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Summary: The basic observational unit in this paper is a function. Data are assumed to have a

natural hierarchy of basic units. A simple example is when functions are recorded at multiple visits

for the same subject. Di et al. (2009) proposed Multilevel Functional Principal Component Analysis

(MFPCA) for this type of data structure when functions are densely sampled. Here we consider the

case when functions are sparsely sampled and may contain as few as 2 or 3 observations per function.

As with MFPCA, we exploit the multilevel structure of covariance operators and data reduction

induced by the use of principal component bases. However, we address inherent methodological

differences in the sparse sampling context to: 1) estimate the covariance operators; 2) estimate the

functional scores and predict the underlying curves. We show that in the sparse context 1) is harder

and propose an algorithm to circumvent the problem. Surprisingly, we show that 2) is easier via new

BLUP calculations. Using simulations and real data analysis we show that the ability of our method

to reconstruct underlying curves with few observations is stunning. This approach is illustrated by

an application to the Sleep Heart Health Study, which contains two electroencephalographic (EEG)

series at two visits for each subject.
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1. Introduction

The basic observational unit in this paper is a function. Data are assumed to have a natural

hierarchy of basic units. A simple example is when functions are recorded at multiple visits

for the same subject. Di et al. (2009) proposed Multilevel Functional Principal Component

Analysis (MFPCA) for this type of data structure when functions are densely sampled. Here

we consider the case when functions are sparsely sampled and may contain as few as 2 or 3

observations per function. As with MFPCA, we exploit the multilevel structure of covariance

operators and data reduction induced by the use of principal component bases. However, we

address inherent methodological differences in the sparse sampling context to: 1) estimate

the covariance operators; 2) estimate the functional scores and predict the underlying curves.

We show that in the sparse context 1) is harder and propose an algorithm to circumvent the

problem. Surprisingly, we show that 2) is easier via new BLUP calculations. Using simulations

and real data analysis we show that the ability of our method to reconstruct underlying curves

with few observations is stunning. This approach is illustrated by an application to the Sleep

Heart Health Study, which contains two electroencephalographic (EEG) series at two visits

for each subject.

Traditionally, sparsely sampled data have been treated as longitudinal data (see Diggle

et al., 2002). Here we take a different view and treat them as sparse and possibly noisy

observations of an underlying smooth signal; see Zhao et al. (2004) and Yao et al. (2005)

for excellent discussions on the advantages or disadvantages of this approach. Our methods

differ fundamentally from these work because our data contain a natural hierarchy of sparsely

sampled functions.

Motivated by modern scientific studies, functional data analysis (FDA; Ramsay and Sil-

verman, 2005) is an increasingly popular area of research. We briefly review the most recent

developments in functional principal component analysis (FPCA), which plays a central role
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in FDA. The fundamental aims of FPCA are to capture the principal directions of variation

and to reduce dimensionality. Besides discussion in Ramsay and Silverman (2005), other

relevant research in FPCA includes Ramsay and Dalzell (1991), Silverman (1996), James

et al. (2000), and Yao et al. (2005), while important theoretical results can be found in Hall

and Hosseini-Nasab (2006).

The original FPCA methodology was designed for a sample of densely recorded independent

functions. The scope was extend in two main directions. First, it was extended to sparse

functional/longitudinal data (Yao et al., 2005; Müller, 2005). Sparsity is the characteristic

of the sampling algorithm that leads to a small number of observations per function and a

dense collection of sampling points across all curves. Second, it was extended to functions

with a multilevel structure, which led to multilevel functional principal component analysis

(MFPCA; Di et al., 2009). In this paper, we propose methods for a sample of sparsely

recorded functions at multiple levels.

Our research was motivated by the Sleep Heart Health Study (SHHS), a landmark study

of sleep and its impacts on health outcomes. A detailed description of the SHHS can be

found in Quan et al. (1997), Di et al. (2009) and Crainiceanu et al. (2009). The SHHS

is a multi-center cohort study that utilized the resources of existing, well characterized,

epidemiologic cohorts, and conducted further data collection, including measurements of

sleep and breathing. Between 1995 and 1997, a sample of 6,441 participants was recruited

from the parent studies. Subjects underwent in-home polysomnograms (PSGs). A PSG is a

quasi-continuous multi-channel recording of physiological signals acquired during sleep that

include two surface electroencephalograms (EEG). After the baseline visit, a second SHHS

follow-up visit was undertaken between 1999 and 2003 and included all of the measurements

collected at the baseline visit along with a repeat PSG. A total of 3,201 participants (47.8%

of baseline cohort) completed a repeat home PSG.
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We consider the sleep EEG percent δ-power series of the SHHS data. For each subject

at each visit this is a function of time calculated in adjacent 30-second intervals and has

960 observations in a 8-hour interval of sleep. We compare the full data analysis with the

analysis of data where each function is sub-sampled at a random set of 30-second intervals.

Our findings indicate: 1) stunning ability to predict subject-specific curves even when the

number of observations sampled is very small, say 3 or 6; 2) remarkable consistency between

the analyses of the full and reduced data sets. Our results do not advocate throwing away

data. Instead, they indicate that sparse data analysis of multilevel functions is a powerful

inferential tool when data can only be or was sparsely collected.

