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Principal stratification designs

to estimate input data missing due to death

Constantine E. Frangakis1, Donald B. Rubin2, Ming-Wen An1, and Ellen MacKenzie3

1Department of Biostatistics, Johns Hopkins University
2Department of Statistics, Harvard University

3Department of Health Policy and Management, Johns Hopkins University

Summary. We consider studies of cohorts of individuals after a critical event, such as an

injury, with the following characteristics. First, the studies are designed to measure “input”

variables, which describe the period before the critical event, and to characterize the distribu-

tion of the input variables in the cohort. Second, the studies are designed to measure “output”

variables, primarily mortality after the critical event, and to characterize the predictive (con-

ditional) distribution of mortality given the input variables in the cohort. Such studies often

possess the complication that the input data are missing for those who die shortly after the

critical event because the data collection takes place after the event. Standard methods of

dealing with the missing inputs, such as imputation or weighting methods based on an as-

sumption of ignorable missingness, are known to be generally invalid when the missingness of

inputs is nonignorable, that is, when the distribution of the inputs is different between those

who die and those who live. To address this issue, we propose a novel design that obtains and

uses information on an additional key variable – a treatment or externally controlled variable,

which if set at its “effective” level, could have prevented the death of those who died. We

show that the new design can be used to draw valid inferences for the marginal distribution of

inputs in the entire cohort, and for the conditional distribution of mortality given the inputs,

also in the entire cohort, even under nonignorable missingness. The crucial framework that we

use is principal stratification based on the potential outcomes, here mortality under both levels

of treatment. We also show using illustrative preliminary injury data, that our approach can

reveal results that are more reasonable than the results of standard methods, in relatively dra-

matic ways. Thus, our approach suggests that the routine collection of data on variables that

could be used as possible treatments in such studies of inputs and mortality should become

common.

Key Words: Causal inference; Censoring by death; Missing data; Potential Outcomes; Prin-

cipal Stratification; Quantum mechanics.
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1. Introduction.

We consider studies that interview cohorts of individuals after a critical event, such as injury

or stroke, with the following two characteristics. First, the studies are designed to measure

“input” variables, which describe the period before the critical event, and to characterize

the distribution of the input variables in the cohort. Second, the studies are designed to

measure “output” variables, primarily mortality after the critical event, and to characterize

the predictive (or conditional) distribution of mortality given the input variables in the cohort.

Such studies, however, are often complicated by the fact that the input data are missing for

those who die shortly after the critical event because the data collection takes place after the

event.

This problem, input data missing due to death, occurs commonly, for example, in studies of

elders (Cornoni et al., 1993; Reuben, 1995; Cohen, 2002), or victims of injuries (e.g., MacKenzie

et al., 2006). The goals we address for such studies are how to estimate the inputs missing

due to death, and how to characterize the predictive (or conditional) distribution of mortality

given the input variables in the cohort. Answers to these goals are important because, first,

they can be used to better alert the individuals and their physicians about increases in risks,

and second, they inform about the pathways of such risks.

For example, we may want to evaluate the relation that prior disability, as measured by

“activities of daily living (ADL)”, has to the risk of death following an injury. If the past

ADL values that are missing among those who are dead have a different distribution than

the observed ADL values among survivors, standard methods cannot estimate that relation.

Another class of examples arises in the evaluation of the effect that a periodic exposure (e.g.,

to alcohol or drug) has on the risk of injury using a case-crossover design (Maclure, 1991).

With this within-person design, we need a measure of frequency of exposure even if we can

theoretically know the victims’ most recent exposure to drugs (e.g., by blood measurement).

2

http://biostats.bepress.com/jhubiostat/paper107



These frequency measures become missing for those who die as a result of severe injuries

and this missingness is usually ignored (e.g., Vinson et al., 1995). As discussed below, such

missingness needs to be addressed by new and more appropriate methods. Examples are

summarized in Table 1.

Table 1 here.

