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Bayesian Analysis for Penalized Spline Regression Using
WinBUGS

Ciprian M. Crainiceanu∗ David Ruppert† M.P. Wand‡

December 1, 2007

Abstract

Penalized splines can be viewed as BLUPs in a mixed model framework, which
allows the use of mixed model software for smoothing. Thus, software originally devel-
oped for Bayesian analysis of mixed models can be used for penalized spline regression.
Bayesian inference for nonparametric models enjoys the flexibility of nonparametric
models and the exact inference provided by the Bayesian inferential machinery. This
paper provides a simple, yet comprehensive, set of programs for the implementation
of nonparametric Bayesian analysis in WinBUGS. MCMC mixing is substantially im-
proved from the previous versions by using low–rank thin–plate splines instead of trun-
cated polynomial basis. Simulation time per iteration is reduced 5 to 10 times using a
computational trick.

Keywords: MCMC, Semiparametric regression, Software

1 Introduction

The virtues of nonparametric regression models have been discussed extensively in the

statistics literature. Competing approaches to nonparametric modeling include, but

are not limited to, smoothing splines (Eubank [9]; Wahba [28]; Green and Silverman

[15]), series-based smoothers (Tarter and Lock [26]; Ogden [21]), kernel methods (Wand

and Jones [30]; Fan and Gijbels [10]); regression splines (Hastie and Tibshirani [18];

Friedman [11]; Hansen and Kooperberg [17]; penalized splines (Eilers and Marx, [8],
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Ruppert, Wand and Carroll [23]). The main advantage of nonparametric over para-

metric models is their flexibility. In the nonparametric framework the shape of the

functional relationship between covariates and the dependent variables is determined

by the data, whereas in the parametric framework the shape is determined by the

model.

In this paper we focus on semiparametric regression models using penalized splines

(Ruppert, Wand and Carroll [23]), but the methodology can be extended to other

penalized likelihood models. It is becoming more widely appreciated that penalized

likelihood models can be viewed as particular cases of Generalized Linear Mixed Mod-

els (GLMMs): Eilers and Marx [8]; Brumback, Ruppert and Wand 1999, [3]; Ruppert,

Wand and Carroll [23]. We discuss this in more details in section 2. Given this equiv-

alence, statistical software developed for mixed models, such as S-plus (function lme)

or SAS (PROC MIXED and the GLIMMIX macro) can be used for smoothing (Wand [29],

Ngo and Wand [20]). There are at least two potential problems when using such soft-

ware for inference in mixed models. Firstly, in the case of GLMMs the likelihood of

the model is a high dimensional integral over the unobserved random effects and, in

general, cannot be computed exactly and has to be approximated. This can have a

sizeable effect on parameter estimation, especially on the variance components. The

second problem is that confidence intervals are obtained by replacing the estimated

parameters instead of the true parameters and ignoring the additional variability. This

results in tighter than normal confidence intervals and could be avoided by using boot-

strap. However, standard software does not have bootstrap capabilities and favors the

“plug-in” method.

Bayesian analysis treats all parameters as random, assigns prior distributions to

characterize knowledge about parameter values prior to data collection, and uses the

joint posterior distribution of parameters given the data as the basis of inference. Of-

ten the posterior density is analytically unavailable but can be simulated using Markov

Chain Monte Carlo (MCMC). Moreover, the posterior distribution of any explicit func-

tion of the model parameters can be obtained as a by-product of the simulation algo-

rithm.

The Bayesian inference for nonparametric models enjoys the flexibility of nonpara-
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metric models and the exact inference provided by the Bayesian inferential machinery.

It is this combination that makes Bayesian nonparametric modeling so attractive (e.g.

Berry, Carroll, and Ruppert [2]; Ruppert, Wand and Carroll [23]).

