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Spatially Adaptive Bayesian P-Splines With
Heteroscedastic Errors

Ciprian M. Crainiceanu∗ David Ruppert† Raymond J. Carroll‡

November 9, 2004

Abstract

An increasingly popular tool for nonparametric smoothing are penalized splines (P-
splines) which use low-rank spline bases to make computations tractable while main-
taining accuracy as good as smoothing splines. This paper extends penalized spline
methodology by both modeling the variance function nonparametrically and using a
spatially adaptive smoothing parameter. These extensions have been studied before,
but never together and never in the multivariate case. This combination is needed for
satisfactory inference and can be implemented effectively by Bayesian MCMC. The
variance process controlling the spatially-adaptive shrinkage of the mean and the vari-
ance of the heteroscedastic error process are modeled as log-penalized splines. We
discuss the choice of priors and extensions of the methodology, in particular, to multi-
variate smoothing using low-rank thin plate splines. A fully Bayesian approach provides
the joint posterior distribution of all parameters, in particular, of the error standard
deviation and penalty functions. In the multivariate case we produce maps of the stan-
dard deviation and penalty functions. Our methodology can be implemented using the
Bayesian software WinBUGS.
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1 Introduction

P-splines (Eilers and Marx, 1996; Ruppert, Wand, and Carroll, 2003) have become a popular

nonparametric tool. Their success is due mainly to the use of low rank bases, which makes

computations tractable. Also P-splines can be viewed as mixed models and fit with widely

available statistical software (Ngo and Wand, 2003; Crainiceanu, Ruppert and Wand 2004).

Bayesian penalized splines (Ruppert, Wand, and Carroll, 2003; Lang and Brezger, 2004)

use a stochastic process model as a prior for the regression function. The usual Bayesian

assumes that both this processes and the errors are homoscedastic.

The P-spline methodology has been extended to heteroscedastic errors (Ruppert, Wand,

and Carroll, 2004) and also to spatially adaptive penalty parameters (Ruppert and Carroll,

2000; Baladandayuthapani, Mallick, and Carroll, 2004; Lang and Brezger, 2004). However,

this is the first paper to combine these features. We show that this combination is important.

Since the penalty parameter is the ratio of the error variance to the prior variance on the mean

function, it is true that spatially varying penalties can adapt to both spatial heterogeneity

of both the mean function and the error variance, at least for the purpose of estimation.

However, for correct inference it is necessary to separate the spatial heterogeneity of the mean

and of the error variance, and the innovation of this paper is to do that. Implementation of

this extension was not straightforward because of technical problems such as slow MCMC

mixing and sensitivity to the choice of prior, but we were able develop an algorithm that

works satisfactorily in practice.

Our methodology can be extended to almost any of the P-spline model, for example,

those in Ruppert, Wand, and Carroll (2003) such as additive models, varying coefficient

models, interaction models, and multivariate smoothing. As an illustration, we also study

low rank thin plate (multivariate) splines. As in the univariate case we model the mean, the

variance and the smoothing functions nonparametrically and estimate them from the data

using a fully Bayesian approach. The computational advantage of low rank over full rank

smoothers becomes even greater in more than one dimension.

Section 2 provides a quick introduction to P-splines and their connections with mixed

models. Section 3 discusses the choice of priors for P-spline regression. Section 4 pro-

vides simultaneous credible bounds for mean and variance functions and their derivatives.

Sections 5 provides an example and comparisons with simpler techniques and in Section

9 we compare our proposed methodology to the one proposed by Baladandayuthapani et

al. (2004) for adaptive univariate P–spline regression. Section 7 describes the extension

to multivariate smoothing and in Section 8 we present an example of bivariate smoothing

with heteroscedastic errors and spatially adaptive smoothing. Section 9 compares our mul-

tivariate methodology with other adaptive surface fitting methods. Section 10 presents the

full conditional distributions and discusses our implementation of models in WinBUGS and
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MATLAB.

2 P-Splines regression and mixed models

Consider the regression equation yi = m (xi) + εi, i = 1, . . . , n, where the εi are independent

N(0, σ2
ε,i) and the mean is modeled as

m(x) = m (x, θX) = β0 + β1x + · · ·+ βpx
p +

Km∑

k=1

bk (x− κm
k )p

+ ,

where β = (β0, . . . , βp)
T , b = (b1, . . . , bKm)T , θX = (βT , bT )T , κm

1 < κm
2 < . . . < κm

Km
are

fixed knots, and ap
+ denotes {max(a, 0)}p. Following Gray (1994) and Ruppert (2002), we

take Km large enough (e.g., 20) to ensure the desired flexibility.

To avoid overfitting the bk ∼ N{0, σ2
b (κ

m
k )} and εi ∼ N{0, σ2

ε (xi)} are shrunk towards

zero by an amount controlled by σ2
b (·) and σ2

ε (·), which vary across the range of x. In Sections

2.1 and 2.2 σ2
ε (xi) and σ2

b (κ
m
k ) are modeled using log-spline models.

The P-spline model can be written in linear mixed model form as





yi = β0 + β1xi + . . . + βpx
p
i +

∑Km

k=1 bk (xi − κm
k )p

+ + εi ;
bk ∼ N{0, σ2

b (κ
m
k )}, k = 1, . . . , Km ;

εi ∼ N{0, σ2
ε (xi)}, i = 1, . . . , n ,

(1)

where bk and εi are mutually independent given (σ2
ε , σ

2
b ), and σ2

ε and σ2
b are smooth functions

that will be modeled as logsplines. Denote by X the n × (p + 1) matrix with the ith

row equal to X i = (1, xi, . . . , x
p
i ) and by Z the n × Km matrix with ith row equal to

Zi = {(xi−κm
1 )p

+, . . . , (xi−κm
Km

)p
+}, Y = (y1, . . . , yn)T and ε = (ε1, . . . , εn)T . Model (1) can

be rewritten in matrix form as

Y = Xβ + Zb + ε, E

(
b
ε

)
=

(
0
0

)
, Cov

(
b
ε

)
=

(
Σb 0
0 Σε

)
, (2)

where the joint conditional distribution of b and ε given Σb and Σε is assumed normal. The β

parameters are treated as fixed effects. The covariance matrices Σb and Σε are diagonal with

the vectors {σ2
b (κ

m
1 ), . . . , σ2

b (κ
m
Km

)} and {σ2
ε (x1), . . . , σ

2
ε (xn)} as main diagonals respectively.

For this model E(Y ) = Xβ and cov(Y ) = Σε + ZΣbZ
T .

2.1 Error variance function estimation

Ignoring heteroscedasticity may lead to incorrect inferences and inefficient estimation, espe-

cially when the response standard deviation varies over several orders of magnitude. More-

over, understanding how variability changes with the predictor may be of intrinsic interest

(Carroll, 2003).
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Transformation can stabilize the response variance when the conditional response variance

is a function of the conditional expectation (Carroll and Ruppert, 1988), but in other cases

one needs to estimate it by modeling the variance as a function of the predictors.

We model the variance function as a loglinear mixed model

{
log{σ2

ε (xi)} = γ0 + . . . + γpx
p
i +

∑Kε

s=1 cs(xi − κε
s)

p
+

cs ∼ N(0, σ2
c ), s = 1, . . . , Kε

, (3)

where the γ are fixed effects and κε
1 < · · · < κε

Kε are knots. The normal distribution of the

cs parameters shrinks them towards 0 and ensures stable estimation.

2.2 Smoothly varying local penalties

Following Baladandayuthapani et al. (2004), we model σ2
b (·) as

{
log{σ2

b (x)} = δ0 + . . . + δqx
q +

∑Kb

s=1 ds(x− κb
s)

q
+

ds ∼ N(0, σ2
d), s = 1, . . . , Kb

, (4)

where the δ’s are fixed effects, the ds’s are mutually independent, and {κb
s}Kb

s=1 are knots.