Standard methods confronted with missing data from death, as also noted by Zhang and

Rubin (2003), can be classified into three types. The first type is concerned only with the ob-

served data (e.g., cause-specific hazards, dating to Prentice et al. 1978; and partly conditional

on being alive, Kurland and Heagerty, 2005); these methods are not relevant to our problem

because they do not attempt to estimate the missing data. The second type of method assumes

ignorability (Rubin, 1976) of missing data and essentially replaces them with data matched

from fully observed strata, either across time from the same person, or across people for the

same time (e.g., McMahon and Harrell, 2001; Lin, McCullough and Mayne, 2002) or both;

these methods are known to be inappropriate when the distribution of data missing data due

to death differ from those in observed strata (Rubin, 1978). The third type posits non-ignorable

assumptions relying simply on the parametric structure of models (e.g., Fairclough, Peterson

and Chang, 1998); these methods are arbitrary and do not exploit further design structures.

We address the problem’s goals from a combination of design and analyses perspectives.

First, we recognize that the problem is related to, but differs from, the problem of censoring

by death discussed in Rubin (2000), Frangakis and Rubin (2002), and developed by Zhang

and Rubin (2003). The goal of the latter problem is to compare treatments on potential

outcomes (Neyman 1923; Rubin, 1974, 1978) when some patients in either treatment die. In

that problem, the future outcome of a person who dies is “missing”, not because it exists

and is unobserved, but because it is not defined. Because the patients who die may not be

comparable between the two treatments, death creates the need to define meaningful treatment
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effects on the outcomes. Such effects are well defined if we restrict attention to patients who

would survive no matter which treatment they received (Rubin, 2000) rather than to the larger

group of patients who are observed to survive. This groups of patients, who would survive

no matter the treatment, is a special case of a “principal stratum” (Frangakis and Rubin,

2002), that is, here, a stratum defined by a patient’s joint potential outcomes of death under

the two treatments. Thus, in that case, the principal strata are critical for defining treatment

effects. In the present problem, the variable of interest is a well defined input preceding death,

and is missing because the attempt to record it takes place after death. The key, from the

design perspective, then, is to recognize that the missing data of an individual who dies, would

be observed “under explicit alternative conditions for which the same individual would have

survived”. Formalizing this, we show that it is also important here for the goal of estimating

the missing information, that: (1) the design finds data on factors (e.g., treatments) that (1a)

could have prevented deaths and (1b) were assigned to the individuals after the time when the

inputs of interest became defined but before the time of death; and (2) these data be analyzed

using principal stratification.

In the next section, we formulate more explicitly the problem and its goals, and formalize the

proposed design with data on externally-controlled factors, such as treatments, that can prevent

deaths. In Section 3, we develop an analysis method to address our goals using the design’s data

within the framework of principal stratification. We show that the proposed method allows

the distribution of missing inputs to differ systematically from the distribution of the observed

inputs, yet this method is able to estimate the distribution of the missing inputs. We also

demonstrate, using preliminary injury data, that our design and analysis method can uncover

results that are dramatically different and more plausible than those of standard methods. In

Section 4, we discuss extensions of the proposed methods to help physicians and individuals

better predict approaching increases in risk of death, in more general situations. Section 5
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concludes with remarks, including connections between this new, interventional approach to

missing data and the principles of quantum mechanics.

2. Design using principal stratification.

2.1 Initial design and goals.

Consider a cohort of individuals who had a critical event (at time say t = 1), such as an

injury (e.g., crash). We are interested in learning about a variable A that takes its value at

a time, say t = 0, before the critical event and so is called an input. For example, A can be

activities of daily living that the person cannot perform, or exposure to drugs. To record A,

we schedule an interview at a time, say t = 2, after the critical event, e.g., an interview at

discharge from the hospital. However, a subset of individuals die before the interview, as a

result of the critical event; for those individuals, the value of A still exists, since it occurred

before death, but becomes missing because there is no interview.

Throughout, we use i to index an individual. Let Ai be the value of A for individuals at

t = 0; and let Sobs
i = 1 for surviving individuals at t = 2, and 0 otherwise. This initial setting

is shown in Fig. 1(a).

