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Abstract

Estimating the health risks associated with air pollution exposure is of great

importance in public health. In air pollution epidemiology, two study designs have

been used mainly. Time series studies estimate acute risk associated with short-

term exposure. They compare day-to-day variation of pollution concentrations

and mortality rates, and have been criticized for potential confounding by time-

varying covariates. Cohort studies estimate chronic effects associated with long-

term exposure. They compare long-term average pollution concentrations and

time-to-death across cities, and have been criticized for potential confounding by

individual risk factors or city-level characteristics.

We propose a new study design and a statistical model, which use spatio-

temporal information to estimate the long-term effects of air pollution exposure on

life expectancy. Our approach avoids confounding by time-varying covariates and

individual or city-level risk factors. By estimating the increase in life expectancy

due to decreases in long-term air pollution concentrations, it provides easily in-

terpretable values for public policy purposes. We develop a suitable backfitting

algorithm that permits efficient fitting of our model to large spatio-temporal data

sets. We evaluate spatio-temporal correlation in the data and obtain appropri-

ate standard errors. We apply our methods to the Medicare Cohort Air Pollution
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Study, including data on fine particulate matter (PM2.5) and mortality for 18.2

million Medicare enrollees from 814 locations in the U.S. during an average of 65

months in 2000-2006. Supplemental material including R code implementing our

methods is provided in a web appendix.

Keywords: Backfitting Algorithm, Environmental Epidemiology, Particulate Matter,

Spatio-temporal Modeling

1. INTRODUCTION

The Clean Air Act (Environmental Protection Agency, last amended in 1990) requires

the U.S. Environmental Protection Agency (EPA) to set National Ambient Air Quality

Standards for seven pollutants considered harmful. Air quality standards for several air

pollutants have since also been adopted by the European Union. Implementation of these

standards led to decreases in air pollution concentrations in the United States (Bachmann,

2008). From a public policy and public health perspective, it is of importance to assess

whether these decreases have also led to an improvement in morbidity and mortality for the

general population (Health Effects Institute, 2003). Standards are reviewed periodically,

with evidence from epidemiologic studies playing a large role in the public policy process

(Kaiser, 1997; Greenbaum et al., 2001; Samet et al., 2003).

Two types of study design have been mainly used to estimate the association between

air pollution and mortality.

Time series studies (see for example Schwartz and Dockery, 1992; Spix et al., 1993;

Kelsall et al., 1997) estimate acute effects of short-term exposure to air pollutants. They

compare day-to-day variations in mortality with those in air pollution concentrations.

Multi-site time series studies (Katsouyanni et al., 1997; Samet et al., 2000; Samoli et al.,

2008; Wong et al., 2008) combine the evidence and statistical uncertainty across geo-

graphical locations, providing an overall estimate of the association that accounts for the

within-location and across-location variance (Dominici et al., 2000; Dominici, 2002). Due

to the focus on short-term effects, time series studies do not allow an assessment of the

years of life-time lost due to air pollution (Künzli et al., 2001). Potential confounders in

time series studies are time-varying variables such as weather or seasonal effects, as well

as slowly varying unmeasured factors. Typically, smooth functions of weather variables

and calendar time are included in the regression model to account for temporal confound-

2
http://biostats.bepress.com/jhubiostat/paper190



ing. However, results have been found to be sensitive to the flexibility granted to these

smooth functions (Samoli et al., 2001; Klemm and Mason, 2003; Dominici et al., 2004;

Peng et al., 2006), and time series studies have sometimes been criticized with regard

to potential residual confounding (Vedal, 1997; Lumley and Sheppard, 2000; Moolgavkar,

2005).

Cohort studies (see for example Dockery et al., 1993; Pope et al., 2002; Laden et al.,

2006; Eftim et al., 2008) estimate the chronic effects of long-term exposure to air pollu-

tion. They compare across locations long-term average air pollution concentrations and

time-to-death in cohorts. Cohort studies allow the estimation of life expectancy lost due

to air pollution (Künzli et al., 2001; Rabl, 2003). They have been criticized (Moolgavkar,

1994; Vedal, 1997; Gamble, 1998; Moolgavkar, 2005), due to the difficulty of fully ac-

counting for all potential confounders, including individual risk factors and location-specific

characteristics.

In this paper, we propose a new study design, statistical model, and estimation proce-

dure for estimating the long-term effects of air pollution. Our approach can be denoted as

a spatio-temporal cohort study, because it makes use of all the available spatio-temporal

variation in the data. It thus differs from time-series studies, which make use of temporal

variation in the data, as well as cohort studies, which use spatial variation. As in cohort

studies, we evaluate chronic effects of long-term exposure to air pollution, and the result-

ing years of life-time lost. Here, long-term exposure is defined as the average concentration

over the previous year, although longer (moving) time windows can be chosen.

Starting from a proportional hazard model, we derive a Poisson regression model and

estimate two regression coefficients. The first coefficient (the global association) estimates

the association between the national trend in the air pollutant and the national trend in

mortality rates, and is likely to be confounded by other factors that vary slowly on the

national level, such as smoking prevalence. The second coefficient (the local association),

estimates the association between deviations of location-specific trends in the air pollutant

from the national trend, and deviations of location-specific trends in mortality rates from

the national trend. We show that the local association is not affected by confounding

due to unmeasured time-varying variables, individual-level risk factors or location-level

characteristics.