The particular case of a global smoothing parameter corresponds to the case when the spline

function is a constant, that is log{σ2
b (κ

m
s )} = δ0.

Ruppert and Carroll (2000) proposed a “local penalty” model similar to (4). Baladan-

dayuthapani, Mallick and Carroll (2003) developed a Bayesian version of Ruppert and Car-

roll’s (2000) estimator and showed that their estimator is similar to Ruppert and Carroll’s

in terms of mean square error and outperforms other Bayesian methods. Lang, Fronk and

Fahrmeir (2004) consider locally adaptive dynamic models and find that their method is

roughly comparable to the method of Ruppert and Carroll (2000) in terms of MSE and

coverage probability.

In Lang and Brezger’s (2004) prior for the bk, the nonconstant variance is independent

from knot to knot, since the variances of the bk are assumed to be independent inverse-

gammas. In contrast, with our model there is dependence so that if the variance is high at

one knot then it is high at neighboring knots. Stated differently, the Lang and Brezger model

is one of random heteroscedasticity and ours of systematic heteroscedasticity. Both types

of priors are sensible and will have applications, but in any specific application it is likely

that one of the two will be better. For example, Lang and Brezger find that for “doppler

type” functions, e.g., the severe spatial heterogeneity function in Ruppert and Carroll (2001),

their estimator is not quite as good as Ruppert and Carroll’s and that the coverage of their

credible intervals are not so accurate either. It is not hard to understand why. Doppler

type functions that oscillate more slowly going from left to right are consistent with a prior

variance for the bk that is monotonically decreasing, exactly the type of prior included in

our model but not Lang and Brezger’s.

4
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2.3 Choice of spline basis, number and spacing of knots, and
penalties

For concreteness, we have made some specific choices about the spline basis, number and

knot spacings, and form of the penalty. In terms of model formulation, the choice of spline

basis in the model is not important since an equivalent basis gives the same model and the

basis used in computations need not be the same as the one used to express the model.

However, spline basis are very different in terms of computational stability. For example,

cubic thin plate spline (Ruppert, Wand and Carroll 2003, pp. 72–74) provide much better

MCMC convergence and mixing properties than the truncated polynomial basis. When one

uses good starting points for the MCMC simulation the truncated polynomial and the cubic

thin plate spline bases produced very similar results. In more than one dimension, the tensor

product of truncated polynomials proved even more unstable and we preferred using low rank

radial smoothers (see Section 7).

The penalty we use is somewhat different than that of Eilers and Marx (1996) and also

somewhat different from the penalties used by smoothing splines. We believe that the penalty

parameter, not the form of the penalty, is the crucial choice, so we have concentrated on the

former, in particular on spatially-adaptive modeling of the penalty parameter.

In this paper we use knots to model the mean, variance and spatially adaptive smoothing

parameter. The methodology described here does not depend on the number of knots. For

example one could use a knot at each observation for each of the three functions.

Although we use quantile knot spacings, the best type of knot spacings is controversial.

Eilers and Marx (1996) state that “Equally-spaced knots are always to be preferred.” In

contrast, Ruppert, Wand, and Carroll (2003) used quantile-spacing in all of their examples,

though they did not make any categorical statement that quantile–spacing is always to be

preferred. Although the main focus of this paper is not the choice of knot-spacings, we felt

it was necessary to discuss this issue here.

When σ2
b (x) is a constant, then the knot spacings determine the form of the prior on

m. To appreciate this, note that the prior for m has a simple form: m(p) is a random walk

taking jumps at the knots. The jumps are independent N(0, σ2
b ). If the knots are equally

spaced, then the prior makes m(p) spatially homogeneous in that the variance of the sum of

its jumps in an interval is nearly proportional to the length of the interval. The prior can

be viewed as a discrete approximation to the model

dm(p)(x) = σdW (x), (5)

where W is a standard Wiener process. Model (5) is the prior for smoothing splines (Wahba,

1990). If the knots are not equally spaced, then m(p) changes more rapidly in regions where

the xi (and therefore the knots) are relatively dense so our prior is a discrete approximation
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to the model

dm(p)(x) = σbf(x)dW (x) (6)

where f(x) is some measure of the density of {x1, . . . , xn}, e.g., is the probability density

function of the xi if they are random and iid. For non-random xi, f(x) might be a kernel

density estimator computed from the xi. There is no compelling reason to assume spatial

homogeneity, that is, model (5), especially since it is not invariant to nonlinear transforma-

tions of the xi. However, there is also no compelling reason to assume that m(p) changes

most rapidly where the data are most dense, that is, that (6) holds.

Fortunately, when σ2
b is not constant, the knot spacings do not determine the form of the

prior because the effect of spacing on the prior can be subsumed into the form of σ2
b . Stately

differently, if σ2
b depends on x, then (5) and (6) can both hold but with different σb(x).

Our conclusion is that quantile knot spacing works well and can be recommended in

practice.

2.3.1 A Monte Carlo study of knot spacing

The motivation behind quantile knot spacing is to use more densely spaced knots where

there is more information (more data). Suppose that the regression function is spatially het-

erogenous and, in fact, has more “features” in regions where the data are dense. This is not

an unreasonable assumption, especially when the xi are chosen by design and there is some

prior knowledge of where m will have the most “features.” In such cases, quantile-spacing

allows the penalized spline to fit fine detail where the features occur without undersmooth-

ing elsewhere. The following simulation example illustrates this behavior. The purpose of

the example is not to argue that quantile spacing is always to be preferred. We doubt that

any type of spacing is always best, and Eilers and Marx (2004) provide an interesting ex-

ample where equally-spaced knots seem superior to quantile spacing; see their Figure 13.

The purpose of the example is, rather, to show that quantile spacing can work better than

equal-spacing knots in some problems. In this example, we used non-Bayesian estimators

since they are much faster to compute and the relative performance was not expected to

depend on whether the estimator was Bayesian or not.

In this example, there are n = 100 observations with covariate values xi = (i− 1/99)4 , i =

1, . . . , 100 and response yi = 10 sin{60xi/(1 + 3xi)}+ εi with εi ∼ N(0, 9). The xi are much

more dense near 0 than near 1 and the regression function oscillates faster in this region.

There were 1000 simulated data sets. For each estimator, the regression function was es-

timated on a 1000–point grid. The squared error was averaged over this grid and then

averaged over the 1000 data sets to produce a MASE (mean average squared error). We

used quadratic splines and the number of knots was varied as 10, 15, 20, 30, and 40. There

were four estimators. “Equal, not adaptive” is the Eilers and Marx estimator computed

using the MATLAB program in Eilers and Marx (1996) with the order of the penalty equal

6

http://biostats.bepress.com/jhubiostat/paper61



to 2. This estimator uses B-splines and equally spaced knots. The second estimator, called

“Quantile, not adaptive,” used quantile spacing of the knots and a penalty of the sum of

the squared jumps in the second derivative of the spline; this is equivalent to penalizing

the sum of the squared coefficients of the truncated power functions. “Quantile, adaptive”

and “Equal, adaptive” are the Ruppert and Carroll (2000) estimators with quantile and

equal knot spacings, respectively. In all cases the penalty parameter was selected by gener-

alized cross validation. In this example, quantile spacings outperformed equal knot spacings

noticeably, especially for non-adaptive penalties; see Figure 1.

This example is an extreme case, as is the example of Eilers and Marx (2004) mentioned

previously. We find in the majority of examples that both equal and quantile spacings work

perfectly well. There is a long history of success with the quantile spacings, since smoothing

splines are a special case of quantile spacing with a knot at each data point.