Goals. We wish to address the following: (a) Estimate the distribution of the past input Ai for

the people who died without reporting them; and (b) Estimate quantities such as predictive

distributions and associations that are defined based on the distribution of all values Ai, missing

and observed, for example, the prediction of death based on Ai. The first goal is important for

characterizing the distribution of the inputs for all individuals. The second goal differs from

predicting death from the observed inputs in this study, pr(Sobs
i = 0 | {Ai : Ai is observed }),

which is by definition deterministically 0 and is of no interest. Goals of type (b) are important

because they inform us about the degree to which the past inputs Ai in the original cohort are

actually related to death (or to the critical event using additional data from people without that

5
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event). Because of the deaths, the inputs A are not all reported in this study, so these relations

need to be estimated indirectly. These relations should suggest better monitoring methods in

subsequent studies, which would alert physicians and individuals about sudden increases in the

risk of death. Also, goals (b) contribute by helping medical research understand the pathways

through which those inputs relate to critical events and death.

2.2 New design elements and principal strata.

Consider the following additional design elements:

(i) For all individuals, we find and record a factor or treatment (labeled Zi) that was assigned

externally (that is, by a person or situation other than the individual), and a level of

which could have prevented death for those who died. For this factor, let z = 0 denote a

standard level, and z = 1 denote the more effective level. For example, for injuries, such

a “treatment factor” can be the transport time (long or short) from the time of injury to

arrival at the hospital or to surgery, whereas for strokes or myocardial infarctions, such

a factor can be the prompt administration of a thrombolytic drug.

(ii) We also record covariates Xi that were used to decide the level Zi of the factor for the

individual. The variables Xi may correlate with the input Ai.

For an individual i, denote by Si(z) the potential survival outcome (Rubin, 1978) that

indicates the survival status if the individual is to receive level z of the factor. It is, moreover,

important, as in Rubin (2000), Frangakis and Rubin (2002) and Zhang and Rubin (2003), to

consider the principal strata of survival, that is, the strata of the individuals with respect to

the joint values of (Si(0), Si(1)). These are generally the following: (1) individuals who would

survive no matter the level of z, that is, Si(0) = Si(1) = 1; (2) individuals who would die under

the standard level but would live under the effective one, that is, Si(0) = 0 and Si(1) = 1; (3)

6
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individuals who would die no matter the level, that is, Si(0) = Si(1) = 0; and (4) individuals

who would survive under the standard level but would die under the effective treatment, that

is, Si(0) = 1 and Si(1) = 0. We denote the principal stratum of individual i by Pi and label

the above four possible strata as “always survivors”, “protectable”, “never survivors”, and

“defiers”, combining terminology of Angrist, Imbens and Rubin (1996), and Gilbert, Bosch

and Hudgens (2003) for vaccines.

Our main argument is that addressing the goals (a) and (b) can be helped by recording and

using data on such a factor z (there can be more than one choices) that can justify plausible

assumptions about the assignment of the actual levels Zi and about the structure of principal

strata.

Figure 1 here.

A simple example reveals how our structure can help us achieve our goals. Consider a factor

z that can justify the following two assumptions (for extensions see Sec. 4):

Ignorable assignment of external factor. The levels Zi are independent of (Ai, Pi) conditionally

on the variables Xi that were used for administration.

Preventability of deaths from external factor. Individuals are either Pi = “protectable” by the

“effective” level (z = 1) of the factor, or else “always survivors” .

The first assumption is plausible when we choose z and Xi so that conditionally on Xi the

reasons for the remaining variability of Zi are independent of the individuals’ health prior to

the critical event. For example, we can ask physicians to tell us all the variables they used to

decide assignment of one or the other treatment. So, the external assignment of z makes its

ignorability theoretically achievable, whereas this is not true for an assumption of “ignorability

of death”, which is typically made by the standard methods (Sec. 1). Note that, by definition,

the values of Ai and Pi are not affected by the actual treatment that is assigned (Frangakis and

7
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Rubin, 2002). The second assumption excludes “never survivor” and “defier” patients, and

is related to the monotonicity assumption in other settings (e.g., Angrist, Imbens and Rubin,

1996). Preventability, when combined with ignorability, is testable from the observed data,

since under these assumptions we must observe that among individuals within levels of Xi and

assigned the “effective” treatment, all survive, whereas among those assigned the standard

treatment some die and some survive, as in Fig. 2(b). The preventability assumption is more

flexible than it originally appears when made within levels of the covariate strata Xi, and can

also be relaxed as discussed later. We now show how the above design addresses our goals.