The remainder of this paper is organized as follows. Section 2 introduces Multilevel Func-

tional Principal Component Analysis (MFPCA) for sparse data. Section 3 provides mathe-

matical details for predicting the principal component scores and curves. Section 4 describes

extensive simulation studies for realistic settings. Section 5 describes the application of our

methodology to the SHHS data set. Section 6 presents our discussion.

2. MFPCA for sparsely sampled functions

In this section, we briefly review the MFPCA technique proposed by Di et al. (2009), and

then discuss statistical issues to deal with sparsity.

The MFPCA was designed to capture dominant modes of variations and reduce dimensions

for multilevel functional data. This method decomposes the total functional variation into

between subject and within subject variations via functional analysis of variance (FANOVA),

and conducts FPCA at both levels. More precisely, let Yij(t) denote the observed function

for subject i at visit j, the two way FANOVA decomposes the total variation as

Yij(t) = µ(t) + ηj(t) + Zi(t) +Wij(t) + εij(t), (1)

i ∈ {1, 2, · · · , n}, j ∈ {1, 2, · · · , ni}, t ∈ {tijs : s = 1, 2, · · · , Tij} ⊂ T ,
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where µ(t) and ηj(t) are fixed functional effects that represent the overall mean function

and visit-specific shifts, respectively, Zi(t) and Wij(t) are the subject-specific and visit-

specific deviations, respectively, and εij(t) is measurement error with mean 0 and variance

σ2. The level 1 and 2 processes, Zi(t) and Wij(t), are assumed to be uncorrelated mean 0

stochastic processes. The idea of MFPCA is to decompose both Zi(t) and Wij(t) using the

the Karhunen-Loève (KL) expansion (Karhunen, 1947; Loève, 1945), i.e.,

Zi(t) =

N1∑
k=1

ξik φ
(1)
k (t) , Wij(t) =

N2∑
l=1

ζijl φ
(2)
l (t) , (2)

where φ
(1)
k (t) and φ

(2)
l (t) are level 1 and level 2 eigenfunctions, respectively, and ξik and

ζijl are mean zero random variables called principal component scores. The variances of ξik

and ζijl, λ
(1)
k and λ

(2)
l , respectively, are the level 1 and 2 eigenvalues that characterize the

magnitude of variation in the direction of the corresponding eigenfunctions. The number of

principal components, N1 and N2, could be either finite integers or∞. Combining model (1)

with the KL expansions (2), one obtains the MFPCA model

Yij(t) = µ(t) + ηj(t) +

N1∑
k=1

ξik φ
(1)
k (t) +

N2∑
l=1

ζijl φ
(2)
l (t) + εij(t). (3)

The MFPCA reduces high dimensional hierarchical functional data {Yi1(t), · · · , Yini
(t) }

into the low dimensional principal component score vectors, including subject level (level

1) scores ξi = (ξi1, · · · , ξiN1) and subject/visit level (level 2) scores ζij = (ζij1, · · · , ζijN2),

while retaining most information contained in the data.

Equation (1) introduced FANOVA in full generality without details about the sampling

design for tijs. The set of sampling points {tijs : s = 1, 2, · · · , Tij} for subject i at visit j

could be dense or sparse, regular or irregular, depending on the application. Although Di

et al. (2009) discussed potential difficulties with sparse designs, they focused on densely

and regularly recorded functional data. In the following, we will discuss and address new
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problems raised by the sparse sampling design. This will lead to methods that are related to

but markedly different from MFPCA.

2.1 Estimating eigenvalues and eigenfunctions

Throughout the paper, we assume sparse and irregular grid points. More precisely, for each

subject and visit, the number of grid points Tij is relatively small, and the set of grid points

{tijs : s = 1, 2, · · · , Tij} is a random sample of T . We also assume that the set of grid points

are different across subjects and visits.

The first step of MFPCA is to estimate the eigenvalues and eigenfunctions. This can be

done by the method of moments and eigen-analysis for dense functional data, but smoothing

is needed for sparse functional data. Let KB(s, t) = cov{Zi(s), Zi(t) } be the covariance

function for level 1 processes (“between” covariance), KW (s, t) = cov{Wij(s),Wij(t) } be the

covariance function for level 2 processes (“within”). The total covariance function KT (s, t)

contains three sources of variation, that is, KT (s, t) = KB(s, t) + KW (s, t) + σ2 I(t = s).

One can easily verify that E{Yij(t) } = µ(t) + ηj(t), cov{Yij(s), Yij(t) } = KB(s, t) +

KW (s, t)+σ2 I(t = s), and cov{Yij(s), Yik(t) } = KB(s, t). These results suggest the following

convenient algorithm to estimate the eigenvalues and eigenfunctions. Because functions were

sparsely sampled over irregular grid points, smoothing will be used repeatedly to estimate

the underlying means and covariances.