All univariate examples in this paper will use quantile knot spacing.

3 Prior Specification

Any smoother depends heavily on the choice of smoothing parameter, and for P-splines in

a mixed model framework, the smoothing parameter is the ratio of the error variance to

the prior variance on the mean (Ruppert, Wand and Carroll, 2003). The smoothness of the

fit depends on how these variances are estimated. For example, Crainiceanu and Ruppert

(2004) showed that, in finite samples, the (RE)ML estimator of the smoothing parameter

is biased towards oversmoothing and Kauermann (2002) obtained corresponding asymptotic

results for smoothing splines.

In Bayesian mixed models, the estimates of the variance components are known to be

sensitivity to the prior specification, e.g., see Gelman (2004). To study the effect of this

sensitivity upon Bayesian P-splines, consider model (1) with one smoothing parameter and

homoscedastic errors so that σ2
b and σ2

ε are constant. In terms of the precision parameters

τb = 1/σ2
b and τε = 1/σ2

ε , the smoothing parameter is λ = τε/τb = σ2
b/σ

2
ε and a small (large)

λ corresponds to oversmoothing (undersmoothing).

3.1 Priors on the fixed effects parameters

It is standard to assume that the fixed effects parameters, βi, are apriori independent, with

prior distributions either [βi] ∝ 1 or βi ∝ N(0, σ2
β), where σ2

β is very large. In our applications

we used σ2
β = 106, which we recommend if x and y have been standardized or at least have

standard deviations with order of magnitude one.

For the fixed effects γ and δ used in the log-spline models (3) and (4) we also used

independent N(0, 106) priors. When this prior is not consistent with the true value of the

parameter, a possible strategy is to fit the model using a given set of priors and obtain

7
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the estimators γ̂, σ̂γ̂, δ̂ and σ̂δ̂. We could then use independent priors N(γ̂, 106σ̂2
γ̂) and

N(δ̂, 106σ̂2
δ̂
) for γ and δ respectively.

3.2 Priors on the precision parameters

As just mentioned, the priors for the precisions τb and τε are crucial. We now show how

critically the choice of τb may depend upon the scaling of the variables. The gamma family

of priors for the precisions is conjugate. If [τb] ∼ Gamma(Ab, Bb) and, independently of τb,

[τε] ∼ Gamma(Aε, Bε) where Gamma(A,B) has mean A/B and variance A/B2, then

[τb|Y ,β, b, τε] ∼ Gamma

(
Ab +

Km

2
, Bb +

||b||2
2

)
(7)

and

[τε|Y ,β, b, τε] ∝ Gamma

(
Aε +

n

2
, Bε +

||Y −Xβ −Zb||2
2

)
.

Also,

E(τb|Y , β, b, τε) =
Ab + Km/2

Bb + ||b||2/2 , Var(τb|Y ,β, b, τε) =
Ab + Km/2

(Bb + ||b||2/2)2
,

and similarly for τ|ε.

The prior does not influence the posterior distribution of τε when both Ab and Bb are

small compared to Km/2 and ||b||2/2 respectively. Since the number of knots is Km ≥ 1

and in most problems considered Km ≥ 5, it is safe to choose Ab ≤ 0.01. When Bb <<

||b||2/2 the posterior distribution is practically unaffected by the prior assumptions. When

Bb increases compared to ||b||2/2, the conditional distribution is increasingly affected by

the prior assumptions. E(τb|Y ,β, b, τε) is decreasing in Bb so large Bb compared to ||b||2/2
correspond to undersmoothing. Since the posterior variance of τb is also decreasing in Bb

a poor choice of Bb will likely result in underestimating the variability of the smoothing

parameter λ = τε/τb causing too narrow confidence intervals for m. The condition Bb <<

||b||2/2 shows that the “noninformativeness” of the gamma prior depends essentially on the

scale of the problem.

To show the possible severity of these effects consider the LIDAR example in Section 5.

We consider model (1) with a global smoothing parameter and homoscedastic error. We used

quadratic splines with 30 knots. Figure 2 shows the effect of four mean-one Gamma priors

for the precision of the truncated polynomial parameters. The variances of these priors are

10, 103, 106, and 1010 respectively. Obviously, the first two inferences provide severely under

smoothed, almost indistinguishable, posterior means. The third graph is much smoother but

still exhibits roughness especially in the right hand side of the plot, while the fourth graph

displays a pleasing smooth pattern, consistent with our frequentist inference. Using either

prior distribution one obtains that the posterior mean of ||b||2/2 is of order 10−6 to 10−5.

This explains why values of Bb larger than 10−6 proved inappropriate for this problem.

8
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The size of ||b||2/2 depends upon the scaling of the x and y variables and in the case

of the LIDAR data ||b||2/2 is small because the standard deviation of x is much larger

than the standard deviation of y. If y is rescaled to ayy and x to axx, then the regression

function becomes aym(axx) whose p-th derivative is aya
p
xm

(p)(axx) so that ||b||2/2 is rescaled

by the factor a2
ya

2p
x . Thus, ||b||2/2 is particularly sensitive to the scaling of x. The size of

||b||2/2 also depends on Km. The integral of m(p) over the range of x will be approximately∑Km

k=1 bk ≈
√

Kmσb, we can expect that σ2
b ∝ (Km)−1 and the smoothing parameter should be

proportional to Km. For the LIDAR data, the GCV chosen smoothing parameter is 0.0095,

0.0205, 0.0440, and 0.0831 for Km equal to 15, 30, 60, and 120, respectively, so as expected

the smoothing parameter approximately doubles as Km doubles.

Practical experience with LMMs for longitudinal or clustered data should be applied

with caution to P-splines. In a mixed effects model ||b||2 is an estimator of Kmσ2
b . For

longitudinal data Kmσ2
b would generally be large because Km is the number of subjects with

constant subject effect variance σ2
b . As just discussed, for a P-spline Kmσ2

b should be nearly

independent of Km and could be quite small.

Figure 3 presents the same type of results as Figure 2 for Gamma priors for the precision

parameter τb with the mean held fixed at 10−6 and variances equal to 10, 103, 106, and 1010

respectively. These prior distributions have a much smaller effect on the posterior mean of

the regression function. The fit seems to be undersmooth when the variance is 10. Clearly,

when the variance increases the fit becomes smooth indicating that a value of the variance

larger than 103 will produce a reasonable fit.

It is sometimes believed that a Gamma(A,B) prior is non-informative if both A and

B are sufficiently small. However, such non-informative priors are not flat. To illustrate

this, consider a small right neighborhood of zero I0 = (0, 10−6] and denote by PA the prob-

ability distribution of a Gamma(1/A, 1/A) distribution. Then P10(I0) = 0.21, P103(I0) =

0.98, P106(I0) = 0.99997, P1010(I0) ≈ 1. For this type of distributions the large variance is

not due to the “flatness” of the prior but to the extremely rare very large values.

A similar discussion holds true for τε but now large Bε corresponds to oversmoothing and

τε does not depend on the scaling of x. In applications it is less likely that Bε is comparable

in size to ||Y −Xβ−Zb||2, because the latter is an estimator of nσ2
ε . If σ̂2

ε is an estimator

of σ2
ε a good rule of thumb is to use values of Bε smaller than nσ̂2

ε /100. This rule should

work well when σ̂2
ε does not have an extremely large variance.

Alternative to gamma priors are discussed by, for example, Natarajan and Kass (2000)

and Gelman (2004). These have the advantage of requiring less care in the choice of the

hyperparameters. However, we find that with reasonable care, the conjugate gamma priors

can be used in practice. Nonetheless, exploration of other prior families for P-splines would

be well worthwhile, though beyond the scope of this paper.