3. Estimability of input data missing due to death.

For the observed data, we assume without loss of generality that we are already within

covariate strata Xi = x, so, for brevity we omit the explicit conditioning on Xi in the notation

of the distributions below. The possibly missing input Ai is taken as an indicator for poor

functional ability (e.g, dichotomized activities of daily living (ADL) =1 for poor status).

Consider first the goal of estimating the distribution of the missing functional inputs,

pr(Ai = 1 | Sobs
i = 0, Zi = 0). The above ignorability of the assignment of the prevention

factor levels Zi reflects that, conditionally on the variables Xi, and on which we have already

stratified, assignment of Zi balances all other covariates, including the input Ai, which is a

covariate that took its value before the prevention factor Zi was assigned, even though assign-

ment of Zi preceded the time when Ai was to be measured. In other words, because Ai is a

covariate and Zi is effectively randomized (given Xi), the proportion pr(Ai = 1 | Zi = 0) of

poor inputs among individuals assigned the standard prevention level of z equals the propor-

tion pr(Ai = 1 | Zi = 1) among those assigned the effective prevention level. Since, the former
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group includes both individuals with observed and missing values, we have that:

pr(Ai = 1 | Zi = 1) = pr(Ai = 1 | Zi = 0)

=
∑

s=0,1

pr(Ai = 1 | Sobs
i = s, Zi = 0)pr(Sobs

i = s | Zi = 0). (1)

From the observed data, as Fig. 2(b) shows, we can estimate directly the proportion pr(Ai =

1 | Zi = 1) of people who had had poor function among those assigned the effective level

of z. The equality in (1) then implies that we can also estimate the proportion pr(Ai = 1 |
Zi = 0) of people who had had poor function among those assigned the standard level of z.

Moreover, Fig. 2(b) shows that we can also directly estimate from the observed data: the

proportion pr(Sobs
i = 1 | Zi = 0) of survivors among individuals assigned the standard z;

and the proportion pr(Ai = 1 | Sobs
i = 1, Zi = 0) who had poor function among those who

survived after being assigned the standard level of factor z. It follows then, from (1), that the

distribution of missing past inputs can be expressed as

pr(Ai = 1 | Sobs
i = 0, Zi = 0)

(2)

=
pr(Ai = 1 | Zi = 1) − pr(Ai = 1 | Sobs

i = 1, Zi = 0) pr(Sobs
i = 1 | Zi = 0)

pr(Sobs
i = 0 | Zi = 0)

.

Therefore, we have reduced the unknown distribution of missing input data to an expression,

the RHS of (2), that involves quantities that can be directly estimated as discussed above.

This calculation is related to the instrumental variables equations of the effect of a treatment

on post-treatment outcomes in a trial with non-compliance (Imbens and Rubin, 1997). How-

ever, the context and goal of the problem here are different, and this parallel arises from the

more fundamental commonality of “principal stratification” shared between the two types of

9
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problems.

We use data from the NSCOT study (MacKenzie et al., 2006) on injuries to illustrate the

contrast between our approach to missing data and standard approaches. We look at patients

who have sustained injuries with relatively low or high severity (Xi = 0, 1 respectively). The

study schedules a follow-up interview three months after the injury to measure by questionnaire

the functional status (Ai = 1 for poor ADL) that existed before injury, which is missing if

injured person i dies before the interview as a result of the injuries. The prevention factor z

we use here is based on the time it took to transport the injured person to the hospital.

Regarding the assumption of ignorability of the assignment mechanism of the transport

time to hospital, the two main reasons for variability of this time are (a) the severity of the

injury as judged by medical personnel - more severe injuries are attempted to be transported

faster; and (b) external reasons such as time of day, distance, traffic, or weather, that prevent

fast transport, but that are themselves in principle not directly related to the person’s health

before injury. It is therefore plausible to assume ignorable assignment of Zi after conditioning

on the measured severity of injury Xi used to decide Zi: among individuals of the same injury

severity Xi (high, or low, see Table 2), those transported slowly are assumed to have the same

distributions of past ADL Ai and principal strata Pi as the individuals transported quickly.

The assumption of preventability is supported both by literature for other critical events (e.g.,

GISSI 1986), and empirically by our data: within either of our strata (high, or low) of injury

severity Xi, there were no deaths for injuries delivered to the hospital within 10 minutes,

although there were between 5%-20% deaths for patients delivered later than 10 minutes. For

these reasons we take the preventive level to be z = 1 if the transport time is less than 10

minutes.