We derive a backfitting algorithm that makes use of the specific model structure to

obtain an efficient implementation of our approach. This enables the fitting of our model
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to very large spatio-temporal data sets. We evaluate spatio-temporal correlation in the

data and derive appropriate standard errors for the estimates of regression coefficients and

associated increases in life expectancy. We apply our methods to the Medicare Cohort Air

Pollution Study (MCAPS), which includes individual-level information on time of death,

age, gender and race on a population of 18.2 million Medicare enrollees from 814 locations

in the U.S. for the period 2000-2006. We report new evidence on fine particulate matter

(PM2.5) and life expectancy.

We first introduce the data and our statistical model in Sections 2.1-2.3, proposing

a decomposition of the available spatio-temporal information to avoid confounding. The

backfitting algorithm for fitting our proposed regression model is described in Section

2.4. In Sections 2.5-2.6, we explore the spatio-temporal correlation in the data and derive

appropriate standard errors for estimates of regression coefficients and associated increases

in life expectancy. In Section 3., we apply our methods to a population of 18.2 Medicare

enrollees from the MCAPS. Section 4. concludes with a discussion. A web appendix

provides all R code used to implement the methods and produce the results in this paper.

2. METHODS

2.1 The Medicare Cohort Air Pollution Study Data

We construct a retrospective cohort study, by linking ambient levels of PM2.5 to mortality

data by monitor during the period 2000-2006 (see also Zeger et al., 2008, for details).

Specifically, we obtain data from 1,006 PM2.5 monitors for the period 2000-2006 from

the EPA monitoring network (http://www.epa.gov/oar/data/). In our analysis, we

include data from 814 monitors in the continental U.S. which have measurements for at

least four calendar years with no less than ten months of four daily values or more each.

We divide the country into three geographical regions. These are the eastern region, the

central region from the Mississippi River to the Sierra Nevada range, and the western

United States (Zeger et al., 2008). Monitor locations and regional affiliation are depicted

in Figure 1.

[Figure 1 about here.]

We define long-term exposure as the average of daily PM2.5 levels over the previous

year. These yearly averages are calculated as follows. First, to fill small gaps in the
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data, we smooth the PM2.5 time series at each location using a linear regression with

the daily PM2.5 values as the response, and with thin plate splines of time with four

degrees of freedom per year as the predictor. For gaps longer than 90 days, we smooth

the PM2.5 time series before and after the gap separately. Second, for each month, we

calculate yearly averages of PM2.5 using the 365 predicted daily values from this model

up to and including the respective month. In case of missing values, 350 days are deemed

sufficient to compute the yearly average. The 814 monitors provide up to 70 monthly

measurements of yearly average PM2.5 concentrations from December 2000 to September

2006. Summary statistics are given in Table 1.

We then link PM2.5 data to the mortality data as follows: the same PM2.5 exposure

from a given monitoring site is assigned to all Medicare enrollees residing in a ZIP code

with a geographic centroid within a six mile radius from that site. The Medicare data

provides demographic information (age, gender, race), and individual-level information on

survival, with time of death or censoring precise up to the month. The data set includes

about 18.2 million enrollees and 3.2 million deaths in total, with an average of 10.4 million

people enrolled in the cohort in any given month (Table 1).

[Table 1 about here.]

2.2 The Statistical Model

First, we specify the following proportional hazards model

hc(a, t) = hc(a) exp(PM c
t β), (1)

where hc(a, t) denotes the hazard of dying at age a and time t for location c, and hc(a)

is a location-specific baseline hazard function. PM c
t is the average of the PM2.5 levels at

location c over the 12 months prior and including time t.

While the variables age a and time t are continuous variables in principle, the infor-

mation in the Medicare data on time point of death or censoring is only precise up to the

month. We thus discretize the time domain as follows. We measure t in monthly intervals,

and denote the set of months with observations for location c by Tc, where c = 1, . . . , C.

In a given month t, we count deaths and time at risk as belonging to monthly age interval

a, a = 1, . . . , A, if the contributing person turned 65 in month t−a. Assuming a constant

hazard within each monthly age interval leads to a piecewise exponential survival model

for life-tables (see Holford, 1976) for each location.
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With a study population of 18.2 million, fitting model (1) is computationally unfeasible.

Instead, we use the log-linear regression model

log E(Y c
at) = log(T cat) + log(hc(a)) + PM c

t β, (2)

with the assumption that each Y c
at is an independent (across calendar time, space and

age-months) Poisson variable, conditional on T cat and PM c
t . Here, Y c

at is the number of

deaths at age-month a in month t for location c, and T cat is the total time subjects of

age a at location c were at risk of dying during month t. Absent the exact time of death

or dropout, we approximate T cat by N c
at, defined as the number of Medicare enrollees of

age a with a ZIP code of residence in location c at the beginning of the month. In the

appendix, using results by Holford (1980) and Laird and Olivier (1981), we show that

under the piecewise exponential survival model, model (1) is equivalent with regard to

likelihood-based inference to model (2). Independence assumptions that are made for

this equivalence are independence between different locations and birth-month cohorts for

model (1), and independence between locations c, months t and age-months a for model

(2). We evaluate the justification of these independence assumptions in Section 2.5.

