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SUMMARY. In an increasingly common class of studies, the goal isto evaluate causal effects
of treatments that are only partially controlled by the investigator. In such studies there are
two conflicting features: (1) amodel on the full cohort design and data can identify the causal
effects of interest, but can be sensitive to extreme regions of that design’s data, where model
specification can have more impact; and (2) models on a reduced design (i.e., a subset of the
full data), e.g., conditional likelihood on matched subsets of data, can avoid such sensitivity, but
do not generaly identify the causal effects. We propose a framework to assess how inferenceis
sensitive to designs by exploring combinations of both the full and reduced designs. We show
that using such a “polydesign” framework generates a rich class of methods that can identify
causal effects and that can aso be more robust to model specification than methods using only
the full design. We discuss implementation of polydesign methods, and provide an illustration

in the evaluation of a Needle Exchange Program.

KEY WORDS. anchor function; causal effects; needle exchange program; partially controlled

studies; polydesign; principal stratification.
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1. Introduction

A frequent goal is to evaluate causal effects of treatments in studies that can only be partially
controlled by the investigator. Such partially controlled studies have two conflicting features:
(1) amodel on the full cohort design of data can identify the causal effect of interest, but can
be sensitive to extreme regions of that design’s data where model specification can have more
impact; (2) modelsinduced to datafrom areduced design, i.e., from arule for selecting a subset
of thefull data (e.g., aconditional likelihood on matched subsets of data), which can avoid such
sensitivity, do not generally identify the causal effects.

To make analogies to a motivating example of a partially controlled study, we consider an
evaluation of the Baltimore's Needle Exchange Program (NEP), as originating from the com-
bination of the ALIVE and NEP studies (Vlahov et al., 1997; Strathdee et al., 1999). In the
ALIVE study, a cohort of injection drug users (IDUs) has been enrolled and is being followed,
with regular six month (semester) visits in which the subjects are offered clinic services, in-
cluding blood tests for HIV. In parallel to the clinic, the NEP study operates sitesin Baltimore
where IDUs can exchange a used needle for a sterile one, with the hope of reducing HIV trans-
mission. The goal in the NEP evaluation is to estimate the degree to which exchanging versus
not exchanging needles reduces (if at all) HIV incidence among IDUs.

The NEP is partially controlled in the sense that (1) it does not directly control either who
exchanges needles or who provides outcome — HIV blood tests at the clinic, but (2) it directly
controls the placement of the NEP sites offering needles, hence the distance of the NEP sites
fromthelDUs. If distance of the NEP sitesto the subjectsinfluences who exchanges at the NEP
and who provides HIV blood tests, these relations can be useful to evaluate the effect that dis-
tance has on HIV incidence and that is attributable to exchanging needles. However, a general
result for such studies (Frangakis and Rubin, 1999) impliesthat it isnot appropriate to use stan-

dard evaluation of the NEP, such as by comparing exchangers with nonexchangers on observed
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HIV outcomes (e.g., Keende et a., 1993; van Ameijden et al., 1994; Drucker et a., 1998), or
by using distance of NEP to IDUs as a standard instrumental variable on the ” complete data’
(e.g., McClellanet al., 1994). In contrast, the framework of “principal stratification” (Frangakis
and Rubin, 2002) has been shown to allow both definition of more appropriate estimands, and
also to allow separation of the assumptions made for the mechanisms of the effects (structural
assumptions) from the assumptions made on the design of what data is being collected (e.g.,
Barnard et al., 2003; Gilbert, Bosch, and Hudgens, 2003; Frangakis et a., 2004).

Part (1) of the conflict stated in the first paragraph arises from the necessary relative com-
plexity of the modelsinvolved in principal stratification in partially controlled studies such as
the NEP. This complexity makes it important to investigate whether results are robust to the
design used. Particular relevance to aternative designs arises also when the outcome of inter-
est israre. For example, in the NEP study, over an average follow-up of 9 semesters for 1170
subjects, 52 subjects underwent HIV seroconversion. With such low incidence, results can be
sensitive to the design and the model used, for example, in the region of controls' covariates
that does not overlap with the covariates of the cases. One can argue that if such low incidence
is to exacerbate the consequences of a model misspecification, then a possible way to address
this can be to change the model to a semiparametric one, as Robins et al. (2001) adopted in
other settings. Semiparametric models may or may not have problemswith complex structures,
depending on the choice of such model. However, in problems with such challenging structure
as with principal stratification, current semiparametric formulations cannot guarantee estima-
bility, and miss the advantages of efficiency of parametric models which can be justified even
from a non-parametric perspective (e.g., Frangakis and Rubin, 2001). More importantly, the
choice of agood design is central for the quality of the results no matter the methods of analy-
sis used. For this reason, we choose to explore sensitivity of the results to different designs,

an approach often preferred in epidemiology in other settings (e.g., Breslow and Day, 1980).
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Specifically, we consider designs for selecting a subset of the full data, and which we call here
“reduced designs”.