Sparse MFPCA Algorithm

Step 1. Use scatter plot smoothing using all pairs {(tijs, Yij(tijs) ) : i = 1, ..., n; j =

1, ..., ni; s = 1, ..., Tij} to obtain an estimate of µ(t), µ̂(t);

Step 2. Use scatter plot smoothing using all pairs {(tijs, Yij(tijs)− µ̂(tijs) ) : i = 1, ..., n; s =

1, ..., Tij} to obtain an estimate of ηj(t), η̂j(t);

Step 3. Estimate K̂B(s, t) by bivariate smoothing of all products {Yij1(tij1s) − µ̂(tij1s) −

η̂j1(tij1s)}{Yij2(tij2r)− µ̂(tij2r)− η̂j2(tij2r)} with respect to (tij1s, tij2r) for all i, j1, j2, r and s;
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Step 4. Estimate K̂T (s, t) by bivariate smoothing of all products {Yij(tijs) − µ̂(tijs) −

η̂j(tijs)}{Yij(tijr)− µ̂(tijr)− η̂j(tij2r)} with respect to (tijs, tijr) for all i, j, r, s with r 6= s, and

set K̂W (s, t) = K̂T (s, t)− K̂B(s, t);

Step 5. Use eigen-analysis on K̂B(s, t) to obtain λ̂
(1)
k , φ̂

(1)
k (t); use eigen-analysis on K̂W (s, t)

to obtain λ̂
(2)
l , φ̂

(2)
l (t).

Step 6. Estimate the nugget variance σ2 by smoothing {Yij(tijs) − µ̂(tijs) − η̂j(tijs)}2 −

K̂T (tijs, tijs) with respect to tijs for all possible i, j, s.

For univariate and bivariate smoothing we use penalized spline smoothing (Ruppert et al.,

2003) with the smoothing parameter estimated via restricted maximum likelihood (REML).

Cross validation (CV) or generalized cross validation (GCV) could also be used. Alter-

natively, one can also use local polynomial smoothing Fan and Gijbels (1996) with cross

validation to choose the smoothing parameter. In Step 3, the diagonal elements (when s = r)

are dropped when estimating the total covariance KT (s, t), because they are contaminated by

measurement error. In contrast, diagonal elements are included when estimating the between

covariance KB(s, t).

In Step 4, one needs to determine the dimensions of level 1 and 2 spaces, namely, N1 and

N2, respectively. Although they are allowed to be∞ in theory, in practice a low dimensional

principal component space suffices to approximate the functional space. We will discuss this

issue in more details later.

2.2 Principal component scores

Once the fixed functional effects µ(t), ηj(t), the eigenvalues λ
(1)
k , λ

(2)
l and the eigenfunctions

φ
(1)
k (t), φ

(2)
l (t) are estimated, the MFPCA model can be re-written as a linear mixed model

Yijs = µ(tijs) + ηj(tijs) +

N1∑
k=1

ξikφ
(1)
k (tijs) +

N2∑
l=1

ζijlφ
(2)
l (tijs) + εijs

ξik ∼ N{0, λ(1)k }, ζijl ∼ N{0, λ(2)l }, εijs ∼ N(0, σ2),

(4)
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where Yijs := Yij(tijs) and εijs = εij(tijs). The random effects ξik and ζijl are principal

component scores that we are trying to estimate. Thus, one could use the mixed model

inferential machinery to estimate the scores, for example, using the best linear unbiased

prediction (BLUP). The BLUP gives point estimates of the scores, and one could also

construct their 95% confidence intervals.

Note that the subject-specific effect, Zi(t), and the visit-specific effect, Wij(t), are linear

functions of the random effects ξik and ζijl, respectively. Thus, Zi(t), Wij(t) and their vari-

ability can be estimated directly from the BLUP formulas for the random effects. The BLUPs

of Zi(t) and Wij(t) are shrinkage estimators, which automatically combine information from

different visits of the same subject and across subjects. More information is borrowed when

the measurement error variance, σ, is large and when the number of observations at the

subject level is small.

2.3 Choosing the dimensions N1 and N2

Two popular methods for estimating the dimension of the functional space in the single level

case are cross validation (Rice and Silverman, 1991) and Akaike’s Information Criterion (or

AIC, as in Yao et al., 2005). These methods can be generalized to the multilevel setting.

For example, one could use the leave-one-subject-out cross validation criterion to select the

number of dimensions. Define the cross validation score as

CV (N1, N2) =
n∑

i=1

ni∑
j=1

Tij∑
s=1

{Yij(tijs)− Ŷ (−i),N1,N2

ij (tijs) }2,

where Ŷ
(−i),N1,N2

ij (tijs) is the predicted curve for subject i at visit j, computed after removing

the data from subject i. The estimated number of dimensions N1 and N2 are the arguments

that minimize CV (N1, N2). In practice, the leave-one-subject-out cross validation method

may be too computationally intensive, and an m-fold cross validation can serve as a fast

alternative. This method divides the subjects into m groups, and the prediction error for the
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mth group is calculated by fitting a model using the data from other groups. The number

of dimensions are chosen as those that minimize the total prediction error. Similar criteria

could be designed for leave-visits-out.

One could also use a fast method proposed by Di et al. (2009). More precisely, let P1 and

P2 be two thresholds and define

N1 = min{k : ρ
(1)
k > P1, λ

(1)
k < P2}, N2 = min{k : ρ

(2)
k > P1, λ

(2)
k < P2},

where ρ
(j)
k = (λ

(j)
1 + . . .+λ

(j)
k )/(λ

(j)
1 + . . .+λ

(j)
k + · · · ), j = 1, 2, is the proportion of variation

explained by the first k principal components at level j. Intuitively, this method chooses

the number of dimension at each level to be the smallest integer k such that the first k

components explain more than P1 of the total variation while any component after the kth

explains less than P2 of the variation. To use this method, the thresholds P1 and P2 need to

be carefully tuned using simulation studies or cross validations. In practice, we found that

P1 = 90% and P2 = 5% are often good choices.