9
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4 Simultaneous Credible Bounds

Let f(·) be either m(·), log{σ2
ε (·)}, log{σ2

b (·)}, or a derivative of order q, 1 ≤ q ≤ p, of one

of these functions. It is straightforward to use MCMC output to construct simultaneous

credible bounds on f over an arbitrary finite interval [x1, xN ]. Typically, x1 and xN would

be the smallest and largest observed values of x.

Let x1 < x2 < · · · < xN be a fine grid of points on this interval. Let E{f(xi)} and

SD{f(xi)} be the posterior mean and standard deviation of f(xi) estimated from a MCMC

sample. Let Mα be the (1−α) sample quantile of max1≤i≤N

∣∣[f(xi)−E{f(xi)}]/SD{f(xi)}
∣∣

computed from the realizations of f in the MCMC sample. Then I(xi) = E{f(xi)} ±
MαSD{f(xi)}, i = 1, . . . , N , are simultaneous credible intervals. For N large, the upper

and lower limits of these intervals can be connected to form simultaneous credible bands. In

the remainder of this paper we only report simultaneous credible bounds for the functions

and their derivatives. In the examples considered in the following these bounds tend to be

roughly 30–50% wider than pointwise credible bounds.

5 The LIDAR example

The data displayed in Figure 6-(a) are taken from Holst et al. (1996), who estimated the

concentration of atmospheric mercury measured with LIDAR (Sigrist, 1994). The concen-

tration is proportional to the derivative of the mean (with a negative and known constant

of proportionality). Because of sizeable heteroscedasticity, the variance function must be

estimated to obtain satisfactory credible intervals for the function and its derivative.

Three increasingly complex models were fit to the data. Model I uses a 30-knot quadratic

P-spline for m and assumes that σ2
b and σ2

ε are constant. Model II has the same structure

for m and σ2
ε as Model I but uses a linear log-P-spline with Kb = 4 knots to model log{σ2

b}.
Model III differs from Model II in using a 30-knot quadratic P-spline for log{σ2

ε (x)}.
To minimize the scale problems discussed in Section 3 we centered and standardized the

covariate. The response was not standardized because its range is between −1 and 0, but

in general we recommend standardizing the response. For simplicity we describe only the

priors used for Model III. We assumed independent normal priors for the coefficients of the

monomials βi ∼ N(0, 106), γi ∼ N(0, 106), i = 0, . . . , p, δi ∼ N(0, 106), i = 0, . . . , q, and

independent inverse Gamma priors for the variance components σ2
c ∼ IGamma(10−3, 10−3)

and σ2
d ∼ IGamma(10−3, 10−3). The full conditional distributions are in Section 10. Given

our discussion in Section 3 we investigated whether this choice is non-informative enough

and found that much smaller values of a and b did not affect inference, probably due to

standardization of x.

Figure 6 shows the results for model I. Given the homoscedasticity assumption, the
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standard deviation function is a constant and the credible intervals do not change from left

to right. However, this assumption is contradicted by the data. Because m′(x, θ) = β1 +

2β2x+2
∑K

k=1 bk(x−κk)+ is an explicit function of the parameters, its posterior distribution

for each x can be easily estimated from the simulations.

Figure 7 presents the results for model II. While the posterior means E(m|Y ) from

Models I and II are visually indistinguishable, E(m′|Y ) has a sharper peak and wider 95%

credible intervals in Model II which has spatial adaptivity. An obvious question is whether

differences are real. A rigorous test exceeds the scope of this paper, but we address a simpler

related problem at the end of this section.

Figure 8 displays the same type of results for Model III. Figure 8-(b) shows that the

simultaneous credible intervals for m are much narrower for small values of x than for large

x, in accordance with the non-constant variance seen in the data. This pattern is not present

in Figures 6-(d) and 7-(d). Similar differences were reported by Ruppert, Wand and Carroll

(2003) (see Section 14.3) who used a frequentist approach to estimate the error variance, but

ignored the possible spatial variability of the smoothing parameter.

Figure 8-(c) shows that the standard deviation of the error process increases nonlinearly

with the covariate and the variability around the standard deviation increases as well. As

we mentioned, the object of inference is m′(·). Comparing the posterior mean of m(·) for

models I–III, one see little difference. However, there are noticable differences in the posterior

means of −m′(·). For the local-penalty, Figures 7-(d) and 8-(d), have sharper peaks, which

suggests that the global penalty model corresponds to oversmoothing m′(·) in the middle

of the covariate range and undersmoothing m′(·) in the lower range. Second, when one

accounts for heteroscedasticity, Figure 8-(d), the function −m′(·) is smoother and the 95%

credible intervals are much narrower in the lower range of the covariate. This is probably

due to the lower variability of the data in that region. Third, the credible intervals in the

upper range of the covariate are slightly wider in 8-(d) compared to Figure 7-(d) and much

wider compared to Figure 6-(d). These results are different from the results of Ruppert and

Carroll, 2000, who did not account for the effect of heteroscedastic errors.

Figure 9 displays for model I with heteroscedastic errors and spatially adaptive smoothing

parameter, the posterior mean and credible intervals for the logarithm of the shrinkage

parameters, log(σ2
b ). The shape of the posterior mean of log(σ2

b ) suggests that a simpler

linear trend may be suitable.

We fit a simplified model where the mean and log-variance of the errors are modeled

as quadratic splines with Km = Kε = 30 knots and log{σ2
b (κ

b
k)} = δ0 + δ1κ

b
k . Inference

for this model produced plots very similar Figure 8 and are not reported here. To test

whether δ1 > 0 we used 500, 000 simulations to obtain P (δ1 < 0) = 0.04, indicating that the

differences between the posterior means of −m′(·) using a global and a spatially adaptive

smoothing parameter might be real because the global smoothing parameter is not supported
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by the data.

6 Comparison with other univariate smoothers

Baladandayuthapani et al. (2004) present a comprehensive simulation study of their Bayesian

spatially adaptive P–spline model, which is obtained as a particular case of our full model

with constant error variance. The results of this study indicate that the method is comparable

to or better than several other spatially adaptive Bayesian methods on a variety of data sets.

Since we are unaware of any other estimation methodology that estimates jointly the

nonparametric adaptive model for the mean and the nonparametric model for the error

process, we will compare our methodology with that of Baladandayuthapani et al. (2004).

Consider the regression model

yi = m(xi) + εi

where εi are independent mean zero normal errors and m(·) is the spatially heterogeneous

regression function

m(x) = exp
{−400(x− 0.6)2

}
+

5

3
exp{−500(x− 0.75)2}+ 2 exp{−500(x− 0.9)2} .

This function was also considered by Ruppert and Carroll (2000) and Baladandayuthapani

et al. (2004) and it is roughly constant between [0, 0.5] and has three sharp peaks at 0.6,

0.75 and 0.9. We consider n = 1, 000 equally spaced xs on [0, 1] and two different scenarios

for the standard error of the error process: (a) σε(x) = 0.5 for homoscedastic errors and (b)

σε(xi) = 0.5− 0.8x + 1.6(x− 0.5)+. We used 500 simulations from these models and fit two

spatially adaptive models: one that uses a constant variance and one that uses a log–P–

spline model for the variance. For the mean and log–variance functions we used quadratic

P-splines with Km = Kε = 40 knots. For the log-variance corresponding to the shrinkage

process we used Kb = 4 knots. We calculated the mean square error for each simulated data

set as MSE =
∑n

i=1 {m̂(xi)−m(xi)}2 /n, where m̂(x) is the posterior mean of m(x) using a

given model.

For case (a), σε(x) = 0.5, the two models produced practically indistinguishable MSEs.