Part (2) of the above stated conflict arises because theinformation lost in “reduced designs”
can be necessary for estimating the causal effects well in partially controlled studies. Suppose,
for example, for a “reduced design” in the NEPR, we choose all the HIV cases, and, for each
case, we keep one control who closely matches the case on covariates, as in nested case-control
designs (Langholz and Thomas, 1990). Then the conditional likelihood that the model on the
full design induces on the data of the reduced design, unlikewith a standard conditional logistic
regression likelihood, does not necessarily identify the causal effect, mainly because of alatent
structure inherent in the framework of principal stratification. A related inadequacy of the
standard conditional logistic regression also arises in the framework of sequential ignorability,
as indicated by Robins, Greenland and Hu (1999, Sec. 7). Also, if the reduced design is
based on matching on predefined covariate classes so that all probabilities of selection to the
reduced design are well away from 0 and 1, then inverse probability of selection methods may
recover sufficient lost information for estimation. However, more general settings can include
rules of selection to the reduced design conditionally on the full design that resemble more
a deterministic process than a probabilistic one, and then inverse probabilty methods are not
applicable. The question that arises then is how to explore results from different designsin a
way that preserves enough information to well estimate the causal effects.

We propose a class of methods that are based on the combination of the full design together
with reduced designs. The key of such “polydesign” methodsis that they provide a continuum
between the full design and reduced designs. We show that the members of this continuum can
identify the causal effects and can achieve better robusteness to model specification than the
full design. Section 2 defines polydesigns, discusses inferentia perspectives and main general

properties. Section 3 discusses implementation of polydesigns; Section 4 demonstrates the
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methods in an experiment; Section 5 applies the methods to the NEP study, and Section 6

provides remarks.

2. Polydesigns

Consider a cohort design I, for selecting units from the population and assigning them to
treatments, and let Dy, be the data arising from thisdesign. We call I, and Dgy, the “full”
design and “full” data. Let also pr,,, (Deu. | #) denote the likelihood of the full data based on
thefull design, where 6 represents the parameters describing the population of study, and where
the causal estimand of interest is some function of 4. We consider cases where ¢ is identifiable
from the likelihood of the full data, but where we wish to investigate sensitivity of estimation
to different designs.

To assess such sensitivity, consider first a “reduced” design Iz, that is, a design that de-
scribes how to select a subset of the units from the full design /.., €g., through a certain
matching rule as in case-control studies (Breslow and Day, 1980). Let Dy, denote the “re-
duced’ data, including indicators of which units have been selected, that arise from thisdesign.
For the reduced data, we consider alikelihood

Preeou( Dreou | 0) (2.1)

that is induced from the full likelihood when also taking into account the reduced design. We
alow that the reduced likelihood can be the marginal likelihood of the reduced data, but aso
allow that it can be a conditional or a partial likelihood (Cox and Oakes, 1984) of the reduced
data, which isthe reason for also distinguishing between the distributions pr_,,, and pr

FULL REDU*

The reduced design can avoid sensitivity to specification of the full model on those features
of the full data that are not modeled in the likelihood (2.1). Nevertheless, estimation of the

causal effects of interest in partialy controlled studies generally requires more information
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from the full datathan does estimation of causal effectsin studies that make more assumptions.
Asaresult, areduced likelihood (2.1) is not generally sufficient to identify the causal effects.
The goa here is to provide an approach that assesses sensitivity to different designs for
inference on the parametersin 6 for more general partially controlled studies. Theideaisthat,
although areduced design may not identify the full parameter 6, it identifies some functions of
the parameter from (2.1), and thus can provide estimates of these functions that are robust to
data omitted from the reduced likelihood (2.1). This point suggeststhat it is useful to consider

the following definitions.

DEFINITION

(8 Ananchor function A(6) isafunction that isidentifiable from the likelihood of the reduced
design (2.1).

(b) A polydesign with respect to a full design 7, of a population is a collection of the full

design together with one or more reduced designs /ey -

An example of an anchor function is the conditional odds ratio (the exponentia of the re-
gression coefficient of exposure) that isidentifiable from the conditional likelihood of alogistic
regression model (Section 4).

In a polydesign, the reduced designs are, by definition, nested within the full design, but
do not need to satisfy a nesting structure among each other, and the data they produce can
overlap. We focus discussion here on basic polydesigns with one reduced design, although the
discussion can be extended to the more general case.