2.4 Iterative procedure to improve accuracy

Initial estimates of the mean functions and eigenfunctions via smoothing are typically accu-

rate in the dense functional data, and less accurate for the sparse data. To improve estimation

accuracy, one may adopt an iterative procedure as follows.

Iterative Sparse MFPCA Algorithm

Step 1. Obtain initial estimates, µ̂0(t) , η̂0j (t), λ̂
(1),0
k , λ̂

(2),0
l , φ̂

(1),0
k (t), φ̂

(2),0
l (t) and σ̂2,0 for all

j, k, l, using the sparse MFPCA algorithm described in Section 2.2; estimate principal

component scores, ξ̂
0

i and ζ̂
0

i , using formulas that will be described in Section 3;

Step 2. Apply Steps 1–2 of the sparse MFPCA algorithm on Yij(tijs)−
∑N1

k=1 ξ̂
0
ik φ̂

(1),0
k (tijs)−∑N2

l=1 ζ̂
0
ijl φ̂

(2),0
l (tijs), and obtain updated mean functions µ̂1(t) and η̂1j (t);

Step 3. Apply Steps 3–6 of the sparse MFPCA algorithm on Yij(tijs) − µ̂1(tijs) − η̂1j (tijs),
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and obtain updated eigenvalues λ̂
(1),1
k , λ̂

(2),1
l , eigenfunctions φ̂

(1),1
k (t), φ̂

(2),1
l (t) and σ̂2,1 for

all j, k, l;

Step 4. Update principal component scores, ξ̂
1

i and ζ̂
1

i , based on the new estimates from

Steps 2–3;

Step 5. Stop if certain criteria are met. Otherwise, set µ̂1(t), η̂1j (t), λ̂
(1),1
k , λ̂

(2),1
l , φ̂

(1),1
k (t),

φ̂
(2),1
l (t), ξ̂

1

i and ζ̂
1

i as initial estimates and repeat Step 2–5 until the algorithm converges.

One reasonable set of the stopping criteria could be ‖µ̂1(t)− µ̂0(t)‖ < ε1, ‖η̂1j (t)− η̂0j (t)‖ <

ε1, ‖φ̂(1),1
k (t) − φ̂(1),0

k (t)‖ < ε1, ‖φ̂(2),1
l (t) − φ̂(2),0

l (t)‖ < ε1, | λ̂(1),1k − λ̂(1),0k | < ε2 and | λ̂(2),1l −

λ̂
(2),0
l | < ε2 for all j, k and l, where ε1 > 0 and ε2 > 0 are small pre-specified thresholds.

This algorithm iterates between updating the mean functions, the eigenfunctions, eigen-

values, and principal component scores. One advantage of the iterative procedure is, as

pointed out by Yao and Lee (2006), that the working data in Step 2 is asymptotically

independent. Thus, theoretical results for local polynomial smoothing or penalized splines

would ensure that smoothing estimates of the mean functions, µ(t) and ηj(t), have good

asymptotic behavior.

3. Prediction of principal component scores and various curves

This section provides BLUP calculation results for principal component scores and function

prediction at various levels. Some heavy notation is unavoidable, but results are crucial for

the implementation of our quick algorithms.

3.1 Prediction of principal component scores

We introduce some notations before presenting the formulas for the principal component

scores. Let ξi = (ξi1, ξi2, ... , ξiN1)
T be an N1 × 1 vector, ζij = (ζij1, ζij2, ... , ζijN2)

T be an

N2× 1 vector, ζi = (ζTi1, ζ
T
i2, · · · , ζTini

)T be an (N2ni)× 1 vector, Y ij = (Yij1, · · · , YijTij
) be a

Tij×1 vector, tij = (tij1, · · · , tijTij
) be a Tij×1 vector, Y i = (Y T

i1, · · · ,Y T
ini

)T be a (
∑

j Tij)×1
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vector. Calculations will be done conditionally on µ(t), ηj(t), λ
(1)
k , λ

(2)
l , φ

(1)
k (t) and φ

(2)
l (t),

which can be estimated using methods described in the previous sections. It is straightforward

to evaluate these functions at observed grid points, i.e, µij = {µ(tij1), · · · , µ(tijTij
) }T ,

µi = (µT
ij, · · · ,µT

ini
)T , ηij = { ηj(tij1), · · · , ηj(tijTij

) }T , ηi = (ηT
ij, · · · ,ηT

ini
)T , φ

(1)
k,ij =

{φ(1)
k (tij1), · · · , φ(1)

k (tijTij
) }T and φ

(2)
l,ij = {φ(2)

l (tij1), · · · , φ(2)
l (tijTij

) }T . Let Φ
(1)
ij denote a

Tij × N1 matrix whose kth column is given by φ
(1)
k,ij, Φ

(2)
ij denote a Tij × N2 matrix whose

lth column is given by φ
(2)
l,ij, Λ(1) denote an N1 × N1 diagonal matrix with diagonal ele-

ments (λ
(1)
1 , · · · , λ(1)N1

) and Λ(2) denote an N2 × N2 diagonal matrix with diagonal elements

(λ
(2)
1 , · · · , λ(2)N2

). The following proposition gives the point estimates and variance for the

principal component scores.