To make computation feasible and avoid excessive zero cell counts, we further assume

a constant hazard of dying over one-year age intervals and after age 90. This allows

us to collapse ages a into one-year intervals, and to combine all ages over 90 into one

age group. Each of the resulting 1.4 million observations (Y c
at, N

c
at, PM

c
t ) then describes

the mortality rate among people being a years of age at location c during month t, with

average PM2.5 exposure PM c
t during the previous year. For each location c, we model the

log-hazard function log(hc(a)) in (2) using thin-plate splines of age with three degrees of

freedom, plus a location-specific intercept. An additional indicator for ages over 90 allows

for a potential discontinuity in the hazard function due to the mixture of hazard values in

this last group.

In model (2), β denotes the increase in the log-hazard of dying in a given month for an

increase of 1 µg/m3 in average PM2.5 concentrations during the previous year. Note that

differences between locations in average PM2.5 levels across the entire study period are

accounted for by the location-specific log-hazard function log(hc(a)). Only changes over

time in PM2.5 concentrations contribute to the estimation of β, avoiding cross-sectional

confounding by individual-level risk factors or location-level characteristics.
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2.3 Using spatio-temporal information to control for confounding

Absent confounding and measurement error, model (2) allows estimation of the effect

of long-term exposure to PM2.5 on life expectancy. However, confounding is a common

problem in air pollution studies (see Table 4).

To address confounding, we propose to rewrite model (2) as follows

log E(Y c
at) = log(N c

at) + log(hc(a)) + (PM c
t − PMt)β1 + PMtβ2, (3)

where PMt denotes the average of the yearly PM2.5 averages in month t across locations.

We estimate PMt from the 540 monitors with complete time-series, to avoid spurious

trends induced by differing monitors contributing over time.

In model (3), β1 and β2 both measure the strength of the association between PM2.5

and mortality, but use different types of information.

More specifically, the parameter β2 provides evidence as to whether nationally, PM2.5

and mortality rates are decreasing over time in parallel across the study period. The

parameter β2 can be interpreted as the increase in the national log-mortality rate in a

given month and age group, for an increase by 1 µg/m3 in the national average PM2.5

concentration during the previous year. Estimation of this national or “global” parameter

β2 can be confounded by variables which vary slowly nationally, in a similar fashion as both

PM2.5 and mortality. Potential confounders are national trends in the economy and/or

national trends in smoking prevalence. These national trends can be associated with the

national trends in air pollution and mortality, and thus can bias the estimation of β2.

By contrast, the parameter β1 measures the strength of the evidence that mortality

rates decline faster (slower) than the national average in locations where PM2.5 levels

also decline faster (slower) than the national average. In other words, β1 measures the

association between deviations of the local PM2.5 trend from the national PM2.5 trend and

deviations of the local trend in mortality rates from the national trend in mortality rates,

adjusted by the association between the national trends in PM2.5 and mortality rates.

Estimation of this “local” parameter β1 can be affected by a different type of confound-

ing than estimation of β2. Estimation of β1 can be biased by confounders that change

faster than their national average in some locations, and slower than their national average

in others, if the pattern of where these fast and slow changes occur is similar to those of

both PM2.5 and mortality. Consider the example of the variable “health consciousness”.

Health consciousness is not a confounder for estimation of β1 if it differs by location
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across the country, or if it increases nationally. However, health consciousness could be

a confounder if 1) some local communities developed a heightened health consciousness

during the six years of the study period, while others did not (or to a lesser extent), and

2) the locations with changes stronger than the national average and weaker than the

national average tended to be the ones where these changes were also stronger/weaker

than the national average for PM2.5 and mortality. For example, increases in health con-

sciousness might be related to decreases in PM2.5 concentrations in a community, but

also to decreases in the prevalences of smoking and unhealthy diet, and thus to decreases

in mortality rates. These considerations illustrate that while it is possible for estimation

of β1 to be confounded, confounding is less likely to occur than for β2, or more generally

for regression coefficients from time series or cohort studies. In summary, by design con-

founding by unmeasured time-varying covariates and by individual-level or area-level risk

factors cannot bias the estimation of β1.

An illustration of the interpretation of β1 and β2, and of potential confounders is given

in the web appendix. Absent confounding, β1 and β2 are equal and can be collapsed into

the single “overall” coefficient β in (2). Separate estimation of β1 and β2 in (3) therefore

can help to diagnose unmeasured confounding (Janes et al., 2007).

2.4 Estimation Using the Backfitting Algorithm

Fitting model (3) directly is computationally very demanding. First, this is due to the

high dimensionality of the data set with 1.4 million observations (Y c
at, N

c
at, PM

c
t ), where

a ranges through 26 (mostly yearly) age groups, t through the on average 65 months

per location, and c through the 814 locations. Second, this is due to the complexity of

the model, which specifies a log-hazard function log(hc(a)) with 5 degrees of freedom for

each of the 814 locations.

To reduce the dimensionality of the problem, we use a backfitting algorithm (Buja

et al., 1989). We first center the two variables (PM c
t − PMt) and PMt by location by

subtracting their location-mean values. This improves orthogonality with log(hc(a)), but

does not change the interpretation or value of β1 and β2, as any effect of location-mean

PM2.5 levels is absorbed by the location-specific intercept. The backfitting algorithm then

proceeds as follows.

• Initialize β
(0)
1 = β

(0)
2 = 0 and log(hc(a))(0) ≡ 0, c = 1, . . . , C.
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• Step A: For iteration j, set the offset to

offset1cat
(j) = log(N c

at) + log(hc(a))(j−1)

for all a, t and c. Fit the Poisson model

log E(Y c
at) = offset1cat

(j) + (PM c
t − PMt)β1 + PMtβ2

and set β
(j)
1 and β

(j)
2 to the estimated coefficients.