The purpose of a polydesign is to synthesize inference for anchor functions of the parame-
ter, identifiable from the reduced likelihood, with inference for the remaining parts of the pa-

rameter from the full likelihood. The former likelihood helps reduce dependence of inference

6
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to data omitted from the reduced design, whereas the latter likelihood, if needed, completes
identification of the causal effect. Such synthetic inference can be expressed with a Bayesian
or a maximum likelihood perspective. In the following, we assume that standard regularity

conditions such as for consistency of parametric maximum likelihood estimation hold.

Bayesian per spective.

From the full likelihood and a prior distribution, we obtain the full posterior distribution,
Pre. (0] Deuu ). For an anchor function A(6) of the parameters, consider the decomposition of
the full posterior distribution, into the marginal distribution of A(#) and the distribution of the

remaining functions, denoted by # — A(9), required to specify 6,
erULL(eyDFULL) = erULL(e - A(0> ‘ A(0>7 DFULL) erULL(A(e)‘DFULL)' (22)

Also, from the reduced likelihood and the prior distribution, we can obtain the reduced
posterior distribution, pr..., (0| Dreoy), @s if we had only observed reduced data Deepy. FOr

an anchor function A(#), the resulting reduced posterior distribution pr_,(A(6)| Dgepy) iS not

REDU

sensitive to specification of the prior in the sense that A(¢) is identifiable from the reduced

likelihood. It isthen helpful to consider the “polydesign” distribution defined as

prPOLY(Q) = erULL(e - A(e) ‘ A(e)’ DFULL)erEDU(A(e)‘DREDU)' (23)

The distribution (2.3) isarecalibration of (2.2) to the posterior distribution of the anchor func-
tion that arises by the reduced design alone. In the special case where the reduced likelihood
Preeou (Dreou | €) is@amarginal distribution of the full likelihood, the factor pr..,(A(6)| Dgeou)
of (2.3) isproportional to an integrated likelihood.

The polydesign distribution can form a basics of estimating ¢ in a number of ways. To
demonstrate, we discuss here operating characteristics of the median of the distribution, al-

though similar results hold for more general summaries of this distribution. For any given

7
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polydesign I.o,v, Appendix 1 outlines a proof of the property for a parameter ¢ that can be well

approximated with fine enough discretizations.

PROPERTY 1

(@) If the assumed full likelihood is correct then, for any anchor function, the median of the

polydesign distribution (2.3) is consistent for the true parameter 6.

(b) For any misspecification of the full likelihood, and with respect to any loss function for a
true parameter, there exists an anchor function so that the median of the polydesign distri-
bution (2.3) performs uniformly at least as well as the median of the posterior distribution

(2.2).

A proof of the first part is based on showing that the right multipliers in the right hand
side of both distributions (2.3) and (2.2) converge to the point mass at the anchor function’s
value at ¢y. The proof of the second part is straightforward because the class of distributions
(2.3) generated by a polydesign provides a continuum that contains the distribution (2.2) in the
trivial case when A() isfree of 6. In fact, part (b) would hold even if we relaxed identifiability
of A(#) from the reduced likelihood, which is, nevertheless, desired to allow for use of diffuse
prior distributions, and, hence, for more dependence on the data. M oreover, the optimum can be
achievable within the continuum, i.e., with a nonconstant anchor function. Finding an analytic
function giving the optimum depends on how a misspecification is expressed, and is not here
our goal. A more practical implication of the property isthat use of an anchor function A(#) in
the polydesign will focusits estimation to be from the reduced design and to not depend on the

structure of the remaining data.

Maximum likelihood per spective.

Anaogoudly to the Bayesian perspective, we consider a synthetic estimation of § = (0 —

8
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A(#), A(9)) by basing estimation for the anchor function A(#) on the reduced likelihood, and
estimation for the remaining part of the parameter on the full likelihood. Specifically, define:

Opory := ((0 - A)FULL7 AREDU)) where (2-4)
Pr{ Deeou | [0 — A(0),A(0)]} ismaximumat [(6 — A)peou, Arenu], and

Pr{Deu | [0 — A(0), Areov]}  ismaximumat  [(6 — A)euwr, Areou]

The estimator 0,0, therefore, is the maximizer of the full likelihood after having profiled
(Murphy and van der Vaart, 2000) that likelihood on the value of the anchor function that max-
imizesthe reduced likelihood. Standard errorsfor ..., can be obtained by the delta method, by
bootstrap, or by simulation from the model. In the specia case where the reduced likelihood
Procou(Dreou | 0) is amargina distribution of the full likelihood, the estimator A(0) repy iS @
“margina” (or “restricted”, Patterson and Thompson, 1971) likelihood estimator. The reason
Why Agepy but not (6 — A)geny iSUSed in 50, IS because the latter is not generally unique and
not necessarily a good estimate.