Table 2 here.

10
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Focusing first on high injury severity, Table 2 gives relevant summary proportions, directly

computed from the data and treated here as population proportions: there were pr(Zi = 1) =

8% of patients transported quickly; among the patients who were transported slowly, 81%

survived, i.e., pr(Sobs
i = 1 | Zi = 0)=81%; among those transported quickly, all survived, i.e.,

pr(Sobs
i = 1 | Zi = 1)=100% (not shown); of those, there were 9% who had poor ADL before

injury, i.e., pr(Ai = 1 | Zi = 1)=9%; and among those who survived after being transported

slowly, 5% had poor past Ai, i.e., pr(Ai = 1 | Sobs
i = 1, Zi = 0)=5%. Then, the approach that

would estimate the protectable patients’ missing data distribution pr(Ai = 1 | Sobs
i = 0, Zi = 0)

with the distribution of observed data after matching on slow time Zi = 0 would give 5% poor

function. On the other hand, an approach that would estimate the missing data distribution

with the observed data without matching on time would give pr(Ai = 1 | Sobs
i = 1) which equals

∑
z pr(Ai = 1 | Sobs

i = 1, Zi = z)
pr(Sobs

i =1|Zi=z)pr(Zi=z)
�

z′ pr(Sobs
i =1|Zi=z′)pr(Zi=z′) , and which, using the information

given in Table 2, gives 5.4%. More generally, the result of the standard methods is bounded

to be between the directly observed pr(Ai = 1 | Sobs
i = 1, Zi = z), for z = 0, 1 (here, between

5% and 9%), as a convex combination of the two.

With the new method however, the missing proportion of poor past function for protectable

patients is allowed to be different from the observed strata. It must be such that when mixed

with the proportion of 5% poor past function for always survivors, the result should be the

proportion of 9% observed for all patients transported quickly to the hospital (Fig. 1(b)).

This can happen only if the missing proportion of poor past function for the protectable

patients is higher than 9%. Using (2), the missing proportion pr(Ai = 1 | Sobs
i = 0, Zi = 0) is

{9%−(5%)(81%)}/(100%−81%) = 26%. This shows that the actual result can be estimable

and dramatically different from those of the standard methods. Note that this proportion

is in line with a hypothesis that those who died had generally poorer past ADL than the

11
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survivors. Analogous comparisons are obtained for injuries with low severity. Finally, the

larger proportions of poor ADL for low versus high injury severity is in accordance with the

hypothesis that individuals who sustain injuries of light severity and who, nevertheless, need

hospitalization, were more frail before the injury than individuals who get hospitalized after

sustaining a severe injury.

4. More general role of the new methods.

The ability to estimate better the missing data allows us to also examine better relations

between those data and clinical variables. As an example, we show here how we can estimate

the degree to which the input Ai predicts death. Because death depends on the principal strata

Pi and the level of the prevention factor, it is important to examine if the input Ai predicts the

principal strata of death. This would indicate that Ai predicts the underlying predisposition

of a person to die.

Specifically, we wish to estimate:

pr(Si(0) = 0 | Ai = a) =
pr(Si(0) = 0)pr(Ai = a|Si(0) = 0)

pr(Ai = a)
, (3)

and compare (3) with a = 0 and 1. From the top of (1), we have that pr(Ai = 1) equals

the directly estimable proportion pr(Ai = 1 | Zi = 1) under the effective prevention level.

Moreover, from ignorability of treatment assignment with respect to the principal strata, we

have that the protectable patients {i : Si(0) = 0} are balanced between the levels of z (all

probabilities are implicitly given Xi), and so pr(Si(0) = 0) in the RHS of (3) equals the

directly estimable proportion pr(Sobs
i = 0 | Zi = 0) of patients who die under the standard

prevention level, where the principal strata are observed (see Fig. 2(b)). Also by ignorability,

the proportion pr(Ai = a|Si(0) = 0) of protectable patients who have input a, involved in the