• Step B: For iteration j, set the offset to

offset2cat
(j) = log(N c

at) + (PM c
t − PMt)β

(j)
1 + PMtβ

(j)
2

for all a, t and c. For c = 1, . . . , C, fit the Poisson model

log E(Y c
at) = offset2cat

(j) + log(hc(a))

to data from location c, and set log(hc(a))(j) to the log-hazard function estimated

from this model.

• While the change in β
(j)
1 or β

(j)
2 is larger than a certain stop criterion, repeat steps

A and B. Conclude with step A.

The algorithm greatly reduces computational complexity by estimating the log-hazard

function for each location separately. To investigate potential overdispersion, an overdis-

persion parameter φ = Var(Y c
at)/E(Y c

at) can be included in the last Step A.

This backfitting algorithm is slightly different from the local scoring algorithm typically

employed in estimation for generalized additive models (Hastie and Tibshirani, 1990).

There, one backfitting algorithm for additive models (inner loop) is carried out at each

Newton-Raphson step (outer loop), and convergence results from the backfitting algorithm

for additive models (Buja et al., 1989) carry over directly. Here, we carry out a full

iteratively reweighted least squares algorithm (inner loop) for each step of the backfitting

algorithm (outer loop). However, convergence of β
(j)
1 and β

(j)
2 to the unique maximum

likelihood estimates β̂1 and β̂2 is straightforward, and is shown in the appendix.

We choose the stop criterion of the algorithm as a small relative change in the pa-

rameter estimates, max{|(β(j)
1 − β

(j−1)
1 )/β

(j−1)
1 |, |(β(j)

2 − β
(j−1)
2 )/β

(j−1)
2 |} < 10−6, which

is reached within 4-8 iterations for the MCAPS data.
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2.5 Variance Estimates and Spatio-Temporal Correlation

Variance estimators for β̂ = (β̂1, β̂2) that account for uncertainty in the estimation of

the log-hazard functions log(hc(a)) can be obtained from the likelihood using standard

asymptotic theory; details are given in the appendix. These model-based variance esti-

mators are obtained under the assumption of independence across time, age groups, and

geographical locations. In this section, we investigate the justification of this independence

assumption.

We examine averaged empirical variograms over age, time and space. More specifically,

we define the empirical variogram over space, averaged over time and age, as follows. The

averaged value for a bin of spatial distances (δ1, δ2] is given by

1

Nδ1,δ2

C∑
c=1

∑
u:δuc∈(δ1,δ2]

∑
t∈Tcu

A∑
a=1

1

2
(rcat − ruat)2,

where rcat = (ycat − µ̂cat)/
√
µ̂cat is the standardized residual and µ̂cat the fitted value from

model (3) for location c, month t and age a, Tcu is the set of months common to locations

c and u, δcu is the spatial distance between locations c and u, and Nδ1,δ2 is the number

of terms in the sum for the interval (δ1, δ2]. As for the usual variogram over space (see

for example Diggle and Ribeiro, 2007), the averaged variogram can be compared to the

variance estimate σ̂2 =
∑

a,t,c r
c
at

2/N . Complete independence between spatial locations

corresponds to variogram values close to σ̂2 for all spatial distances. Averaged variograms

over age and time are defined analogously.

2.6 Estimating Years of Life Gained

To evaluate the public health significance of our findings, we estimate the years of life

gained due to decreases in PM2.5 exposure. For a known hazard function h(a), we can

calculate the life expectancy of a 65-year old individual for a given exposure x and effect

β as

LE(x, β) =
∑
a

ah(a) exp(xβ)
∏
b<a

[
1− h(b) exp(xβ)

]
,

where a runs through the monthly ages starting with 65. We set the hazard function to

the average estimated hazard function across all locations, h(a) ≡
∑C

c=1 ĥ
c(a)/C.

To estimate the increase in life expectancy associated with a decrease in the annual

average of PM2.5 by 10 µg/m3, we compute ∆LE(β) = LE(x − 10, β) − LE(x, β).
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∆LE(β) is the difference between the life expectancy assuming the personal exposure

to be constant and equal to x, and the life expectancy assuming the exposure to be 10

µg/m3 less than x. We choose x as the average of the PM2.5 yearly average concentrations

during the first year of the study period. Note that this approach estimates the increase

in life expectancy after age 65, a lower bound for the overall increase in life expectancy.

We compute ∆LE(β̂1) and ∆LE(β̂), and their approximate standard errors using the

Delta method. Details are given in the appendix.

3. RESULTS FROM THE MCAPS STUDY

Yearly average PM2.5 concentrations have been decreasing during the study period in most

of the study locations (Figure 2), with a pronounced drop in PM2.5 levels after September

of 2001. PM2.5 average levels were comparable between East and West in 2001, and higher

than in the central region. The West shows the strongest and most consistent decline over

time, which might reflect the stricter California ambient air quality standard of 12 µg/m3

annual average PM2.5 that came into effect July 5, 2003 (California Environmental Protec-

tion Agency Air Resources Board, http://www.arb.ca.gov/research/aaqs/aaqs.htm).

The decline in PM2.5 concentrations is less pronounced in the East and center, with higher

average levels in 2005 after an initial decrease. The national average is dominated by val-

ues from the eastern region, which contributes 518 of the 814 monitors in this study.

[Figure 2 about here.]