In analogy to the Bayesian perspective, for any given polydesign /...y, the following prop-

erty holds for a sufficiently fine discretized approximation of the parameter.

PROPERTY 2
(& If the assumed full likelihood is correct then, for any anchor function, the polydesign esti-

mator ..., defined in (2.4) is consistent for the true parameter 6.

(b) For any misspecification of the full likelihood, and with respect to any loss function for a
true parameter, there exists an anchor function so that the polydesign estimator 6., per-

formsuniformly at least aswell asthe maximum likelihood estimator of the full likelihood.

Part (a) can be shown using a variation of Wald's proof for consistency of maximum like-

lihood. The proof of part (b) is again straightforward by analogous arguments to those of

9

Hostedby TheBerkel eyElectronicPress



Property 1(b).

Thus, polydesigns offer estimation, from either the Bayesian or the maximum likelihood
perspective, that shares qualitatively two main properties. It provides an alternative inference
tothefull design that (a) isvalid if the assumed model is correct; and (b) focuses estimation of
a selected component of the estimand, namely the anchor function, to be based on a reduced
design of the full data. Therefore, polydesigns also offer a way to assess how sensitive the
results are to using different designs to estimate different components of the model. If results
differ substantially between the full design and the polydesign, this would suggest the model is
mispecified. On the other hand, similarity between the results of the full design with those of
a polydesign with an anchor function that depends on the estimand, would be more reassuring
than simply relying of results of the full design. This does not mean that any polydesign gives
better inference than any full design, and justification in terms of principles such as matching

is needed to make a case for choosing a polydesign.

3. Implementation

Obtaining the value of 0., defined in (2.4) is a maximization problem, although possibly a
challenging one in terms of computational stability if the anchor function is complicated.
In contrast, the polydesign distribution (2.3) can be relatively easily obtained through the

following simulation.

Sep 1. Approximate pr.,,, (A(0)|Dey.). To do so, one can simulate a large number, N, of
random draws from the normal approximation based on the MLE of ¢ of the full likelihood,
and then simulate N, (< N) random draws from pr,,, (#| Dey. ) Using sampling importance
resampling (SIR, Rubin, 1987). For each draw, calculate A(6) and estimate pr,,,, (A(0)|Deur),
e.g., with akernel approximation.

Step 2: Approximate pr..,,(A(f)|Dreoy). Because maximization of the reduced likelihood

10
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to obtain a normal approximation may be unstable with multiple modes of 6, one can start
from the random draws of pr.,, (6| Dey.. ) Obtained in step 1, and then simulate Neeoy (< Neyu,)
random draws from pr,.., (€| Dreou) Using SIR. For each draw, calculate A(#) and then estimate
Preeou (A(0)| Dreny) 8Sin step 1.

Sep 3: Approximate the function r(0) = prc,,(A(0)|Deeouv) /Prey (A(0)]| Deu ), Which is the

importance ratio of the polydesign distribution pr,,,(¢) in equation (2.3) to pr.,, (6| Deu.) in

FULL
equation (2.2). Thisis obtained by simply dividing the two functions obtained in steps 1 and 2.
Sep 4: Simulate from the polydesign distribution pr,.(¢). To do so, use simulations of
pre,. (0| Dey) from step 1, and use SIR by noting that the ratio of the target (polydesign) to
candidate (full) distributionsis the function () of step 3. When enough draws from the target

distribution have been obtained, quantiles, moments, and other summaries can be computed.

The fourth step is an alternative description, from an implementation perspective, that the
polydesign distributionisarecalibration of pr_,, (6| Dey. ) to be such that the marginal distribu-
tion of the anchor function A(6) be equal to the posterior distribution arising from the reduced

likelihood praco, (A(0)| Dreou) -

4. Demonstration in asimple example

In this section, we demonstrate the polydesign in a simple experimental example as also sug-

gested by reviewers.