RHS of (3), is also balanced between the levels of z and so equals the proportion of patients with
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input a among those who die in the standard prevention level, i.e., pr(Ai = a | Sobs
i = 0, Zi = 0),

where the latter is estimable from (2). These arguments show estimability of the proportions

in (3). Using these arguments to substitute the RHS of (3) with estimable quantities based on

(2), we can express the relative risk of being a protectable (not always survivor) patient when

having poor versus good input Ai as

pr(Si(0) = 0 | Ai = 1)
pr(Si(0) = 0 | Ai = 0)

=
pr(Ai = 0 | Zi = 1)
pr(Ai = 1 | Zi = 1)

(4)

× pr(Ai = 1 | Zi = 1) − pr(Ai = 1 | Sobs
i = 1, Zi = 0) pr(Sobs

i = 1 | Zi = 0)
pr(Sobs

i = 0 | Zi = 0) − pr(Ai = 1 | Zi = 1) + pr(Ai = 1 | Sobs
i = 1, Zi = 0) pr(Sobs

i = 1 | Zi = 0)
,

where the quantities in the RHS of equation (4) are all directly estimable as described in the

paragraph following (1).

The relative risk in (4) is implicitly assumed to equal 1 by the standard method that

replaces the missing data distribution pr(Ai = 1 | Sobs
i = 0, Zi = 0) with that of the observed

data after matching on the prevention level, that is, with pr(Ai = 1 | Sobs
i = 1, Zi = 0).

With the new method, however, and the empirical proportions of Table 2, the relative risk

in (4) is estimated to be 13.7 and 3.6, for low and high injury severity, respectively. This

means that, even after conditioning on observed strata, the possibly missing functional ability

is an important predictor of the underlying ability of a patient to survive the injury when

transportation takes a standard time to the hospital. The first implication is that follow-

up e.g., of individuals with history of poor functionality, should use new designs (e.g., based

on automated reporting devices) to make sure that some dimensions of functional ability be

measured at higher frequency. This would give better prediction for which patients transition

to high risk for death from a critical event. The second implication is that sudden changes to

low functional ability inputs should be examined physiologically to understand and ultimately

address the pathways through which these inputs predict death from injury even in the short

13
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term.

The new methods are important also for more general input data, designs and assumptions.

To outline this, suppose we wish to condition on multiple, and possibly continuous, covariates

Xi before making the two assumptions stated above, and that to do so, we model the distri-

bution of the principal strata of survival and of a continuous input given principal strata by

parametric functions

l(P)(p, x, β(P)) :=pr(Pi = p | Xi = x, β(P)), and
(5)

l(A)(a, p, x, β(A)) :=pr(Ai = a | Pi = p, Xi = x, β(A)).

Denote by P(Zi, S
obs
i ) the set of possible principal strata as a function of the observed level Zi

and survival status Sobs
i ; here, if Zi = 0 (standard) and Sobs = 1 (alive), then P(Zi, A

obs
i ) =

{always survivor}; if Zi = 0 and Sobs = 0 (dead), then P(Zi, S
obs
i ) = {protectable}, and if

Zi = 1 (effective), then P(Zi, S
obs
i ) = {always survivor, protectable}. Then the likelihood of

the collection of data

Xi, Zi, S
obs
i , and Ai if Sobs

i = 1

over independent individuals, conditional on the covariates and the observed factor levels, is

Likd(β(P), β(A)) =
∏

i

∑

p∈P(Zi,Sobs
i )

l(P)(p, Xi, β
(P)) · {l(A)(Ai, p, Xi, β

(A))}Sobs
i (6)

Under this setting, we can more generally express a quantity of interest as a function Q(β(P), β(A))

of the parameters, which can then be estimated by using likelihood or Bayesian methods to

estimate the parameters from (6). Semiparametric methods, as discussed by Scharfstein, Rot-

nitzky and Robins (1999) in general, and by Gilbert et al (2003) for an application of principal

stratification to vaccine trials, are also of interest. The fact that these quantities would be
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identifiable by our method even without the models in (5) if samples were large enough means

that the results should not be sensitive to the particular parametric models, as long as they

are flexible. Moreover, we can also show better estimation of general quantities of importance

in Table 1, such as for associations using case-crossover designs.

5. Discussion

We proposed a framework for addressing data missing due to death by obtaining and

using data and explicit assumptions about a treatment assignment mechanism that could

cause missing values to become observed if different levels of the treatment had been assigned.

