the nearest NEP site and the person; Eobs
i = Ei(Di) the observed exchanging

status; Cobs
i = Ci(Di) the observed censoring status; Y obs

i = Yi(Di) the observed HIV status

if not censored; and Hi the observed history of that person at that semester which includes a

baseline risk score Bi of getting HIV.

The causal effect of interest, Q, is the odds ratio, within stratum Si = s, (0 < s < dmax), of

getting HIV when exchanging versus when not exchanging needles. This, by definition of the

principal stratification, is obtained by comparing between the levels of the controlled factor of
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distance, that is, Q is the odds of

pr(Yi(d = 1) = 1 | Si, Hi) versus pr(Yi(d = dmax) = 1 | Si, Hi),

which, for simplicity is assumed here to be common across principal strata Si and history

Hi. Note that this definition involves a variable, the principal stratum Si, that is generally not

observed. For example, if at a semester, a person is at distance Dobs
i = 2 from the NEP and

does not exchange needles (Eobs
i = 0), then we do not know that person’s principal stratum

because we do not know exchange behavior, Ei(d = 1), if the NEP had been placed at distance

1: a behaviour Ei(d = 1) = 0 would imply that there would be no distance at which the person

would exchange, so Si = 0; whereas a behaviour Ei(d = 1) = 1, and knowing that Eobs
i = 0 at

distance Dobs
i = 2, would imply that d = 1 would be the shortest distance beyond which (i.e.,

≥ 1) the person would not exchange, so Si would be 1.

The full design here is a cohort design of n = 1170 individuals, representative of those

IDUs originally consenting to be part of the study. The full data are history Hi, distance Di,

exchanging status Eobs
i , censoring status Cobs

i , and HIV status Y obs
i if not censored, for all

person-semesters i up to the first censoring time. Models for the full data can be specified

conditionally on the principal strata as follows:

f(y, s, d, h; θ) = pr(Yi(d) = y | Si = s, Hi = h, θ) (5.1)

g(c, s, d, h; θ) = pr(Ci(d) = c | Si = s, Hi = h, θ) (5.2)

k(s, h; θ) = pr(Si = s | Hi = h, θ). (5.3)

Because location of the NEP sites is controlled by the study, the distribution of Di at each time

is assumed ignorable (Rubin, 1978) conditionally on the observed history, so a model for that

distribution is avoided. Under the remaining assumptions of Frangakis et al. (2004), the full
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likelihood prFULL(DFULL | θ) is

∏

i

{
∑

si

f(yi, si, di, hi; θ)
(1−ci)g(ci, si, di, hi, ; θ)k(si, hi; θ)}, (5.4)

where the summation is over all possible si values that are consistent with the observed ex-

change status Eobs
i and observed distance Di for the person-semester unit i.

The first row in Table 2(a) presents results from the posterior distribution of the causal

effect Q, obtained from the above full likelihood with a noninformative prior, with two levels

of distance (greater or less than 3 miles). Specifically, the median of the effect is estimated

as a 91% decrease of HIV incidence attributable to exchanging needles (odds ratio 0.09, 95%

posterior interval (0.00, 0.86)). The first row of Table 2(b) gives results for the odds ratio of

getting HIV under fixed exchange, for comparing higher versus lower principal strata, given

fixed history, that is, for comparing between pr(Yi(d + 1) = 1 | Si = (d + 1), Hi) and

pr(Yi(d) = 1 | Si = d, Hi); and the second row of Table 2(c) gives results for the odds ratio of

being at higher (versus lower) principal strata for one s.d. increase in baseline risk score, that

is, for comparing between pr(Si ≥ d | Hi + 1) and pr(Si ≥ d | Hi), where Hi + 1 is Hi except

for one s.d. increase in its baseline risk score.

5.2 Evaluation with polydesign

We now demonstrate the use of a polydesign in the NEP. Specifically, the example of a reduced

design IREDU we consider here is a nested case-control design (Langholz and Thomas, 1990), in

the sense that it keeps all the uncensored HIV cases, and for each case, selects an uncensored

control that closely matches the case on its history Hi. Thus the corresponding reduced data

DREDU consist of the observed data of 52 uncensored case-control pairs of IDUs.