Monthly age-standardized mortality rates have decreased over the same time period in

all regions (Figure 3). Rates are comparable in the East and center, and lower in the West,

with mortality rates peaking in the winter months. Mortality rates are age-standardized

to the cohort population in October 2003, the middle of the study period. Maps of yearly

average PM2.5 concentrations and age-standardized mortality rates by location are also

given in the web appendix.

[Figure 3 about here.]

In Table 2 and Figure 4, we report results from model (3) on the association between

long-term exposure to PM2.5 and mortality. Table 2 gives estimated coefficients for the

U.S. and each region, as well as their respective standard errors. We report estimated
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local and global coefficients β1 and β2 from model (3), and also the overall coefficient β

from model (2). The corresponding relative risk estimates are depicted in Figure 4.

Estimated overdispersion parameter values for model (3) range from φ̂ = 1.01 to 1.02

across regions, and results shown are based on a Poisson model without overdispersion.

Average empirical variograms (shown in the web appendix) give no indication of correlation

between observations over either space, time, or age. We therefore report model-based

standard errors assuming independence across locations, months and age-groups.

Based on the global coefficient β2, we find that a 10 µg/m3 increase in the national

average PM2.5 concentration over the previous year is associated with a significant 50%

increase in the risk of dying in a given month for our Medicare cohort. This estimate

reflects that nationally, mortality rates are declining over the study period in parallel with

PM2.5. Estimates of the risk increase associated with a 10 µg/m3 increase in regional

yearly average PM2.5 levels range from 25% to 47% across the three regions. The smallest

value is estimated in the West, where the decrease in mortality rates is the smallest, but

the decline in average PM2.5 concentrations is the largest (Figures 2 and 3).

Estimates of the local coefficient β1 are smaller than estimates of β2 by an order

of magnitude. Based on β1, we find that after adjusting for the association between

national trends in mortality and PM2.5, a 10 µg/m3 increase in the local average PM2.5

concentration over the previous year is associated with a significant 2.3% increase in the

risk of dying in a given month for the local Medicare population. Regional estimates of β1

are heterogeneous. Estimates in the West, center and East indicate a 1.7%, -0.6% and

6.0% risk increase, respectively. Only the estimate in the eastern region is statistically

significant.

Estimates of β lie between those of β1 and β2, as they are a weighted average of these

two estimates (Janes et al., 2007). However, the large differences between the estimated

local and global coefficients β1 and β2 indicate that they cannot be combined into a single

coefficient β. Indeed, a test for homogeneity H0 : β1 = β2 results in p-values smaller than

0.0001 in all regions.

[Table 2 about here.]

[Figure 4 about here.]

Table 3 gives estimates with 95% confidence intervals (CIs) for the increase in life

expectancy associated with a reduction in yearly average PM2.5 concentrations. Results
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based on the global coefficient indicate that a 10 µg/m3 reduction in the yearly national

average of PM2.5 is associated with an increase in life expectancy of 14.8 months (CI 13.8-

15.7 months) in the Medicare population. However, local coefficients result in different

estimates. We find a 10 µg/m3 reduction in the local yearly average of PM2.5 to be

associated with an increase in life expectancy of 2.2 months (CI 1.0-3.4 months) in the

local population of Medicare enrollees, after adjusting for the association between national

trends in PM2.5 and mortality. This increase in life expectancy is heterogeneous across

regions, with no significant increase found in western and central regions, and an increase

of about 5.6 months (CI 3.6-7.6 months) found in the eastern region.

[Table 3 about here.]

4. DISCUSSION

We have developed a new study design, statistical model and estimation procedure for

estimating the chronic effects of long-term exposure to air pollution, and the resulting

years of life-time lost. The strength of our study design is that it makes use of all

of the available spatio-temporal variation in the data, and thereby avoids confounding

by time-varying covariates, individual-level risk factors, and area-level characteristics. It

overcomes some of the limitations of time series studies and cohort studies, which use

only the temporal and only the spatial variation, respectively, to estimate the association

between air pollution and mortality (see Table 4).

[Table 4 about here.]

Our model accounts for the changing hazard of dying with age, and therefore allows the

estimation of life-time lost due to air pollution. Inclusion of age-varying hazard functions

also explains a large fraction of the variability in the data and lowers the overdispersion

to one, thus improving the ability to detect small air pollution effects. Our regression

model estimates two regression coefficients, the “global” and the “local” coefficients.

The global coefficient estimates the association between the national trends in PM2.5 and

mortality. The local coefficient estimates the association between local trends in PM2.5

and mortality, adjusting for the association between the national trends. While the global

coefficient is likely to be confounded by time-varying covariates that vary on the national
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level similarly to PM2.5 and mortality, the local coefficient is unaffected from confounding

by time-varying covariates, individual risk factors and area-level characteristics by design.

We have applied our methods to the Medicare Cohort Air Pollution Study. We reported

new evidence on fine particulate matter (PM2.5) and life expectancy, using data on 18.2

million enrollees from 814 U.S. locations during up to 70 months in 2000-2006. We find

that nationally, mortality rates are decreasing, by about 4% for each 1 µg/m3 decrease in

average PM2.5 levels during the previous year (global coefficient). Locally, an additional 1

µg/m3 decrease in yearly average PM2.5, above and beyond the national decline in PM2.5

levels, is associated with an additional 0.23% decrease in the local mortality rates, on top

of the national reduction in mortality (local coefficient).