Estimand. Consider individuals each of which can be assigned one of two treatments, d = 0, 1,
in which case the potential outcomes (Rubin, 1974, 1978) will be Y;(d), which we assume here
are binary. For example, the “treatment” can be a medical therapy, or the location of the NEP

site, depending on the context, and the outcome can be living status or HIV, respectively. We

11
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wish to estimate the marginal causal oddsratio @:

_ pr(Yi(1) = 1)/pr(¥i(1) = 0)
pr(¥;(0) = 1)/pr(¥;(0) = 0)

Because treatment is not generally randomized, it isimportant to express () using distributions

Q@ (4.1)

conditional on a covariate,

Q(0o) =

>, brYi(1)
> . Pr(Yi(0)

o 2o PrYi(0) = 01X; = z,6o)pr(z | o)
2 Pr(Yi(1) = 0| X; =z, 00)pr(z | 60)’

1| X;=,00)pr(z | 6o)
1| X; =,00)pr(z | 6p)

(4.2)

where 6, denotes the true joint distribution of al variables. For this section, we alow that the
actual assignment of treatments D; isignorable only after conditioning on the covariate X; in
the sense of Rubin (1978). Then, the potential outcomedistributionspr(Y;(d) =1 | X; = x, 6y)
are equal to pr(Y;*** = 1|D; = d, X; = z,0,), which involve only observable data (Rubin,
1978), and so by replacing the former with estimates of the latter in (4.2) allows in principle
estimation of (). We use this example to reflect the situation where, although a standard case-
control design can estimate someinteresting aspects of the distribution, the estimand of interest,
here (), is only partly specified by those aspects, and needs also some other aspects from the

full design, as we see below.

Model, and full- and polydesign methods used for analyses. A discrete three level (0.0, 0.5,

and 1.0) variable is used as the covariate X. The model that is used here for analysis assumes
that potential outcomes conditionally on X have the logistic regression

logitpr(Yi(d) = 1|X; = 2,0) = g(z,0) + Bad (4.3)

where g(x,0) = (. + 5, x. (4.9

To estimate the odds ratio (4.2), here we discuss a full design and a polydesign method

from the maximum likelihood perspective, because it is feasible and makes easier connection

12
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to existing case-control arguments. The full design is a simple random sample of individuas
from the population. Using this design, the odds ratio (4.2) is estimated by its MLE Q(0¢,..)
by replacing the MLE of 3 for the outcome distributions given the covariate, and the observed
proportions of the distribution of the covariate X .

For the polydesign method, we consider the sameindividualsof the full design, and, among
those, we form a nested case-control design, by matching every case from the full design,
Y = 1, to acontrol from the full design with the same covariate. Note that since polydesings
can combine different likelihoods of the model corresponding to different designs, polydesigns
are not necessarily restricted to 1-1 matching, and one could use also a polydesign with more-
than 1 to 1 matching for each case. The 1-1 matching here, though, better represents practical
situations where at most one control can be well matched.

By standard results under this design and the assumed model, 3, is estimable from the
conditional (reduced) likelihood. Unlike a usual setting, though, the reduced likelihood does
not fully identify the estimand (), because () also involves other parameters. Instead, 3, can be
used as an anchor to obtain a polydesign estimator asin (2.4). Specifically, to do this, we (i)
estimate 3, by the maximizer, 3,01, Of the conditional likelihood of the case-control design;
(i) estimate 3., 3, by the maximizers 3. powv, Bz,p0 Of the full likelinhood after having replaced
Baro fOr Gy; (ii1) estimate the distribution of the covariate X by the observed proportions; and
(iv) estimate the odds ratio (4.2) by Q (60 ) by replacing the estimates from (i)-(iii) in (4.2).

Experiment and results. By the virtue of matching on X, the anchor 5, is estimated consis-
tently by the polydesign estimator, but not by the full design estimator, whether or not the func-
tion g(x, 6) iscorrectly specified. Moreover, although Q(6) depends on the function g(x, #) and
not just on (3,4, under the null hypothesis H, : 5; = 0, the oddsratio () isalso 1. By continu-
ity, thisimpliesthat, at least around H , Q(6) will be estimated will less bias by the polydesign
Q (0o ) than by the full design Q(Ory., ).

13
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We examined how different the performance can be between the two estimators in con-
ditions that satisfy the model (4.4), and in conditions where the model is violated, as fol-
lows and as reflected in Table 1. For the former conditions, we set pr(Y (0) | X = z)(=
expit(g(x))) = (1%,8%,40%), for x = 0.0,0.5,1.0 respectively, which satisfies approx-
imately the logistic linear model (4.4) with 3, = 2.15; to reflect conditions violating the
model, we interchange the second and third values of the above probability, that is, we set
pr(Y(0) | X = z)(= expit(g(x))) = (1%, 40%,8%) for = 0.0, 0.5, 1.0 respectively. For
each such condition, we vary the conditional oddsratio 5, = 0.5, 1.00 (null Hy), and 2.0. The
parameters we fix across conditions are: a total sample size of 1000 individuals; the distrib-
ution of the covariate, pr(X; = z) = (80%, 10%, 10%) and the probability of assignment to
treatmentd = 1,pr(D; =1 | X; = z) = (10%, 50%, 20%), for = = (0.0, 0.5, 1.0) respectively,
to induce rare prevalence and non-linearity of assignment. For the resulting conditions, Table
1 gives, the induced true marginal odds ratio (); the median of the full design and polydesign
estimators for @, Q (0 ) and Q(bsory) respectively; the standard deviation (empirical, over
the simulations) of the estimators for log ) and their mean squared error; and the coverages
of log @ (equal to those of ) by the nominal 95% confidence intervals using the empirical
standard deviations of the estimators. The results are based on 2500 simulations.