We use this design for two reasons. First, because the design matches cases to controls

on the history characteristics, it reduces extrapolation, as in other settings (e.g., Rubin and
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Thomas, 1996), of the models on the range of those characteristics for all the other controls, and

is therefore expected to be more robust in detecting the existence of treatment effects. Second,

because the reduced likelihood of the above reduced data is not only on the HIV outcome Y obs,

but also on the exchange behavior, conditionally on distance, it carries information on both

the effect of distance on exchange and the effect of distance on HIV, which is information that

puts constraints on the estimand Q. This was supported by evaluating the reduced likelihood at

different values of the nuisance parameters, and confirming that it varied as a function of Q.

For an uncensored case-control pair (a, b), where a is the case, i.e., Y obs
a = 1, we define a

conditional likelihood πab(θ) by

pr(Y obs
a = 1, Eobs

a , Y obs
b = 0, Eobs

b | Da, Db, Ha, Hb, C
obs
a = 0, Cobs

b = 0, Y obs
a + Y obs

b = 1, θ),

(5.5)

where the conditionals on Cobs
a , Cobs

b , Y obs
a , Y obs

b reflect the no-censoring and outcome con-

straints of this design. Then, we take prREDU(DREDU | θ) to be the product of the terms πab(θ) in

(5.5) over all case-control pairs. To express this product in terms of the models (5.1)-(5.3), first

denote the probabilities pr(Y obs = y, Eobs = e|D = d, H = h, Cobs = 0, θ) as τ(y, e, d, h; θ),

then the likelihood (5.5) can be expressed as

τ(1, Eobs
a , Da, Ha; θ)τ(0, Eobs

b , Db, Hb; θ)

τ(1, Eobs
a , Da, Ha; θ)τ(0, Eobs

b , Db, Hb; θ) + τ(0, Eobs
a , Da, Ha; θ)τ(1, Eobs

b , Db, Hb; θ)
,

(5.6)

where by the law of total probability over the principal strata S, and by the assumptions of the

models (5.1)-(5.3) in Frangakis et al. (2004), each τ(y, e, d, h; θ) can be expressed as

τ(y, e, d, h; θ) =

∑
s f(y, s, d, h; θ)g(0, s, d, h; θ)k(s, h; θ)∑

s g(0, s, d, h; θ)k(s, h; θ)
, (5.7)

where the summation is, again, over all s values that are consistent with observing exchange e

at distance of d.
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Relations (5.6) and (5.7) link the reduced likelihood to the full likelihood (5.4). From these

expressions, it is evident that the reduced likelihood is generally not sufficient to consistently

estimate the causal effect Q. The reason is that the design’s constraints on the outcome and

no-censoring in the reduced likelihood lose some information that is, in general, necessary for

identifying all parameters. Moreover, due to the summation over the principal strata s in (5.7),

this problem is not removed when making additive assumptions to models (5.1)-(5.3) as is

usually done in conditional logistic regression models.

For this reason, and in order to make use of the reduced likelihood, we use a polydesign. For

an anchor function, consider the entropy-related expectation, A∗(θ) = Eθ0(log(πab(θ))). The

function A∗(θ) is an anchor function, because A∗(θ) is identifiable from the reduced likelihood

(2.1), since πab(θ1) = πab(θ2) implies A∗(θ1) = A∗(θ2) for any θ1, θ2. However, we do not

know the true θ0, and hence do not know A∗(θ) exactly. For this reason, we use its empirical

counterpart, the logarithm of the reduced likelihood, A(θ),

A(θ) :=
1

nc

∑

(ab)

log(πab(θ)), (5.8)

to approximate A∗(θ), where nc is the number of cases. There is no guarantee that A(θ) defined

in (5.8) is exactly identifiable from the reduced likelihood. Nevertheless, A(θ) converges in

probability to A∗(θ), and the region around A(θ0) where A(θ) is possibly equally likely as

A(θ0) is expected to be small, so using the empirical function A(θ) as an actual anchor function

is expected to give similar results as using A∗(θ). Practically, the choice of A(θ) as an anchor

function will calibrate the full design inference to values of θ that give the same entropy to the

reduced data as if θ is inferred only using the reduced data.