The goal of this paper is not to discuss Bayesian methodology, nonparametric re-

gression or provide novel modeling techniques. Instead, we provide a simple, yet com-

prehensive, set of programs for the implementation of nonparametric Bayesian analysis

in WinBUGS (Spiegelhalter, Thomas and Best [24]), which has become the standard

software for Bayesian analysis. Special attention is given to the choice of spline basis

and MCMC mixing properties. The R package R2WinBUGS developed by Sturtz,

Ligges and Gelman [25] is used to call WinBUGS 1.4 and export results in R. This is

especially helpful when studying the frequentist properties of Bayesian inference using

simulations.

2 Low–rank thin–plate splines

Ruppert, Wand and Carroll [23] present the general methodology of semiparametric

modeling using the equivalence between penalized splines mixed models. This paper

shows how to do the Bayesian analysis of semiparametric models using WinBUGS.

We now introduce low–rank thin–plate splines. Consider the regression model

yi = m (xi) + εi ,

where εi are i.i.d. N
(
0, σ2

ε

)
, εi is independent xi, and m(·) is a smooth function. The

smooth function could be modeled using natural cubic splines, B-splines, truncated

polynomials, radial splines etc. In Bayesian analysis, the particular choice of basis

has important consequences for the mixing properties of the MCMC chains. We will

focus on low–rank thin–plate splines which tend to have very good numerical proper-

ties. In particular, the posterior correlation of parameters of the thin–plate splines is

much smaller than for other basis (e.g. truncated polynomials) which greatly improves

mixing.

The low–rank thin–plate spline representation of m(·) is

m (x,θ) = β0 + β1x +
K∑

k=1

uk |x− κk|3 ,

2
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where θ = (β0, β1, u1, . . . , uK)T is the vector of regression coefficients, and κ1 < κ2 <

. . . < κK are fixed knots. Following Ruppert (2002), [22] we consider a number of

knots that is large enough (typically 5 to 20) to ensure the desired flexibility, and κk

is the sample quantile of x’s corresponding to probability k/(K + 1), but results hold

for any other choice of knots. To avoid overfitting, we minimize

n∑

i=1

{yi −m (xi, θ)}2 +
1
λ

θT Dθ , (1)

where λ is the smoothing parameter and D is a known positive semi-definite penalty

matrix. The thin–plate spline penalty matrix is

D =

[
02×2 02×K

0K×2 (Ω1/2
K )TΩ1/2

K

]

where the (l, k)th entry of ΩK is |κl − κk|3 and penalizes only coefficients of |x− κk|3.
Let Y = (y1, y2, . . . , yn)T , X be the matrix with the ith row Xi = (1, xi), and ZK

be the matrix with ith row ZKi =
{
|xi − κ1|3 , . . . , |xi − κK |3

}
. If we divide (1) by

the error variance one obtains

1
σ2

ε

‖Y −Xβ −ZK‖2 +
1

λσ2
ε

uT (Ω1/2
K )TΩ1/2

K u,

where β = (β0, β1)
T and u = (u1, . . . , uK)T . Define σ2

u = λσ2
ε , consider the vector β

as fixed parameters and the vector u as a set of random parameters with E(u) = 0

and cov(u) = σ2
uΩ

−1/2
K (Ω−1/2

K )T . If (uT , εT )T is a normal random vector and u and ε

are independent then one obtains an equivalent model representation of the penalized

spline in the form of a LMM (Brumback et al., 1999). Specifically, the P-spline is equal

to the best linear predictor (BLUP) in the LMM

Y = Xβ + ZKu + ε, cov
(

u
ε

)
=

[
σ2

uΩ
−1/2
K (Ω−1/2

K )T 0
0 σ2

ε In

]
. (2)

Using the reparemeterization b = Ω1/2
K u and defining Z = ZKΩ−1/2

K the mixed model

(2) is equivalent to

Y = Xβ + Zb + ε, cov
(

b
ε

)
=

[
σ2

bIK 0
0 σ2

ε In

]
. (3)
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3 The Canadian Age–Income Data

Figure 1 is a scatterplot of age versus log(income) for a sample of n = 205 Canadian

workers, all of whom were educated to grade 13. These data were used by Ullah [27],

who identifies their source as a 1971 Canadian Census Public Use Tape.