The first boxplot (“ho-ho”) in Figure 4 corresponds to MSEs for the model using homoscedas-

tic errors, while the second boxplot (“ho–he”) corresponds to heteroscedastic errors. The

average MSE over all x’s was AMSE = 0.0054, which is smaller than 0.0061 reported by

Baladandayuthapani et al. (2004). The coverage probabilities of the 95% credible intervals

were very similar for the two models for each value of the covariate, with a slight advantage in

favor of the model using homoscedastic errors. The average coverage probability was 94.7%

for the model with homoscedastic error and 93.5% for the model with heteroscedastic errors.

These coverage probabilities are very similar to the ones reported by Baladandayuthapani

et al. (2004) in their Figure 3.
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For case (b), σε(xi) = 0.5− 0.8x + 1.6(x− 0.5)+, the heteroscedastic model substantially

outperformed the homoscedastic model both in terms of MSE and coverage probabilities. The

third boxplot (“he-ho”) in Figure 4 corresponds to MSEs for the model using homoscedastic

errors with AMSE= 0.003. The fourth boxplot (“he–he”) corresponds to heteroscedastic

errors with AMSE= 0.0026. In this situation it would be misleading to compare only the

average coverage probability for the 95% credible intervals. Indeed, these averages are very

close, 94.1% for the heteroscedastic and 93.0% for the homoscedastic method, but they are

obtained from very different sets of pointwise coverage probabilities. Figure 5 displays the

coverage probabilities for these two methods. Note that for the heteroscedastic method the

coverage probability in the [0, 0.5] interval is close to 95%. In the same interval the coverage

probability for the homoscedastic method starts from around 0.8 and increases until it crosses

the 95% target around 0.2. Moreover, in the interval [0.3, 0.5] this coverage probability is

estimated to be 1. This is due to the fact that on this interval σε(x) decreases linearly

from 0.5 to 0.1. Since the homoscedastic method assumes a constant variance, the credible

intervals will tend to be shorter than nominal in regions of higher variability (x close to zero),

thus producing lower coverage probabilities. In regions of smaller variability (x close to 0.5)

the credible intervals will tend to be much wider, thus producing extremely large coverage

probabilities.

In the interval [0.55, 0.65] the homoscedastic method slightly outperforms the heteroscedas-

tic method. This seems to be the effect of a “lucky” combination of two factors. As we

discussed, the size of the credible intervals for the homoscedastic method in a neighborhood

of 0.5 is much larger than nominal. However, at the same point the mean function changes

from a constant to a rapidly oscillating function and the coverage probabilities drop roughly

at the same rate. In the interval [0.8, 1] one can notice a phenomenon very similar to the one

described for the interval [0, 0.5]. While the function oscillates more rapidly in this region,

the heteroscedastic adaptive method produces credible intervals with coverage probabilities

close to the nominal 95%. However, the homoscedastic method does not take into account

the increased variability and produces credible intervals that are too short.

For this example both methods performed roughly similar on simulated data sets that

did not require variance estimation. However, when the error variance is not constant the

method using log–P–splines to estimate the error variance considerably outperforms the

method that does not.

These simulations required approximately 1, 000 hours of were very computationally in-

tensive, with the heteroscedastic method requiring roughly four times as much time.
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7 Low rank multivariate smoothing

In this section we generalize the ideas in Section 2 to multivariate smoothing while preserving

the appealing geometric interpretation of the smoother. Consider the following regression

yi = m(xi) + εi where m(·) is a smooth function of L covariates. We will use radial basis

functions which have the advantage of being independent of rotations. Suppose that xi ∈ RL,

1 ≤ i ≤ n are n vectors of covariates and κk ∈ RL, 1 ≤ k ≤ Km are Km knots. Consider the

following distance function

C(r) =

{ ||r||2M−L for L odd
||r||2M−L log ||r|| for L even

,

where || · || denotes the Euclidean norm in RL, the integer M controls the smoothness

of C(·), X the matrix with ith row X i = [1 xT
i ], ZKm = {C(||xi − κk||)}1≤i≤n,1≤k≤Km ,

ΩKm = {C(||κk−κk′||)}1≤k≤K,1≤k′≤K and define Z = ZKΩ
−1/2
K , where Ω

−1/2
K is the principal

square root of ΩK . With these notations the low rank approximation of thin plate spline

regression can be obtained as the BLUP in the LMM (Kamman and Wand, 2003; Ruppert,

Wand and Carroll, 2003)

Y = Xβ + Zb + ε, E

(
b
ε

)
=

(
0
0

)
, Cov

(
b
ε

)
=

(
σ2

bIKm 0
0 σ2

ε In

)
. (8)

This model contains only one variance component, σ2
b , for controlling the shrinkage of b,

which is equivalent to one global smoothing parameter λ = σ2
b/σ

2
ε and implicitly assumes ho-

moscedastic errors. To relax these assumptions, we consider a new set of knots {κ∗1, . . . , κ∗Kb
}

and define X∗ and Z∗ similarly with the corresponding definition of matrices X and Z where

the x-covariates are replaced by the knots κk and the knots are replaced by the subknots

κ∗k. Consider the following model for the response





yi = β0 +
∑L

j=1 βjxi,j +
∑Km

k=1 bkzi,k + εi

bk ∼ N{0, σ2
b (κk)}, k = 1, . . . , Km

εi ∼ N{0, σ2
ε (xi)}, i = 1, . . . , n

, (9)

where the error variance, log{σ2
ε (xi)}, is modeled as a low rank log-thin plate spline

{
log{σ2

ε (xi)} = γ0 +
∑L

j=1 γjxi,j +
∑Kε

k=1 ckzi,k

ck ∼ N(0, σ2
c ), k = 1, . . . , Kε

, (10)

and the random coefficient variance, log{σ2
b (κk)}, is modeled as another low rank log-thin

plate spline {
log{σ2

b (κk)} = δ0 +
∑L

j=1 δjx
∗
k,j +

∑Kb

j=1 djz
∗
k,j

dj ∼ N(0, σ2
d), j = 1, . . . , Kb

, (11)

where x∗k,j and z∗k,j are the entries of X∗ and Z∗ matrices respectively and ck and ds are

assumed mutually independent.
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In the case of low rank smoothers the set of knots for the covariates and subknots for

modeling the shrinkage process have to be chosen. Our approach is to use a fixed set of

knots using the space filling design (Nychka and Saltzman, 1998), which is based on the

maximal separation principle. This design avoids wasting knots and is likely to lead to

better approximations in sparse regions of the data. The FUNFITS module (Nychka et al.

1998) provides software for space filling knot selection. The program can be slow for large n

and Km and a remedy is to apply the algorithm to a random sample of the x’s. The set of

subknots can be obtained by applying the space filling algorithm with the covariates replaced

by the knots from the previous stage. Given the relatively small number of subknots the

algorithm for choosing the subknots does not present the same computational challenges.

8 The Noshiro example

This example comes from Ruppert (1997). Noshiro, Japan was the site of a major earthquake.

Much of the damage from the quake was due to soil movement. Professor Thomas O’Rourke,

a geotechnical engineer, was investigating the factors that might help predict soil movement

during a future quake. One factor thought to be of importance was the slope of the land.

To estimate the slope, Ruppert (1997) used a data set with 799 observations where x was

longitude and latitude and y was elevation at locations in Noshiro. The object of primary

interest is the gradient, at least its magnitude and possibly its direction.

We used the thin-plate spline models (9) for the mean of y with Km = 100 knots equally

spaced on a rectangular grid in the [0, 1]× [0, 1] square. The log-thin plate spline described in

(10) with the same Kε = 100 knots was used to model the variance of the error process σ2
ε (xi).