The large difference between global and local parameter estimates indicates that con-

founding affects estimation of the two coefficients differently, and that the two cannot

be combined into a single coefficient. Results for the global coefficient are based on the

parallel decrease in national mortality rates and national PM2.5 levels. They are likely to

be confounded by other variables with a temporal trend on the national level, such as

changes in weather patterns, decreases in other pollutants, changes in smoking patterns

and dietary habits, or changes in the economy. The estimated local coefficient, which

is likely to be much less biased by confounding, is smaller than the estimated global co-

efficient. However, we still find a significant increase in life expectancy associated with

decreases in average PM2.5 concentrations based on the local coefficient.

We find that the significant local association is driven by the result from the East.

Stronger PM2.5 effects in the East than in the West have been found before for long-

term (Zeger et al., 2008) as well as short-term effects (Dominici et al., 2006; Bell et al.,

2008). This geographical heterogeneity could potentially be due to chemical composition

of PM2.5, which differs geographically (Bell et al., 2007) and leads to heterogeneity in the

toxicity of PM2.5 (U.S. EPA, 2004; Peng et al., 2009; Bell et al., 2009), but more research

is needed.

Few studies have investigated the association between PM2.5 and mortality using tem-

poral changes in long-term average PM2.5, typically by comparing locations across two

time periods. (For earlier results on total suspended particulates in the 70s and 80s, see

Chay et al., 2003; Chay and Greenstone, 2003). In a follow-up of the Six City Study,

Laden et al. (2006) found a 27% (CI 5-43%) reduction in mortality risk associated with

each 10 µg/m3 reduction in PM2.5 levels from 1974-89 to 1990-98, adjusting for time

14
http://biostats.bepress.com/jhubiostat/paper190



period and PM2.5 levels in 1974-1989. Pope et al. (2009) found a 0.61 year (CI 0.22-

1.0 year) increase in mean life expectancy associated with each 10 µg/m3 PM2.5 decrease

from 1979-1983 to 1999-2000 in 51 metropolitan areas, adjusting for changes in socioeco-

nomic, demographic and smoking variables. Our estimates of local coefficients are smaller

in comparison, although the confidence intervals overlap. Possible explanations include

the more recent time period of our study. Increasingly stringent air pollution regulations

might not only lower PM2.5 concentrations, but also change its composition and toxicity,

leading to decreases in air pollution effects in the last ten to fifteen years (Dominici et al.,

2007; Breitner et al., 2009). Janes et al. (2007) in a previous analysis of the Medicare

cohort did not find any association between local trends in mortality and local trends in

yearly average PM2.5, after adjusting for the association between national trends. Our

study includes more than twice as many calendar months, spatial locations and Medicare

enrollees, and not aggregating mortality rates over ten year age groups might further

improve our sensitivity to small PM2.5 effects.

The estimated 2.3% increase in mortality rates per 10 µg/m3 increase in yearly average

PM2.5 is larger than the typical 0.3% to 1.2% estimate from time series studies (Pope

and Dockery, 2006; Dominici et al., 2007). This is to be expected, as time series studies

capture acute, but not chronic pollutant effects, and thus underestimate the total effect

on mortality (Künzli et al., 2001). Our estimate is smaller than the estimates of chronic

PM2.5 effects from cohort studies, which typically find a 4 to 21% increase in all-cause

mortality rates per 10 µg/m3 increase in long-term average PM2.5 (Pope et al., 2002; Pope

and Dockery, 2006; Zeger et al., 2008; Eftim et al., 2008). Possible explanations include

residual confounding by individual and area-level risk factors in cohort studies, and the

shorter exposure time in our study, which could potentially lead to some underestimation

of effects.

The strengths of our approach is the ability to estimate the chronic effects of air pol-

lution on life expectancy, while accounting for any time-varying covariates, individual risk

factors or area-level characteristics that could bias the estimation through confounding

by design. Our approach makes use of the full spatio-temporal information available in

large spatio-temporal data sets. The good temporal and spatial resolution then allows

the assessment of heterogeneity of effects, such as across geographical regions. An effi-

cient backfitting algorithm permits the fitting of our model to such large data sets. Our

approach could also be used to estimate the chronic effects of other pollutants.
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A limitation of our study is the unavailability of information on individual-level or

area-level covariates, although such information could be included in our model. Time-

varying individual-level or area-level risk factors could potentially confound estimation of

the local coefficient β1, although inclusion of time-varying area-level characteristics did

not greatly change effect estimates in Pope et al. (2009). We also do not investigate

co-pollutants of PM2.5, which might decrease locally in parallel with PM2.5. However,

short-term associations of particulate matter with mortality have been found to not be

significantly changed by inclusion of gaseous pollutants in the model (Schwartz, 2004;

Dominici et al., 2005). Our study is limited to individuals over 65 years old; the estimated

increase in life-expectancy associated with a PM2.5 reduction thus gives a lower bound for

the overall increase.

In our study, we use ambient PM2.5 measurements from single monitors to measure

PM2.5 exposure. From a public policy perspective, decreases in ambient pollutant concen-

trations and associated decreases in mortality are of interest in assessing the impact of air

quality regulations. Moreover, studies have shown that PM2.5 is relatively homogeneous

within a given county (Dominici et al., 2006; Janes et al., 2007), and ambient PM2.5 is a

strong proxy of personal PM2.5 exposure (Sarnat et al., 2006).