Proposition 1. Under the MFPCA model (4), the best linear unbiased prediction for

principal component scores (ξTi , ζ
T
i ) has the following form, ξ̂i

ζ̂i

 =

 Ai

Bi

 Σ−1
i (Y i − µi − ηi) , (5)

and their covariance matrix, cov{ (ξ̂
T

i − ξTi , ζ̂
T

i − ζTi ) |Y i } , is given by Λ(1) 0

0 Λ(2)⊗ Ini×ni

−
 Ai

Bi

 Σ−1
i (AT

i ,B
T
i ) , (6)

where
⊗

denotes the Kronecker product, Ai := cov(ξi,Y i) is an N1 × (
∑

j Tij) matrix,

Bi := cov(ζi,Y i) is an (N2ni)× (
∑

j Tij) matrix and Σi := cov(Y i) is a (
∑

j Tij)× (
∑

j Tij)

matrix. The matrix Ai has the form Ai = (Λ(1)Φ
(1)T

i1 ,Λ(1)Φ
(1)T

i2 , · · · ,Λ(1)Φ
(1)T

ini
), and Bi is

a block diagonal matrix with diagonal elements {Λ(2)Φ
(2)T

i1 ,Λ(2)Φ
(2)T

i2 , · · · ,Λ(2)Φ
(2)T

ini
}. Let

Σi,jk := cov(Y ij,Y ik ) be the (j, k) block of Σi with size Tij × Tik. When j = k,

Σi,jj = Φ
(1)
ij Λ(1)Φ

(1)T

ij + Φ
(2)
ij Λ(2)Φ

(2)T

ij + σ2 ITij×Tij
,

where ITij×Tij
is an identity matrix, and when j 6= k, Σi,jk = Φ

(1)
ij Λ(1)Φ

(1)T

ik .
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Equation (5) provides the best prediction of the principal component scores under the

Gaussian assumptions, and the best linear prediction otherwise. Thus, the Gaussian as-

sumptions in model (4) can be relaxed. Crainiceanu et al. (2009) also provides formulae for

the BLUPs of the principal component scores. Their results are applicable to balanced and

dense designs only, i.e. to cases when each function is measured at exactly the same set of

grid points; the formulae in Theorem 1 are applicable both for balanced and unbalanced

designs. When data are balanced and dense, the results in Crainiceanu et al. (2009) are

preferable because they avoid inverting large matrixes. Otherwise, one should use results in

Theorem 1.

Once estimates of principal component scores are obtained, they can be used in further

analysis either as outcome or predictor variables. For example, Di et al. (2009) explored the

distribution of subject specific principal component scores in different sex and age groups.

Di et al. (2009) and Crainiceanu et al. (2009) considered generalized multilevel functional

regression, which modeled principal component scores as predictors for health outcomes,

such as hypertension. These analyses can be extended to the sparse case.

3.2 Prediction of functional effects

Our approach for sparsely recorded functions allows estimation of the covariance structure of

the population of functions at various levels; it also provides a simple algorithm for predicting

subject-level or subject/visit-level curves. This process intrinsically borrows information both

across subjects and across visits within-subjects, and yields surprisingly accurate predictions;

see our simulation results in Section 4 and data analysis in Section 5 for demonstration.

The following theorem provides the formulas for prediction of various functions and their

confidence intervals. Results are derived based on the MFPCA model (4) and Proposition 1.
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Proposition 2. Under the MFPCA model (4), the best linear unbiased prediction for the

subject-specific curve, Zi(t), is given by

Ẑi(t) = Φ(1)(t)T ξ̂i = Φ(1)(t)T Ai Σ
−1
i (Y i − µi − ηi),

with variance, var{Ẑi(t)− Zi(t) |Y i }, provided by

Φ(1)(t)T ( Λ(1) −AiΣ
−1
i A

T
i ) Φ(1)(t),

where Φ(1)(t) := {φ(1)
1 (t), φ

(1)
2 (t), · · · , φ(1)

N1
(t) }T . The best linear unbiased prediction for the

visit-specific curve, Wij(t), is given by

Ŵij(t) = Φ(2)(t)T ζ̂ij = Φ(2)(t)T HjBi Σ
−1
i (Y i − µi − ηi),

with variance, var{Ŵij(t)−Wij(t) |Y i }, provided by

Φ(2)(t)T ( Λ(2)
⊗

Ini×ni
−HjBiΣ

−1
i A

T
i H

T
j ) Φ(2)(t),

where Φ(2)(t) := {φ(2)
1 (t), φ

(2)
2 (t), · · · , φ(2)

N2
(t) }T , and Hj = (Hj,1, · · · ,Hj,ni

) is an N2 ×

(N2ni) matrix with Hj,k = IN2×N2 if j = k and Hj,k = 0 otherwise. The individual curve

Yij(t) can be predicted by

Ŷij(t) = µ̂(t) + η̂j(t) + Ẑi(t) + Ŵij(t),

with variance, var{ Ŷij(t)− Yij(t) |Y i }, estimated by

Φ(t)TGj


 Λ(1) 0

0 Λ(2)⊗ Ini×ni

−
 Ai

Bi

 Σ−1
i (AT

i ,B
T
i )

GT
j Φ(t),

where Gj = (IN1×N1 ,Hj) and Φ(t) = (Φ(1)(t)T ,Φ(2)(t)T )T .