The log-thin plate spline described in (11) with Kb = 16 equally spaced knots was used to

model the variance σ2
b (κk) which controls the amount of shrinkage of the b parameters.

Figure 10 displays the posterior mean of the mean response function. There is a rather

sharp peak around (0.42, 0.4) and the function displays a slow decay in the general south

direction with a much sharper decay in all other directions. The function seems much

smoother towards the boundary. This is exactly the type of function for which adaptive

spatial smoothing can substantially improve the fit.

Figure 11 shows that in large areas of the map σε(·) is smooth and has very small

values. However, in a neighborhood of the peak of the mean function, σε(·) displays two

relatively sharp maxima located N-N-W and S-S-E of the peak. Severe heteroscedasticity

can also be noted near the eastern boundary of the map, especially in the N-E and S-

E. Another area displaying heteroscedasticity is the S-W corner of the map. To check

whether these characteristics of the function are present in the data we also performed a

two-stage frequentist analysis. In the first stage we used a low rank thin plate spline for the
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mean function and the results from this regression were used to obtain residuals. We then

fitted another low rank thin plate spline to the absolute values of these residuals. While

this map was not identical to the one in Figure 11, it did exhibit the same patterns of

heteroscedasticity.

The process log{σ2
b (κk)} controlling the shrinkage of the bk is displayed in Figure 12.

Smaller values of this function correspond to less shrinkage of bk towards zero and more

local behavior of the smoother. Figure 12 indicates that in a neighborhood of the peak of

the mean function the shrinkage is smaller to allow the mean function to change rapidly.

Away from the peak, the shrinkage is larger corresponding to a smoother mean. If a fixed

smoothing parameter were used, then the representation of its posterior mean in Figure 12

would be the hyperplane Z = −4.71.

To provide a better understanding of the results we posted 4 movies on the website

www.people.cornell.edu/pages/cmc59/moviefiles/. The first 3 movies show the poste-

rior mean of the mean, standard deviation and shrinkage functions. The 4th movie displays

various realizations from the posterior distribution of the mean function.

9 Comparisons with other adaptive surface fitting meth-

ods

Lang and Brezger (2004) compared their adaptive surface smoothing method with several

methods used in a simulation study by Smith and Kohn, 1997: MARS (Friedman, 1991),

“locfit” (Cleveland and Grosse, 1991), “tps” (bivariate cubic thin plate splines with a sin-

gle smoothing parameter), tensor product cubic smoothing splines with five smoothing pa-

rameters, and a parametric linear interaction model. We will use the following regression

functions, also used by Lang and Brezger

• f1(x1, x2) = x1 sin(4πx2) where x1 and x2 are distributed independently uniform on

[0, 1].

• f2(x1, x2) = 1/5 exp(−8x2
1) + 3/5 exp(−8x2

2) where x1 and x2 are distributed indepen-

dently normal with mean 0.5 and variance 0.1.

Function f1(·) correspond to models with interactions and f2(·) has only main effects.

Function f1(·) has moderate spatial variability, while function f2(·) is much smoother. We

used a sample size n = 300, σ = 1/4range(f) and 250 simulations from each model.

Our model is more general than the models considered by Lang and Brezger (2004)

because it incorporates simultaneous nonparametric estimation of the error variance. To

assess the performance of the spatially adaptive component of our model we modeled the

mean function as a low rank thin–plate spline with an equally–spaced 12× 12 knot grid. We
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modeled the smoothing parameter using a low rank log-thin plate spline with an equally–

spaced 5 × 5 knot grid. We considered two estimators, one with constant error variance

(CEV) and one with estimated error variance using a log–thin plate spline (EEV) with the

same 12 × 12 knot grid as for the mean function. and a constant error variance. The

CEV estimator is the one that can directly be compared with the estimators considered

by Lang and Brezger (2004). One expects that the CEV outperforms the EEV estimator

when the true mean error process is homoscedastic and is outperformed by EEV when it is

heteroscedastic. We investigate this in our simulations and we compare the performance of

our estimators with the performance of estimators considered by Lang and Brezger (2004).

The performance of all estimators was measured by the empirical mean squared error

given by MSE(f̂) = 1/n
∑n

i=1{f(xi) − f̂(xi)}2 and we compared log(MSE) for our method

with the values reported by Lang and Brezger (2004).

For the CEV estimator and function f1(·) corresponding to moderate spatial heterogene-

ity we obtained a median log(MSE) of −3.67 with an interquartile range [−3.80,−3.53] and a

range [−4.21,−3.13]. These values are better than the ones reported by Lang and Brezger’s

methods in their Figure 5–b) and are also better than all the other methods considered in

the comparative study of Lang and Brezger. Remarkably, the EEV estimator performed

almost as well as the CEV estimator in this case and outperformed all the other meth-

ods considered. The median log(MSE) for EEV was of −3.59 with an interquartile range

[−3.74,−3.43] and a range [−4.14,−3.02]. These results are consistent with univariate re-

sults reported by Ruppert and Carroll (2000), Baladandayuthapani, Mallick and Carroll

(2004) and Lang and Brezger (2004) who found that allowing the smoothing parameter to

vary smoothly outperforms other adaptive techniques when the function requires adaptive

smoothing.

For function f1(·) figure 13 displays the coverage probabilities for the 95% credible inter-

vals calculated over a 20× 20 equally spaced grid in [0, 1]2. For one grid point we calculated

the frequency with which the 95% pointwise credible interval covers the true value of the

function at the grid point. As expected, these coverage probabilities show strong spatial

correlation with lower coverage probabilities along the ridges of the sinus function. Coverage

probability is lowest when x1 is in the [0.2, 0.5] range. The signal–to–noise in this region

is about half the signal–to–noise ratio in the region corresponding to x1 close to 1. This

explains why the coverage probability is smaller in this region. Another region with high

coverage probability is x1 < 0.15 which corresponds to high degree of attenuation of the sinus

function. Interestingly, the zeros of the true function appearing at x2 = 0.25, 0.50, 0.75

are covered with at least 95% probability. Another interesting feature is the lower coverage

probabilities near the north, south and east boundaries. These features of the pointwise cov-

erage probability map are not consistent with the coverage probabilities reported by Lang

and Brezger for their Bayesian P–spline method.
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For our CEV estimator and function f2(·) corresponding to very low spatial heterogeneity

we obtained a median log(MSE) of −5.95 with an interquartile range [−6.12,−5.66] and

a range [−6.51,−5.41]. We compare this results with the results reported by Lang and

Brezger in their Figure 5–a). In this case our method performs roughly similar to the

Bayesian P–spline method of Lang and Brezger and to the cubic thin plate spline (tps),

being outperformed only by Lang and Brezger’s adaptive P–spline method with two main

effects. We could also add two main effects to our bivariate adaptive smoother to improve

MSE for this example, but this is not our concern in this paper. Again, the EEV estimator

performed very similarly to our CEV estimator.

The last simulation study was done using the function f1(·, ·) where x1, x2 are independent

uniformly distributed in [0, 1] with an error standard deviation function

σε(x1, x2) =
r

32
+

3r

32
x2

1 ,

where r = range(f1). We compared our CEV and EEV estimators described at the beginning

of this section and, as expected, the EEV estimator outperformed the CEV both in term

on log(MSE) and coverage probabilities. More precisely for log(MSE) we obtained a median

of −5.26 for CEV and −5.35 for EEV, an interquartile range [−5.37,−5.15] for CEV and

[−5.48,−5.24] for EEV, and a range [−4.65,−5.72] for CEV and [−4.84,−5.84] for EEV.

For both estimators the general patterns for coverage probabilities were the ones displayed

in Figure 13. EEV outperformed CEV in terms of coverage probabilities. For example, the

regions where the nominal level is exceeded for both estimators have a roughly similar shape

and location, but the EEV coverage probabilities tend to be closer to their nominal level.