To fully utilize the spatio-temporal variation in the data, we use the PM2.5 average

concentration over the last year as the relevant long-term exposure measurement. This

approach could potentially miss longer-term effects or lag periods. However, the effects

of long-term average PM2.5 and PM2.5 levels in the year of death have been found to be

similar (Laden et al., 2006), which suggests reversibility of effects within about a year.

This is plausible in light of the reversibility of the much larger increase in cardiovascular

risk in smokers within about three years (Dobson et al., 1991; McElduff et al., 1998).

While we did not see any spatio-temporal correlation in the residuals in our analysis,

it would be of interest in general to develop robust standard errors for the regression co-

efficients that do not require an independence assumption across time and space. Other

relevant extensions of our model are spatially or age-varying coefficients, to further in-

vestigate the observed spatial heterogeneity of effects, as well as potential differences in

effects across age groups (see e.g. Zeger et al., 2008). More work is needed to allow the

fitting of these more complex models to large data sets such as the MCAPS data.
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APPENDIX: DERIVATIONS

Equivalence of Proportional Hazards Model and Poisson Model (Section 2.2)

The equivalence of the two models has been noted by Holford (1980) and Laird

and Olivier (1981). First, consider the proportional hazards model (1) with month-wise

constant hazard function for one location c and one birth-month cohort, which turns 65 in

the same month t0. For this cohort, the hazard of dying is constant in age-month interval

a, and equal to hc(a, t0 + a) = hc(a) exp(PM c
t0+aβ). The likelihood contribution from

this cohort then is, analogous to Laird and Olivier (1981),

A∏
a=1

[
hc(a, t0 + a)Y

c
a,t0+a exp(−hc(a, t0 + a)T ca,t0+a)

]I(t0+a∈Tc)

,

where Y c
at is the number of deaths at age-month a in month t for location c, T cat is the

total time subjects of age a at location c were at risk of dying during month t, Tc is the

location-specific set of observed months, and I(·) denotes the indicator function.

If we assume that observations which are from different locations or different birth-

month cohorts are independent, the full likelihood can be written as

LS(β;h1(1), . . . , hC(A)) =
C∏
c=1

A∏
a=1

∏
t∈Tc

(hc(a) exp(PM c
t β))Y

c
at exp(−hc(a) exp(PM c

t β)T cat).

For the log-linear Poisson model (2), under the assumption of independence between Y c
at

and Y c̃
ãt̃

if (a, t, c) 6= (ã, t̃, c̃), the likelihood is

LP (β;h1(1), . . . , hC(A))

=
C∏
c=1

A∏
a=1

∏
t∈Tc

(hc(a)T cat exp(PM c
t β))Y

c
at exp(−T cathc(a) exp(PM c

t β))

Y c
at!

∝ LS(β;h1(1), . . . , hC(A)).

As the two likelihoods are proportional, the two models are equivalent with regard to

likelihood-based inference.

Convergence of the Backfitting Algorithm (Section 2.4)

The log-likelihood `(β,γ) is a function of β = (β1, β2) and γ of length 5C, which

contains an indicator, three spline basis functions in a and an indicator for ages over 90 for

each location (see below, Model-based Variance Estimates). The log-likelihood is based

on an exponential family density and is strictly concave, as well as bounded above, with

`(β,γ) → −∞ if one of the coordinates goes to ±∞. Thus, the maximum likelihood
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estimator of (β, γ) exists and is unique, and there are no other local maximizers of the

log-likelihood.

The backfitting algorithm alternates between maximizing `(β(j),γ) over γ for fixed

β(j), and maximizing `(β,γ(j)) over β for fixed γ(j). This corresponds to the Block

Coordinate Descent/Ascent Method, which converges to arg max(β,γ) `(β,γ), as the log-

likelihood is stricly concave and bounded above (Abatzoglou and O’Donnell, 1982; Tseng,

2001).

Model-based Variance Estimates (Section 2.5)

The log-likelihood for model (3) can be defined as follows:

`(β,γ) ∝
C∑
c=1

∑
t∈Tc

A∑
a=1

{
Y c
at(x

c′
t β + zca

′γ)−N c
at exp(xc′t β + zca

′γ)

}
.

Here, xcat = xct of length 2 contains the PM2.5 variables for time t and location c,

β = (β1, β2), and zca
′γ models the log-hazard functions log(hc(a)), where zcat = zca of

length 5C contains an indicator, three spline basis functions in a, and an indicator for ages

over 90 for each location c̃, c̃ = 1, . . . , C. This log-likelihood is based on the assumption

of independence between all pairs Y c
at and Y c̃

ãt̃
for which (a, t, c) 6= (ã, t̃, c̃).

The corresponding score equation is

S(β,γ) =
C∑
c=1

∑
t∈Tc

A∑
a=1

(xc′t , z
c′
a )′
[
Y c
at −N c

at exp(xc′t β + zca
′γ))

]
= X ′(Y − µ) = 0,

where vectors Y and µ = E(Y ) of length N = A
∑

c Tc contain entries Y c
at and

N c
at exp(xc′t β+zca

′γ), respectively, andX is the N×(2+5C) matrix with rows (xc′t , z
c′
a ),

a = 1, . . . , A, t ∈ Tc, c = 1, . . . , C.

The model-based asymptotic covariance matrix for (β̂, γ̂) then is (McCullagh and

Nelder, 1989) [
−E

(
d

d(β,γ)
S(β,γ)

)]−1

=
(
X ′ diag(µ)X

)−1
,

where diag(µ) denotes the diagonal matrix with the entries in µ on the diagonal. Asymp-

totics here are for
∑

t∈Tc
N c
at →∞ for each a and c, while A and C are fixed, such that

the number of parameters in (β,γ) stays constant.