The second and the third rows of Table 2 present results from using the reduced design

and the polydesign, respectively. Specifically, the second rows are obtained from the simulated

draws from the reduced likelihood as described in Step 2 of Section 3. The third rows are
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obtained by simulating from the polydesign distribution (2.3) using the above full and reduced

likelihoods and anchor function, and are implemented as described in Section 3.

For the odds ratio Q, the second row of Table 2(a) shows that the point estimate from the

reduced design is equal to that from the full design, but with slightly larger uncertainty, which

results from using only part of the full data in the reduced design. This similarity suggests that

the reduced data here contain most of the information for estimating the parameters. The third

row of Table 2(a) shows that both the median and the posterior intervals from the polydesign

are similar to that from the full design. The above observations also stand for the two other

estimands. Those observation, and the fact that the chosen anchor function was not variation-

independent of the estimand provide some evidence that the results are robust to this use of a

case-control reduced design.

6. Remarks

Polydesigns combine the full with reduced designs to better focus estimation of selected parts

of the parameters to be based on reduced designs of the data. At the same time, polydesigns

retain estimability of the target estimand. Therefore, polydesigns offer an alternative inference

using a model, and, thus, a way to assess sensitivity of the results to that model through sen-

sitivity to different designs. More study, however, is necessary for the better understanding of

the role and good choices of anchor functions.

Although the motivation of polydesigns was through causal inference, these designs, as

also noted by a reviewer, can be useful in other settings too. In either case, polydesigns can be

especially useful when the estimands of interest have a definition that is in principle over and

above a parametric model, as with the potential outcomes in eq. (4.1) and the principal strata

in eq. (5.1). In such more general settings, and as indicated by a reviewer, the polydesign has

conceptual similarities to Bayesian model averaging, but where the latter combines inferences
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of different models for one design, whereas the former combines inferences of a model across

different designs. Of course, one does not exclude the other, since a larger, “averaging model”

could still be used in different ways for different designs. Importantly, the polydesign empha-

sizes that regardless of the model of analysis, a good design should play a primary role in the

quality of the results.

The use of such different designs has been motivated here as retrospective. A more general

purpose for using different designs is cost reduction. If we do not use the full design, where we

measure all data, but replace the full design with a reduced design, which we would combine

with another reduced design, then it is possible to reduce the cost, although, of course, at the

expense of precision. The cost of such a polydesign would then be that of the union of the

data measured for each of its reduced designs. It is then of interest to develop methods for

(a) specifying such prospective polydesigns that can identify the causal effects, and (b) finding

members of the polydesigns that have high accuracy per unit cost, while taking into account

ethical considerations.
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75–100.

APPENDIX: OUTLINE OF PROOF OF PROPERTY 1(a)

Denote A(θ) by A and θ − A(θ) by B. Assume both A and B take finitely many values,

with true values a0 and b0. Denote prREDU,n(A = a0|DREDU,n) as gn(a0), prFULL,n(A = a0, B =

b0|DFULL,n) as fn(a0, b0), where n is the sample size. Assuming identifibility of (A, B) from the

full likelihood and that A(θ) is an anchor function implies that both gn and fn converge to a

point mass at the true values, in the sense that

gn(a0) → 1 and fn(a0, b0) → 1, (A.1)

as n increases. Then for the polydesign distribution, we have:

prPOLY,n(A = a0, B = b0) = prREDU,n(A = a0|DREDU,n)prFULL,n(B = b0|A = a0, DFULL,n)

= gn(a0)fn(a0, b0)/
∑

b′
fn(a0, b

′)

= gn(a0)fn(a0, b0)/(fn(a0, b0) +
∑

b′ �=b0

fn(a0, b
′)).

In the last line, all terms except
∑

b′ �=b0
fn(a0, b

′) converge to 1, by (A.1). Moreover, for b′ �= b0,

fn(a0, b
′) converges to 0. So, the expression in the last line converges to 1, and so the median

of the polydesign distribution converges in probability to the true value.
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