The simulation studies reported here required more than 2, 000 hours of computation

time.

10 Implementation using MCMC

We will now provide some details for MCMC simulations of model (1), where the variances

σ2
ε (xi) and σ2

b (κk) are modeled by equations (3) and (4). The implementation for other

models, e.g., for the multivariate smoothing in Section 7, is similar. Consider independent

normal priors for the coefficients of the monomials: βi ∼ N(0, σ2
0,β), γi ∼ N(0, σ2

0,γ), i =

0, . . . , p, δi ∼ N(0, σ2
0,δ), i = 0, . . . , q, and independent inverse Gamma priors for the variance

components: σ2
c ∼ IGamma(ac, bc) and σ2

d ∼ IGamma(ad, bd). Using these priors many full

conditionals of the posterior distribution are easy to derive, while a few have complex mul-

tivariate forms. Our implementation of the MCMC using multivariate Metropolis-Hastings

steps proved to be unstable with poor mixing properties. A simple and reliable solution was

to change the model by adding error terms to the log-spline models, that is
{

log {σ2
ε (xi)} = γ0 + . . . + γpx

p
i +

∑Kε

s=1 cs(xi − κε
s)

p
+ + ui

log {σ2
b (κ

m
k )} = δ0 + . . . + δq(κ

m
k )q +

∑Kb

s=1 ds(κ
m
k − κb

s)
q
+ + vk

, (12)
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where ui ∼ N(0, σ2
u) and vk ∼ N(0, σ2

v). This idea was also used for σ2
b by Baladandayutha-

pani, Mallick, and Carroll (2004). We fixed the values of σ2
u = σ2

v = 0.01, as these variances

appear not identifiable or only weakly identifiable and a standard deviation of 0.1 is small on

a log-scale. This device reduces the computational costs because one can now use univariate

MH steps to simulate from complex full conditionals.

Define as before by Σε, Σb, θX , and define θε = (γT , cT )T , θb = (δT ,dT )T , CX = (X Z),

Cε = (Xε Zε), Cb = (Xb Zb), where X, Xε, Xb contain the monomials and Z, Zε,

Zb contain the truncated polynomials of the spline models for m, log{σ2
ε}, and log{σ2

b}.
respectively. Also, denote by

Σ0X =

[
σ2

0,βIp+1 0
0 Σb

]
Σ0ε =

[
σ2

0,γIp+1 0
0 σ2

cIKε

]
Σ0b =

[
σ2

0,δIq+1 0
0 σ2

dIKm

]
.

The full conditionals of the posterior are detailed below

1. [θX ] ∼ N
(
MXCT

XΣ−1
ε Y ,MX

)
, where MX =

(
CT

XΣ−1
ε CX + Σ−1

0X

)−1
.

2. [θε] ∼ N
(
M εC

T
ε Y ε/σ

2
u,M ε

)
, where Y ε = [log(σ2

ε,1), . . . , log(σ2
ε,n)]T and M ε =

(CT
ε Cε/σ

2
u +Σ−1

0ε )−1.

3. [θb] ∼ N
(
M bC

T
b Y b/σ

2
v ,M b

)
where Y b =

[
log(σ2

1), . . . , log(σ2
Km

)
]T

and M b = (CT
b Cb/σ

2
v

+Σ−1
0b )−1.

4. [σ2
c ] ∼ IGamma (ac + Kε/2, bc + ||c||2/2).

5. [σ2
d] ∼ IGamma (ad + Kb/2, bd + ||d||2/2).

6. [σ2
ε,i] ∝ σ−3

ε,i exp
{
−(yi − µi)

2/(2σ2
ε,i)−

[
log(σ2

ε,i)− ηi)
]2

/(2σ2
u)

}
, where µi and ηi are

the ith components of CXθX and Cεθε respectively.

7. [σ2
k] ∝ σ−3

k exp
{
−b2

k/(2σ
2
k)− [log(σ2

k)− ζk)]
2
/(σ2

v)
}

, where ζk is the kth component

of Cbθb.

All the above conditionals have an explicit form with the exception of the n + Km one-

dimensional conditionals from 6. and 7. For these distributions we use the Metropolis-

Hastings algorithm with a normal proposal distribution centered at the current value and

small variance.

An appealing feature of our methodology is that it can be implemented in high-level

Bayesian software such as WinBUGS. Simulations implemented in WinBUGS and MATLAB

gave similar results. However, in the simulation study in Section 6 WinBUGS produced credi-

ble intervals with lower coverage probability. This is probably due to its sampling inefficiency

when parameters are very highly correlated. Programs for our two examples are available

on the website http://www.people.cornell.edu/pages/cmc59/adaptiveprograms/. For
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the full model for both our univariate examples, we obtained more than 100 simulations per

second from the target distribution (3.4GHz CPU, 3.4Gb RAM PC). We discarded the first

20, 000 burn-in simulations and used 100, 000 additional simulations from the target distribu-

tion for our inferences. For one model and one data set this took approximately 20 minutes of

computation time. For the Noshiro example with a full model we obtained approximately 3

simulations per second. we discarded the first 4, 000 simulations and used 10, 000 additional

simulations from the target distribution for our inference. This took approximately 3 hours

of computation time.

In complex models the amount of simulation needed for accurate estimation of the pos-

terior depends on the parameters monitored. In the LIDAR case, accurate inference for the

parameters modeling log{σ2
b (·)} requires tens of millions of simulations whereas the mean

function only requires several thousand simulations. This seems due to some parameters be-

ing highly correlated or only very weakly identified from the data. Another issue is possible

multimodality of the posterior. In a few very long runs we have noted that parameters in

log(σ2
b ) tend to shift between 2–3 mean levels, suggesting the need for longer runs if these are

more than nuisance parameters. Fortunately, the estimates and credible intervals for m(x)

do not change much with these changes in log(σ2
b ).
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Härdle, W. (1990), Applied Nonparametric Regression. Cambridge University Press, New

York.

Holst, U., Hössjer, O., Björklund, C., Ragnarson, P. and Edner, H. (1996). Locally

Weighted Least Squares Kernel Regression and Statistical Evaluation of LIDAR mea-

surements, Environmetrics, 7, 401–416.

Kammann, E.E. and Wand, M.P. (2003). Geoadditive models. Appl. Statist., 52, 1–18.

Kauermann, G. (2002). A note on bandwidth selection for penalised spline smoothing.

Technical Report 02-13, Department of Statistics, University of Glasgow

Lang, S., and Bretzger, A. (2004). Bayesian P-splines. J. of Comp. and Graph. Statis., 13,

183–212.

Lang, S., Fronk, E.M. and Fahrmeir, L. (2004). Function estimation with locally adaptive

dynamic models, to appear.

Natarajan, R., and Kass, R.E. (2000), Reference Bayesian methods for generalized linear

mixed models, J. of the Amer. Statist. Assoc., 95, 227-237.

Ngo, L. and Wand, M.P., (2004). Smoothing with mixed model software, J. Statist. Soft-

ware, 9.

Nychka, D., Haaland, P., O’Connell, M., and Ellner, S. (1998). FUNFITS, data analysis

and statistical tools for estimating functions. In D. Nychka, W.W. Piegorsch and L.H.

Cox (Eds.) Case studies in Environmental Statistics (Lecture Notes in Statistics, vol.

132), pp. 159–179. New York: Springer Verlag.

http://www.cgd.ucar.edu/stats/Software/Funfits/

Nychka, D., and Saltzman, N. (1998). Design of air quality monitoring networks. In D.

Nychka, W.W. Piegorsch and L.H. Cox (Eds.) Case studies in Environmental Statistics

(Lecture Notes in Statistics, vol. 132), pp. 51–76. New York: Springer Verlag.