Thus, although a relation between causal inference and missing data has been obvious since

Neyman (1923) and Rubin (1974, 1976, 1978), the proposed framework for data missing due

to death emphasizes a particular order for understanding these concepts: causal inference

with potential outcomes is not just a special case of missing data, but is more fundamental

than missing data (see also Rubin, 1987; 2005). Specifically, in the proposed framework, data

can only be regarded as having a missing value if an explicit intervention can be proposed

that would provide us with that value. Using this principle for missing data, we thus follow

the principle of quantum mechanics, by which a measurable value of a physical quantity is

only defined in terms of an explicit intervention that can be applied in order to provide that

value. This parallel of principles is also reflected in the parallel of primary elements of the two

frameworks – the complex wave function in quantum mechanics, and the principal strata of

potential outcomes in the proposed framework for missing data: these primary elements give

rise to the observed data by specific rules, but the primary elements are not themselves directly

observable, providing an additional dimension that empowers the frameworks to better explain

observations.

Often, for a plausible prevention factor, even the most effective level may partly, but not
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fully, prevent death. For example, prompt delivery of thrombolytic drugs prevents death

after stroke in some but not all cases (GISSI, 1986). Such settings must allow one more

principal stratum (“never survivors”) - those who would not survive no matter the factor’s

level, and for whom the observation of outcomes then remains essentially undefined just based

on this factor. We can show in such settings, and using the ignorability of the external factor’s

assignment, as opposed to the ignorability of missingness of data, that we can still estimate,

without parametric assumptions, the input data missing due to the death of the protectable

individuals who received the “standard” level of the factor. Yet, standard methods cannot

estimate correctly this distribution, as they cannot do so in the setting given in Sections 2

and 3. The conclusion is that we can still assess the ignorability of missingess of data, and

also find the direction along which its violation occurs (e.g., if such input data for those who

died were higher on average than the observed ones). Thus in such more general settings, the

importance of the new methods is essentially intact for addressing the scientific goals.

A limitation of the proposed method is that prevention factors we considered, such as the

estimated times from the critical event to the different stages of delivering aid and treatment,

are not at present systematically recorded for the purposes of addressing missing data, because

their important role in this problem had not previously been demonstrated. Our results and

illustration with the injury data demonstrates the important role that these factors can have

in improving the design and evaluation of studies with missing data due to death, and is the

first step to a more systematic recording of such factors.

It will also be of interest to combine the setting discussed here, where possible deaths of

patients can imply that their unobserved past is different from pasts that are observed, with the

setting considered by Rubin (2000) and Zhang and Rubin (2003). In those settings, patients

who die could have had also a different future outcome trajectory from observed trajectories,

under conditions that would have prevented their death. Developing methods to answer such
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combined questions is important for evaluating, for example, not only the potential benefits of

prevention programs for saving lives, but also the programs’ effects on the quality of patients’

lives, and the relation of these effects to past predictor variables.
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Table 1: Examples of studies with input data missing due to death.

population; original goal measures of interest (time 0) critical event (time 1)

elders or sick; relate functional activities of daily living (ADL), stroke, falls,

measures to mortality intense emotional stress, myocardial infarction,

intense physical activity, opportunistic infections

youths; relate exposure measures controlled substance use injuries (e.g., crash)

to severe injury/mortality (e.g, alcohol, drug abuse)

21

Hosted by The Berkeley Electronic Press



22

http://biostats.bepress.com/jhubiostat/paper107



?

1

0

(a).  Original Data

 Sobs
i

(survival status)
A i

(disability, drug, etc)

  injury
 (e.g crash)

A

?

 S         Z
(time to hospital)

obs
i

    S  (z=0)i     S  (z=1)i

1

0
0,  1

(protectable)

1,  1
(always survivors)

0,  1
(protectable)

1

(b).   Design based on controllable factor z

i   i

1,  1
(always survivors)

(principal strata) (disability, drug, etc) (survival status)

0
(slow)

  injury
 (e.g crash)

1
(quick)

Figure 1.

(a): Initial design on input variable A and survival status Sobs, matched for past

covariates;

(b): New design based on a controllable factor, matched for past covariates. Dashed

boxes indicate principal strata with respect to survival.
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