In the conditions of Table 1 wherethe model (4.4) iscorrectly specified, both the full design
and polydesign methods give, as expected, medians essentially equal to the true odds ratio Q).
Moreover, the full design estimator isassociated with smaller root M SEs, which reflects the fact
that full design method makes more use of the data and more use of the model assumptions. On
the contrary, in the conditions of Table 1 where the model (4.4) is misspecified, the full-design
method has a poor median under both null and non-null effects, whereas the polydesign method
isrelatively correctly centered. Moreover, even though the method based on the full design has

smaller variance, it has poor overall accuracy as judged by the root MSEs. In contrast, the

14
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increased dependence of the polydesign method on the reduced design allows it to preserve
relatively good overall accuracy.

In summary, while there are settings where the polydesign does not perform as well as the
full design, it can perform better when model misspecification becomesimportant for the target

estimand.

5. Application to Needle Exchange Program Evaluation

5.1 Causa estimand and full design

We now return to the NEP study introduced in Section 1. We first give some further back-
ground needed to define the causal effect of interest and the full likelihood in terms of potential
outcomes; any omitted details from here on the background and assumptions can be found in
Frangakis et al. (2004).

For a person-semester unit 7, a needle exchange site can be placed at distances indexed
by d = 1,....d... Definethe principal stratum .S; to be the shortest distance of the needle
exchange site, S; = 0, ..., d,..2, beyond which that person would not exchange needles at that
site during that semester. That is, the person’s exchangeindicator F;(d) equals 1 if and only if
d < S;. Denote Y;(d), C;(d) to be the potential outcomes of HIV status and of censoring of the
HIV status, respectively, if the NEP siteis placed at distance d. Also denote D; to be the actual
distance between the nearest NEP site and the person; E2* = E;(D;) the observed exchanging
status, C'?* = C;(D;) the observed censoring status; Y, = Y;(D;) the observed HIV status
if not censored; and H; the observed history of that person at that semester which includes a
baseline risk score B; of getting HIV.

The causal effect of interest, 9, isthe oddsratio, within stratum S; = s, (0 < s < d;qz ), Of
getting HIV when exchanging versus when not exchanging needles. This, by definition of the

principal stratification, is obtained by comparing between the levels of the controlled factor of
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distance, that is, () isthe odds of
pr(Y;(d=1)=1|S;,H;) versus pr(Yi(d=dmna) =115, H;),

which, for simplicity is assumed here to be common across principal strata S; and history
H;. Note that this definition involves a variable, the principal stratum S;, that is generally not
observed. For example, if at a semester, a person is at distance D?** = 2 from the NEP and
does not exchange needles (E¢%* = (), then we do not know that person’s principal stratum
because we do not know exchange behavior, E;(d = 1), if the NEP had been placed at distance
1: abehaviour E;(d = 1) = 0 would imply that there would be no distance at which the person
would exchange, so S; = 0; whereasabehaviour F;(d = 1) = 1, and knowing that E** = 0 at
distance D¢ = 2, would imply that ¢ = 1 would be the shortest distance beyond which (i.e.,
> 1) the person would not exchange, so S; would be 1.

The full design here is a cohort design of n = 1170 individuals, representative of those
IDUs originally consenting to be part of the study. The full data are history H;, distance D;,
exchanging status £, censoring status C¢*, and HIV status Y,°*¢ if not censored, for all
person-semesters 7 up to the first censoring time. Models for the full data can be specified

conditionally on the principal strata as follows:

g(c,s,d, h;0) = pr(Ci(d) =c|Si=s,H; =h,0) (5.2)

Because location of the NEP sitesis controlled by the study, the distribution of D; at each time
is assumed ignorable (Rubin, 1978) conditionally on the observed history, so a model for that
distribution is avoided. Under the remaining assumptions of Frangakis et al. (2004), the full
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likelihood pr.,, (D | 0) IS

H{Z F Wiy siy diy his 0)YDg(ci, s, diy hay 0)K(si, ha 0)}, (5.4)

where the summation is over al possible s; values that are consistent with the observed ex-
change status E¢** and observed distance D; for the person-semester unit i.