21

Hosted by The Berkeley Electronic Press



Ruppert, D. (1997). Local polynomial regression and its applications in environmental

statistics, In Statistics for the Environment, Volume 3, Barnett, V., and Turkman, F.,

ed., pp. 155–173, Chicester: John Wiley.

Ruppert, D., (2002). Selecting the number of knots for penalized splines. J. of Comp. and

Graph. Statis., 11, 735–757.

Ruppert, D. and Carroll, R.J., (2000). Spatially-adaptive penalties for spline fitting. Aust.

and New Zeal. J. of Statistics, 42(2), 205–223

Ruppert, D., Wand, M.P., and Carroll, R.J. (2003) Semiparametric Regression. Cambridge

University Press, Cambridge.

Sigrist, M. (ed.), (1994). Air Monitoring by Spectroscopic Techniques (Chemical Analysis

Series, Vol. 127), Wiley, New York.

Silverman, B.W. (1985). Some aspects of the spline smoothing approach to non–parametric

regression curve fitting, J.R. Statist. Soc. – Series B, 47(1), 1–52.

Smith, M. and Kohn, R. (1997). A Bayesian Approach to Nonparametric Bivariate Regres-

sion. J. Am. Statist. Assoc., 92, 1522–1535.

Wand, M.P. (2000). A comparison of regression spline smoothing procedures. Comp.

Statist., 15, 443–462.

22

http://biostats.bepress.com/jhubiostat/paper61



10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

number of knots

M
A

S
E

equal, not adaptive 

equal, adaptive 

quantile, not adaptive quantile, adaptive 

Figure 1: MASE for non-Bayesian estimators with non-adaptive penalties and equal (EM)
or quantile (QS) knot spacings. MASE is based on 1000 simulations from the model
Yi = 10 sin{60xi/(1 + 3xi)} + εi with εi ∼ N(0, 9) where the covariate values are xi =
(i− 1/99)4 , i = 1, . . . , 100. The number of knots was varied and equalled 10, 15, 20, 30,
and 40.
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Figure 2: LIDAR data with unstandardized covariate: effect of four mean–one Gamma priors
for the precision of the truncated polynomial parameters. The variances of these priors are
10, 103, 106, and 1010 respectively.
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Figure 3: LIDAR data with unstandardized covariate: effect of four Gamma priors with
mean 10−6 for the precision of the truncated polynomial parameters. The variances of these
priors are 10, 103, 106, and 1010 respectively.
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Figure 4: Mean Square Error based on 500 simulations from the models described in Section
6. The mean function was the same for each simulation study. The labels describe the
combination of methods used for simulation and inference. For example, “ho–he” corresponds
to homoscedastic errors for the simulation model and heteroscedastic errors used for the
estimation model. Only the first and the last two boxplots are comparable because they
correspond to the same model used for simulations.
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Figure 5: Comparison of pointwise coverage probabilities of the 95% credible intervals in 500
simulations. Data was simulated from the model described in Section 6 with heteroscedastic
error variance. Estimation was done using two methods: Bayesian adaptive P–splines with
homoscedastic errors (dotted), and Bayesian adaptive P–splines with heteroscedastic errors
(solid). The coverage probabilities have been smoothed to remove Monte Carlo variability.

27

Hosted by The Berkeley Electronic Press



−1 0 1
−1

−0.8

−0.6

−0.4

−0.2

0

(a): 30 knot quadratic P−spline

−1 0 1
−1

−0.8

−0.6

−0.4

−0.2

0

(b): m(⋅) and 95% CIs

−1 0 1
0

0.05

0.1

0.15

0.2

(c): Error SD 

−1 0 1
−0.5

0

0.5

1

(d): −m’( ⋅)

Figure 6: LIDAR data with standardized covariate: inference using Model I which has a
global smoothing parameter and homoscedastic errors. The mean function was modeled
by a quadratic spline function with 30 knots. (a) – data and posterior mean of the mean
function m(·), (b) – posterior mean and simultaneous 95% credible intervals for the mean
function m(·), (c) – posterior mean and simultaneous 95% credible interval for the standard
error function, (d) – posterior mean and simultaneous 95% credible intervals for −m′(·).
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Figure 7: LIDAR data with standardized covariate: inference using Model II with a spatially
adaptive smoothing parameter and homoscedastic errors. The mean function was modeled
by a quadratic P–spline function with 30 knots. The smoothing parameter function was
modeled as a linear log–P–spline function with 4 knots. (a) – data and posterior mean of
the mean function m(·), (b) – posterior mean and simultaneous 95% credible intervals for
the mean function m(·), (c) – posterior mean and simultaneous 95% credible interval for the
standard error function, (d) – posterior mean and simultaneous 95% credible intervals for
−m′(·).
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Figure 8: LIDAR data with standardized covariate: inference using Model III which has a
spatially adaptive smoothing parameter and a nonparametric model for the heteroscedastic
error process. The mean function was modeled by a quadratic P–spline function with 30
knots. The smoothing parameter function was modeled as a linear log–P–spline function
with 4 knots. The error variance function was modeled as a quadratic log–P–spline function
with 30 knots. (a) – data and posterior mean of the mean function m(·), (b) – posterior
mean and simultaneous 95% credible intervals for the mean function m(·), (c) – posterior
mean and simultaneous 95% credible interval for the standard error function, (d) – posterior
mean and simultaneous 95% credible intervals for −m′(·).

30

http://biostats.bepress.com/jhubiostat/paper61



−1.5 −1 −0.5 0 0.5 1 1.5

−10

−6

−2

2

lo
g(

σ2 b
)

Figure 9: LIDAR data: Posterior mean and 95% simultaneous credible intervals for log (σ2
b )

using Model III. The σ2
b (·) function controls the adaptive shrinkage of the truncated poly-

nomial basis.

31

Hosted by The Berkeley Electronic Press



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5

10

15

20

Figure 10: Posterior mean of the mean regression function for the Noshiro example. The
model used was a thin plate spline with K = 100 knots for the mean function, a log-thin
plate spline with K = 100 knots for the variance function, and a log-thin plate spline with
K∗ = 16 knots for the spatially adaptive shrinkage parameter. The parameter controlling
the degree of smoothness of the thin–plate spline basis was m = 2.
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Figure 11: Posterior mean of the standard deviation, σε(xi), of the error process function for
the Noshiro example. The model used was a thin plate spline with K = 100 knots for the
mean function, a log-thin plate spline with K = 100 knots for the variance function, and a
log-thin plate spline with K∗ = 16 knots for the spatially adaptive shrinkage parameter. The
parameter controlling the degree of smoothness of the thin–plate spline basis was m = 2.
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Figure 12: Posterior mean of the shrinkage process − log{σ2
b (κk)}. The model used was a

thin plate spline with K = 100 knots for the mean function, a log-thin plate spline with
K = 100 knots for the variance function, and a log-thin plate spline with K∗ = 16 knots
for the spatially adaptive shrinkage parameter. The parameter controlling the degree of
smoothness of the thin–plate spline basis was m = 2.
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Figure 13: Coverage probability of the pointwise 95% credible intervals for the mean
function for function f1(x1, x2) = x1 sin(4πx2) with a constant error standard deviation
σ = range(f)/4. Probabilities are computed on a 20 × 20 equally spaced grid of points in
[0, 1]2. The model used was a thin plate spline with K = 100 knots for the mean function,
a log-thin plate spline with K = 100 knots for the variance function, and a log-thin plate
spline with K∗ = 16 knots for the spatially adaptive shrinkage parameter. The parameter
controlling the degree of smoothness of the thin–plate spline basis was m = 2.
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