Proofs of Proposition 1 and 2 can be obtained by direct BLUP calculations (see, e.g.,

Ruppert et al., 2003) for general linear mixed models, and are omitted. The estimators

above require plugging in consistent estimates of the fixed functional effects µ(t) and ηj(t),

eigenvalues λ
(1)
k and λ

(2)
l , eigenfunctions φ

(1)
k (t) and φ

(2)
k (t), as well as variance σ2. Thus, the
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variance estimators in Theorem 2 do not account for the uncertainty associated to estimating

these quantities. This is a common practice in functional data analysis (Yao et al., 2005)

and produces satisfactory results.

4. Simulations

To evaluate finite sample performance, we conducted simulation studies under a variety of

settings. The data was generated from a true model used in Di et al. (2009), except that the

curves are sampled on a sparse set of grid points. More precisely, the true model is

Yij(tijm) = µ(tijm) +
4∑

k=1

ξik φ
(1)
k (tijm) +

4∑
l=1

ζijl φ
(2)
l (tijm) + εij(tijm) ,

where ξik ∼ N(0, λ
(1)
k ), ζijl ∼ N(0, λ

(2)
l ), εij(tijm) ∼ N(0, σ2) and (tijm : m = 1, 2, · · · , Tij) is

a set of grid points in the interval [0, 1]. The set of grid points are generated uniformly in

the interval [0, 1], and are different across subjects and visits. Let J denotes the maximum

number of visits per subject, i.e., J = max{ni : i = 1, · · · , n} and N denote the maximum

number of grid points per curve, i.e., N = max{Tij : i = 1, · · · , n; j = 1, · · · , ni}. The true

mean function is µ(t) = 8t(1 − t). The true eigenvalues are λ
(1)
k = 0.5k−1, k = 1, 2, 3, 4, and

λ
(2)
l = 0.5l−1, l = 1, 2, 3, 4, and the eigenfunctions are given as follows.

Level 1: φ
(1)
k (t) = {

√
2 sin(2πt),

√
2 cos(2πt),

√
2 sin(4πt),

√
2 cos(4πt)}.

Level 2: φ
(2)
1 (t) = 1, φ

(2)
2 (t) =

√
3(2t− 1), φ

(2)
3 (t) =

√
5(6t2 − 6t+ 1),

φ
(2)
4 (t) =

√
7(20t3 − 30t2 + 12t− 1).

We considered several scenarios corresponding to various choices of n, N and σ2, and

simulated 1, 000 data sets for each scenario. We considered n = 100, 200, 300 subjects, J = 2

visits per subject, N = 3, 6, 9, 12 measurements per function, and magnitude of noise σ =

0.01, 0.5, 1, 2. Due space limitations, we report results for a few scenarios, and present the

others in the supplementary file.

We found that the estimation accuracy of eigenvalues and eigenfunctions increases with
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the number of subjects n, the number of visits J , and the number of grid points N . With

n = 100 subjects and J = 2 visits, the first two components at both levels can be recovered

well when N = 3; more precisely, the shapes of estimated eigenfunctions approximate well

the true eigenfunctions and the estimated eigenvalues are close to their true values. When the

number of grid points increases to N = 9, all four principal components at both levels can

be estimated well. Table 1 reports the root mean square errors (RMSE) for eigenvalues and

root integrated mean square errors for eigenfunctions in various simulation settings. More

details on these results can be found in the supplementary file.

[Table 1 about here.]

We also evaluated the finite sample performance of predictions of subject and subject/visit

level curves. We discuss our results for the case when n = 200, J = 2 with different levels

of noise level, σ, and number of observations per visit, N . Figure 1 shows predictions for

subject- and visit-specific curves for the first subject under various scenarios. In the sparsest

case, N = 3, the BLUPs can still capture the rough shape of the curve, the confidence bands

are relatively wide because of the large amount of uncertainty, but cover the true curve in

most cases. For example, the predicted curve corresponding to subject 1 visit 2 (first panel in

the middle row) identifies a local minimum at t = 0.2, even though there are no observations

around the area. This is probably due to the additional information provided by the data

for the same subject at visit 1 (first panel in the top row). The bottom row shows results for

subject-specific curve, Z1(t), indicating that the BLUP estimates captures the major trend,

though misses some of the details. When the number of grid points increases, predictions of

both individual curves and subject specific curves improve. When N = 9, these predictions

are already very close to the true curves.

[Figure 1 about here.]

In summary, the sparse MFPCA algorithm is able to capture dominating modes of varia-
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tions at both levels for sparse data, in a typical setting with hundreds of subjects and a few

visits per subject. Predictions of curves via BLUPs also perform very well in finite samples.