The first row in Table 2(a) presents results from the posterior distribution of the causal
effect (), obtained from the above full likelihood with a noninformative prior, with two levels
of distance (greater or less than 3 miles). Specifically, the median of the effect is estimated
as a91% decrease of HIV incidence attributable to exchanging needles (odds ratio 0.09, 95%
posterior interval (0.00,0.86)). The first row of Table 2(b) gives results for the odds ratio of
getting HIV under fixed exchange, for comparing higher versus lower principal strata, given
fixed history, that is, for comparing between pr(Y;(d +1) =1 | S; = (d +1),H;) and
pr(Yi(d) =11 S; = d, H;); and the second row of Table 2(c) gives results for the odds ratio of
being at higher (versus lower) principa strata for one s.d. increase in baseline risk score, that
is, for comparing between pr(S; > d | H;+ 1) and pr(S; > d | H;), where H; + 1 is H; except

for one s.d. increase in its baseline risk score.

5.2 Evauation with polydesign

We now demonstrate the use of a polydesign in the NEP. Specifically, the example of areduced
design /o, We consider here is a nested case-control design (Langholz and Thomas, 1990), in
the sense that it keeps all the uncensored HIV cases, and for each case, selects an uncensored
control that closely matches the case on its history H;. Thus the corresponding reduced data
Drepy cOnsist of the observed data of 52 uncensored case-control pairs of IDUSs.

We use this design for two reasons. First, because the design matches cases to controls

on the history characteristics, it reduces extrapolation, as in other settings (e.g., Rubin and
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Thomas, 1996), of the modelson the range of those characteristicsfor all the other controls, and
istherefore expected to be more robust in detecting the existence of treatment effects. Second,
because the reduced likelihood of the above reduced datais not only on the HIV outcome Y >,
but also on the exchange behavior, conditionally on distance, it carries information on both
the effect of distance on exchange and the effect of distance on HIV, which isinformation that
puts constraints on the estimand . Thiswas supported by evaluating the reduced likelihood at
different values of the nuisance parameters, and confirming that it varied as a function of Q).
For an uncensored case-control pair (a,b), where a isthe case, i.e., Y, = 1, we define a

conditional likelihood ., (#) by

pr(Yaobs — 1’ Egbs’ Y'Z')obs — 0’ Egbs ’ Da7 Db7 Haa Hb7 Cgbs — O, Cbobs — 0’ Y:bs + Y'Z')obs — 1’ 0)7

(5.5)

where the conditionals on C O Yo% Yo% reflect the no-censoring and outcome con-

straints of this design. Then, wetake pr .., (Dreou | €) to be the product of the terms 7, (0) in

(5.5) over al case-control pairs. To expressthisproduct in terms of the models (5.1)-(5.3), first
denote the probabilities pr(Y > = y, E% = ¢|D = d, H = h,C° = 0,0) as7(y, e, d, h;0),
then the likelihood (5.5) can be expressed as

T(l, Egbs’ Da, Ha; 0)7’(0, Egbs, Db, Hb; 0)
7(1, E%s. D,, H,; 0)7(0, EbObS, Dy, Hy; 0) + 7(0, E°s . D,, H,; 0)7(1, Egbs, Dy, Hy; 0)’

(5.6)

where by the law of total probability over the principal strata S, and by the assumptions of the
models (5.1)-(5.3) in Frangakis et a. (2004), each 7(y, e, d, h; ) can be expressed as

> f(y,s,d, h;0)g(0,5,d, h;0)k(s, h;0)
3. 9(0,5,d, h; 0)k(s, h; 0) ’

7(y,e,d,h;0) = (5.7)

where the summation is, again, over al s valuesthat are consistent with observing exchange e

at distance of d.
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Relations (5.6) and (5.7) link the reduced likelihood to the full likelihood (5.4). From these
expressions, it is evident that the reduced likelihood is generally not sufficient to consistently
estimate the causal effect (). The reason is that the design’s constraints on the outcome and
no-censoring in the reduced likelihood lose some information that is, in general, necessary for
identifying all parameters. Moreover, due to the summation over the principa strata s in (5.7),
this problem is not removed when making additive assumptions to models (5.1)-(5.3) as is
usually donein conditional logistic regression models.