Approximate standard errors for estimated years of life gained (Section 2.6)

The quantity to be estimated is ∆LE(β) = LE(x− 10, β)− LE(x, β) =: g(β). An

approximate standard error for g(β̂) using the Delta method is

σ(g(β̂)) ≈ |g′(β̂)| σ(β̂),
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where σ(g(β̂)) and σ(β̂) are the standard errors of g(β̂) and β̂, respectively,

g′(β) =
∂

∂β
LE(x− 10, β)− ∂

∂β
LE(x, β), and

∂

∂β
LE(x, β) =

∑
a

ah(a)x exp(xβ)

(∏
b<a

[1− h(b) exp(xβ)]

)(
1−

∑
c<a

h(c) exp(xβ)

1− h(c) exp(xβ)

)
.

These standard errors are for a given baseline hazard function h(a), and do not account

for uncertainty in estimating h(a).

SUPPLEMENTAL MATERIAL

Supplemental material is provided as a web appendix in a single zip file. Therein

Web appendix.pdf contains 1) illustrations of β1, β2 and potential confounders 2) maps of

yearly average PM2.5 concentrations and age-standardized mortality rates by location

3) average empirical variograms as defined in Section 2.5, which illustrate the lack

of correlation in the residuals over space, time or age for the MCAPS data.

R files are provided which were used to implement the methods and produce the results

in this paper. More details are given in the text file ReadMe.rtf.
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Table 1: Number of monitors, number of months with PM2.5 data, average PM2.5 level,
number of Medicare enrollees and number of deaths among Medicare enrollees during the
period December 2000 to September 2006. Values are medians among locations, with
25th and 75th percentile given in smaller print.

Months with Average
Monitoring available PM2.5 level Medicare

Region Stations PM2.5 data [µg/m3] Enrollees Deaths
West 96 597070 11.813.216.3 61641328937556 109930287270

Center 200 577070 10.313.114.9 74321474629073 81918083474

East 518 687070 10.812.914.5 70231420727688 140628745451

U.S. 814 627070 10.813.014.7 69571450229058 122025395120

Table 2: Estimated increase in the log-relative risk of dying in a given month per 1µg/m3

increase in average PM2.5 concentrations during the previous year. The local coefficient
β1 measures the association between local trends in PM2.5 and local trends in mortality
rates, adjusting for the respective national trends. The global coefficient β2 measures the
association between the PM2.5 national trend and the national trend in mortality rates.
The overall coefficient β measures the association between local trends in PM2.5 and local
trends in mortality, not adjusting for national trends.

100 × β1 100 × β2 100 × β
Region Monitors Estimate(S.E.) Estimate(S.E.) Estimate(S.E.)

West 96 0.165(0.124) 2.249(0.113) 1.291(0.077)

Center 200 -0.062(0.192) 3.849(0.303) 1.080(0.159)

East 518 0.579(0.107) 3.245(0.105) 1.929(0.075)

US 814 0.223(0.064) 4.077(0.089) 1.562(0.051)

Table 3: Estimated increase in life expectancy ∆LE in years for a 10 µg/m3 reduction in
average yearly PM2.5 exposure. Assumptions made in the calculation of ∆LE are given
in Section 2.6. Estimates are based on the local coefficient β1 or on the overall coefficient
β. Approximate 95% confidence intervals are derived from the standard errors for β̂1 and
β̂ using the Delta method.

Region Monitors ∆LE(β̂1)(95%CI) ∆LE(β̂)(95%CI)

West 96 −0.06 0.140.33 0.901.021.13

Center 200 −0.36-0.050.26 0.620.871.11

East 518 0.30 0.470.63 1.381.491.60

US 814 0.08 0.180.28 1.151.231.31
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Table 4: Study designs for assessing the association between air pollution and mortality

Study Expo- Interpretation Potential Example
design sure of risk Information confounders references
Time short- acute temporal time-varying Katsouyanni et al. (1997)
series term covariates Samet et al. (2000)

Samoli et al. (2008)
Wong et al. (2008)

Cohort long- chronic spatial individual and Dockery et al. (1993)
study term area-level Pope et al. (2002)

risk factors Laden et al. (2006)
Eftim et al. (2008)

Spatio- long- chronic spatio- time-varying Janes et al. (2007)
temporal term temporal individual and Greven et al. (2009)a

cohort area-level
study risk factors

acurrent article
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Figure 1: Locations of 814 EPA PM2.5 monitoring sites in the continental United States
used for the analysis. Boundaries of the three geographical regions are indicated by thicker
lines.
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Figure 2: Average PM2.5 concentrations over the previous year for the months from
December 2000 to September 2006. Depicted are both the average across 540 monitors
with complete time series in the continental U.S. (dotted-dashed line), as well as the
average by region: the West (solid line), the center (dashed line), and the East (dotted
line).
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Figure 3: Monthly age-standardized mortality rates among Medicare enrollees from each of
the three regions for December 2000 to September 2006. Mortality rates are standardized
to the cohort study population in October 2003, the middle of the study period.
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Figure 4: Estimated relative risk of dying in a given month per 10 µg/m3 increase in
average PM2.5 concentrations during the previous year. Relative risk (RR) estimates
based on the local coefficient β1, the global coefficient β2, and the overall coefficient β
are shown with 95% confidence intervals.
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