5. Application

We now illustrate the use of sparse MFPCA on the SHHS data. The data contains dense

EEG series for 3201 subjects at two visits per subject. Di et al. (2009) analyzed the full SHHS

data using the MFPCA methodology and extracted dominant modes of variations at both

between- and within-subject levels. In this paper, we take a sparse random sample of the

SHHS data. More precisely, for each subject and each visit, we take a random sample of size

N without replacement from the sleep EEG percent δ-power time series. We perform analysis

with N=3, 6, 12, 24 observations per visit and compare the results using the proposed sparse

MFPCA method on the sub-sampled, now sparse, data with the MFPCA method on the

entire data set.

One might argue that it is somewhat artificial and unnecessary to analyze a sparse subset

of the data while the full data set is available. However, this will provide additional insight

into the performance of our method and build confidence into using these methods even when

N is small. The analysis based on the full data (henceforth denoted ”full analysis”) provides

a “golden standard”, which can be compared with the analysis based on sparse data. The

sparse MFPCA analyses with increased number of observations, N, will further illustrate

how much information is lost/gained at different level of sparsity, in realistic settings.

Figure 2 displays the estimated mean functions, including the overall mean function and

visit specific mean functions, in the dense case and four different sparse cases. Even with

N=3, the estimated mean functions are similar to those from the full analysis. By borrowing

information from 3201 subject, the sparse MFPCA captures the trend of mean functions well

and correctly identifies peaks and valleys, compared to those from the full analysis. When
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the number of grid points increases to 6, 12 and 24, the estimated mean functions become

indistinguishable from those from the full analysis.

[Table 2 about here.]

Table 2 displays the estimated eigenvalues, and Figure 3 shows the estimated eigenfunctions

at the subject level (level 1) in the dense case and four different sparse cases. The dashed

lines represent eigenfunctions estimated from the dense analysis, while solid lines correspond

to estimated eigenfunctions from the sparse analysis. The first principal components were

recovered very well in each case, even when N = 3. The shapes of the second and third

components are roughly captured with 3 grid points, and get closer to those from full analysis

as N increases. When N = 24, all three components agree well with their full analysis

counterparts. For the visit level (level 2), similar results are observed and the details are

reported in the supplementary file. Similar patterns can be observed for eigenvalues and

percent variance explained. The surprisingly good performance on estimation mean functions

and eigenvalues is due to the ability of sparse MFPCA to borrow information over all subjects

and visits.

[Figure 2 about here.]

[Figure 3 about here.]

Next, we evaluate the performance on predictions in each of the four sparse scenarios, and

illustrate the results on the first two subjects in Figure 4. The thick solid lines are predictions

using sparse MFPCA methods on sparse data, while the thin solid lines are smooth estimates

of the functions using the full data set. The dots are the actual sampled points. With N = 3

(first row of panels), predictions of curves can only capture the rough trend and miss the

detailes features such as peaks and valleys, even though mean functions and eigenfunctions

can be recovered well. This is not surprising, because a lot of subject-specific information
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loss should be expected. When the number of sampled points increases (next rows of panels),

the sparse MFPCA method estimates more detailed features.

[Figure 4 about here.]

The sparse MFPCA methods provides accurate estimates of the mean and principal com-

ponents functions even when the sampled points are sparse, provided that there are many

subjects. In terms of prediction for specific curves, the accuracy greatly depends on the

amount of available information, or equivalently, the level of sparsity. One can expect to

recover a rough trend with few grid points, but more observations are needed to estimate

detailed features, if those features exist. In practice, it is often the case that only the

sparse data are available, and the BLUPs from the MFPCA model provide the best linear

predictions.

6. Discussion

We considered sparsely sampled multilevel functional data, and proposed a sparse MFPCA

methodology for such data. We incorporated smoothing to deal with sparsity. Simulation

studies show that our methods perform well. In an application to the SHHS, we compared

the full analysis with sparse analysis under different levels of sparsity. The results show

that the sparse MFPCA methodology works well in extracting the principal components,

while prediction accuracy of functions depends on the level of sparsity. The sparse MFPCA

methodology developed in this paper is generally applicable to many scientific studies that

generate multilevel functional outcomes. We encounter this type of data sets more and more

often in our scientific studies. Moreover, more researchers recognize or have the intuition

that the data they collect are functional and are looking for way to extract it.

Other functional approaches for multilevel functions are available. For example, Morris

et al. (2003) and Morris and Carroll (2006) proposed Bayesian hierarchical models based
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on wavelets. However, Di et al. (2009) is the first attempt to generalize FPCA to multi-

level functional data, and the current paper further extends its scope to sparsely sampled

hierarchical functions. To the best of our knowledge this is the first functional approach to

multilevel functional data analysis where functions are sparsely sampled.

Multilevel functional research is a rich research area motivated by an explosion of studies

that generate functional data sets. The explosion is mainly due to improved technologies

that generate new type of data sets. Here are two examples of interesting methodological

developments: 1) extend the generalized multilevel functional regression Crainiceanu et al.