For thisreason, and in order to make use of the reduced likelihood, we use a polydesign. For
an anchor function, consider the entropy-related expectation, A*(0) = Fjy,(log(m.(6))). The
function A*(#) isan anchor function, because A*(¢) isidentifiable from the reduced likelihood
(2.1), since 74 (01) = 7ap(60:) implies A*(0;) = A*(6,) for any 6,, 6,. However, we do not
know the true 6,, and hence do not know A*(#) exactly. For this reason, we use its empirical

counterpart, the logarithm of the reduced likelihood, A(9),
1
A(9) = — > log(ma(0)), (5.8)
(ab)

to approximate A* (), where n,. isthe number of cases. Thereisno guaranteethat A(6) defined
in (5.8) is exactly identifiable from the reduced likelihood. Nevertheless, A(f) convergesin
probability to A*(6), and the region around A(6,) where A(0) is possibly equaly likely as
A(6y) isexpected to be small, so using the empirical function A(6) asan actua anchor function
is expected to give similar results as using A*(#). Practically, the choice of A(#) as an anchor
function will calibrate the full design inference to values of 6 that give the same entropy to the
reduced data asif 6 isinferred only using the reduced data.

The second and the third rows of Table 2 present results from using the reduced design
and the polydesign, respectively. Specifically, the second rows are obtained from the smulated
draws from the reduced likelihood as described in Step 2 of Section 3. The third rows are
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obtained by simulating from the polydesign distribution (2.3) using the above full and reduced
likelihoods and anchor function, and are implemented as described in Section 3.

For the odds ratio (), the second row of Table 2(a) shows that the point estimate from the
reduced design is equal to that from the full design, but with slightly larger uncertainty, which
results from using only part of the full datain the reduced design. This similarity suggests that
the reduced data here contain most of the information for estimating the parameters. The third
row of Table 2(a) shows that both the median and the posterior intervals from the polydesign
are similar to that from the full design. The above observations also stand for the two other
estimands. Those observation, and the fact that the chosen anchor function was not variation-
independent of the estimand provide some evidence that the results are robust to this use of a

case-control reduced design.

6. Remarks

Polydesigns combine the full with reduced designs to better focus estimation of selected parts
of the parameters to be based on reduced designs of the data. At the same time, polydesigns
retain estimability of the target estimand. Therefore, polydesigns offer an alternative inference
using a model, and, thus, a way to assess sensitivity of the results to that model through sen-
sitivity to different designs. More study, however, is necessary for the better understanding of
the role and good choices of anchor functions.

Although the motivation of polydesigns was through causal inference, these designs, as
also noted by areviewer, can be useful in other settingstoo. In either case, polydesigns can be
especialy useful when the estimands of interest have a definition that is in principle over and
above a parametric model, as with the potential outcomesin egq. (4.1) and the principal strata
ineg. (5.1). In such more general settings, and as indicated by a reviewer, the polydesign has

conceptual similaritiesto Bayesian model averaging, but where the latter combines inferences
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of different models for one design, whereas the former combines inferences of amodel across
different designs. Of course, one does not exclude the other, since alarger, “averaging model”
could still be used in different ways for different designs. Importantly, the polydesign empha-
sizes that regardless of the model of analysis, a good design should play a primary role in the
quality of the results.

The use of such different designs has been motivated here as retrospective. A more genera
purpose for using different designsis cost reduction. If we do not use the full design, where we
measure all data, but replace the full design with a reduced design, which we would combine
with another reduced design, then it is possible to reduce the cost, although, of course, at the
expense of precision. The cost of such a polydesign would then be that of the union of the
data measured for each of its reduced designs. It is then of interest to develop methods for
(@) specifying such prospective polydesigns that can identify the causal effects, and (b) finding
members of the polydesigns that have high accuracy per unit cost, while taking into account

ethical considerations.
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75-100.

APPENDIX: OUTLINE OF PROOF OF PROPERTY 1(a)
Denote A(0) by A and § — A(9) by B. Assume both A and B take finitely many values,
with true values ay and by. Denote pro.,, ,,(A = ao|Drevu,n) 8 gnlao), Prey, (A = ao, B =
bo| Deuin) 8S fn(ao, bo), Wheren isthe sample size. Assuming identifibility of (A, B) from the
full likelihood and that A(#) is an anchor function implies that both g,, and f,, converge to a

point mass at the true values, in the sense that

gn(ag) — 1 and  f,(ao,bo) — 1, (A1)
asn increases. Then for the polydesign distribution, we have:
prPOLY,n(A =ag, B = bo) = erEDU,TL(A = a0|DREDUan)erULL,n(‘B = bO‘A = Qo, DFULLJL)
= gn(ao) fulao, o)/ > fulao, )
b/
= gn(ao) fu(ao, bo)/(falao, bo) + Y falao, V).

b'#bo
Inthelastline, all termsexcept >, fx(ao, V') convergeto 1, by (A.1). Moreover, for b’ # by,
fn(ao, ') convergesto 0. So, the expression in the last line converges to 1, and so the median

of the polydesign distribution convergesin probability to the true value.
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