(2009) to the sparse case; and 2) develop methods that are more efficient to estimating

eigenvalues and eigenfunctions extending, for example, ideas in James et al. (2000) and Peng

and Paul (2009) to the multilevel context.
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Figure 1. Prediction of curves for the first subject, in simulation setting with n = 200
subjects, J = 2 visits per subject, N = 3, 6, 9, 12 grid points per curve and noise variance
σ2 = 1. Different columns correspond to different levels of sparsity, with the number of grid
points varying from 3 to 12. The first and second rows show predictions of subject/visit
specific curves, at visit 1 and 2, respectively. In these subfigures, red solid lines correspond
to the true underlying curves, Yij(t), and red dots are observed sparse data, Yij(tijs). The

thick black dashed lines are the predictions of curves, Ŷij(t), and thin black dashed lines give
their 95% pointwise confidence bands. The third row display subject level curves, Zi(t), and
their predictions Ẑi(t).
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Figure 2. Estimated mean functions from MFPCA for the SHHS data: dense and sparse
cases. The upper left panel shows estimated mean functions from the full analysis using dense
data. The four remaining panels correspond to results from sparse cases, with the number of
grid points per curve N = 3, 6, 12, 24, respectively. In each subfigure, solid lines correspond
to overall mean functions, µ̂(t), while dashed and dotted lines represent visit specific mean
functions, µ̂(t) + η̂j(t), at visit 1 and 2, respectively.
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Figure 3. Estimated eigenfunctions (first three components at level 1) from MFPCA for
the SHHS data: dense and sparse cases. The four rows correspond to different levels of
sparsity, with the number of grid points per function N = 3, 6, 12, 24, respectively. The three
columns represent the first three principal components, respectively. In each subfigure, solid
black lines correspond to estimates from the dense case, while dashed red lines represent
estimates from sparse cases.
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Figure 4. Prediction of sleep EEG curves for the first two subjects from the SHHS. The
first and second columns correspond to visit 1 and 2 for the first subject, respectively. The
third and fourth columns correspond to visit 1 and 2 for the second subject, respectively.
Different rows represent different levels of sparsity, with the number of grid points N varying
from 3 to 12. In each subfigure, red lines represent smoothed sleep EEG curves, while red
dots are sparsified data at certain level of sparsity. Black lines are predictions of sleep EEG
curves from the MFPCA model.
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Table 1
Root (integrated) mean square errors for eigenvalues and eigenfunctions in simulations. Simulation settings vary

according to sample size (n = 100, 200, 300) and the number of grid points per function (N = 3, 6, 9, 12). In
simulations, the first four principal components (PC) at both levels were compared to their underlying true

counterparts. Root mean square errors and root integrated mean square errors are used to measure estimation
accuracy for eigenvalues and eigenfunctions, respectively.

n N Eigenvalues Eigenfunctions
PC 1 PC 2 PC 3 PC 4 PC 1 PC 2 PC 3 PC 4

Level 1

100 3 0.25 0.39 0.69 1.16 0.45 0.66 1.03 1.07
100 6 0.29 0.36 0.76 1.26 0.56 0.81 1.00 1.21
100 9 0.19 0.25 0.35 0.48 0.38 0.54 0.83 0.98
100 12 0.21 0.26 0.36 0.54 0.42 0.66 0.85 1.08
200 3 0.18 0.22 0.26 0.36 0.34 0.48 0.73 0.92
200 6 0.19 0.23 0.30 0.41 0.35 0.56 0.76 0.97
300 3 0.17 0.20 0.23 0.31 0.32 0.46 0.66 0.87

Level 2

100 3 0.14 0.18 0.28 0.36 0.25 0.37 0.67 0.90
100 6 0.15 0.21 0.30 0.42 0.31 0.51 0.71 0.95
100 9 0.15 0.23 0.45 0.64 0.27 0.39 0.81 0.98
100 12 0.17 0.25 0.37 0.64 0.36 0.62 0.83 1.06
200 3 0.12 0.16 0.39 0.50 0.21 0.30 0.67 0.90
200 6 0.14 0.22 0.32 0.51 0.30 0.53 0.74 0.97
300 3 0.09 0.10 0.16 0.20 0.15 0.21 0.33 0.51
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Table 2
Estimated eigenvalues (first three components at level 1 and first five components at level 2) for SHHS, from dense

and four sparse cases. “Percent” means percentage of variation explained by the corresponding to the principal
component, relative to the total variation at the corresponding level. “N” is the number of grid points per function,

and reflects levels of sparsity.

Level 1 Level 2
PC 1 PC 2 PC 3 PC 1 PC 2 PC 3 PC 4 PC 5

dense eigenvalue 1.30 0.10 0.10 1.30 0.80 0.70 0.60 0.60
percent 80.80 7.60 3.30 21.80 12.80 12.50 10.90 9.60

N = 3 eigenvalue 1.20 0.00 0.00 1.30 0.70 0.50 0.50 0.40
percent 98.90 1.10 0.00 34.00 18.50 14.40 13.20 10.30

N = 6 eigenvalue 1.30 0.10 0.10 1.30 0.80 0.60 0.60 0.40
percent 86.40 5.60 4.30 27.40 15.60 13.50 11.80 9.10

N = 12 eigenvalue 1.30 0.10 0.10 1.30 0.80 0.70 0.60 0.50
percent 80.30 7.30 4.30 24.60 14.70 13.80 11.50 9.40

N = 24 eigenvalue 1.30 0.10 0.10 1.30 0.80 0.70 0.70 0.50
percent 81.80 7.10 3.50 23.60 13.80 13.40 12.10 9.70