3.1 Model and priors

The mean of log(income) as a function of age was modeled using thin–plate splines with

K = 20 knots chosen so that the k-th knot is the sample quantile of age corresponding

to probability k/(K + 1). We used model (3) where yi, xi denote the log income and

age of the i-th worker. The following priors were used
{

β0, β1 ∼ N(0, 106)
σ−2

b , σ−2
ε ∼ Gamma

(
10−6, 10−6

) , (4)

where the second parameter of the normal distribution is the variance. In many ap-

plications a normal prior distribution centered at zero with a standard error equal to

1000 is sufficiently noninformative. If there are reasons to suspect, either using alter-

native estimation methods or prior knowledge, that the true parameter is in another

region of the space, then the prior should be adjusted accordingly. The parameteri-

zation of the Gamma(a, b) distribution is chosen so that its mean is a/b = 1 and its

variance is a/b2 = 106. In Section 8 we discuss several issues related to prior choice for

nonparametric smoothing.

3.2 WinBUGS program for age–income data

We now describe the WinBUGS program that follows closely the description of the

Bayesian nonparametric model in equation (3) with the priors defined in (4). We

provide the entire program in Appendix A1. While this program was designed for

the age–income data, it can be used for other penalized spline regression models with

minor adjustments. Many features of the program will be repeated in other examples

and changes will be described, as needed.

The likelihood part of the model (3) is specified in WinBUGS as follows

for (i in 1:n)

4
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Figure 1: Scatterplot of log(income) versus age for a sample of n = 205 Canadian workers
with posterior median (solid) and 95% credible intervals for the mean regression function
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{response[i]~dnorm(m[i],taueps)

m[i]<-mfe[i]+mre110[i]+mre1120[i]

mfe[i]<-beta[1]*X[i,1]+beta[2]*X[i,2]

mre110[i] <-b[1]*Z[i,1]+b[2]*Z[i,2]+b[3]*Z[i,3]+b[4]*Z[i,4]+

b[5]*Z[i,5]+b[6]*Z[i,6]+b[7]*Z[i,7]+b[8]*Z[i,8]+

b[9]*Z[i,9]+b[10]*Z[i,10]

mre1120[i]<-b[11]*Z[i,11]+b[12]*Z[i,12]+b[13]*Z[i,13]+b[14]*Z[i,14]+

b[15]*Z[i,15]+b[16]*Z[i,16]+b[17]*Z[i,17]+b[18]*Z[i,18]+

b[19]*Z[i,19]+b[20]*Z[i,20]}

The number of subjects, n, is a constant in the program. The first statement

specifies that the i-th response (log income of the i-th worker) has a normal distribution

with mean mi and precision τε = σ−2
ε . The second statement provides the structure of

the conditional mean function, mi = m(xi). Here beta[] denotes the 2×1 dimensional

vector β = (β0, β1), which is the vector of fixed effects parameters. The ith row of

matrix X is Xi = (1, xi). Similarly, b[] denotes the 20 × 1 dimensional vector b =

(b1, . . . , bk) of random coefficients. Both the matrix X and Z = ZKΩ−1/2
K are design

5
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matrices obtained outside WinBUGS and are entered as data. In Section 9 we discuss

an auxiliary R program that calculates these matrices and uses the R2WinBUGS package

to call WinBUGS from R. Such programs would be especially useful in a simulation

study. The formulae for mre110[] and mre1120[] could be shortened using the inner

product function inprod. However, depending on the application, computation time

can be 5 to 10 times longer when inprod is used.

The distribution of the random coefficients b is represented in WinBUGS as

for (k in 1:num.knots){b[k]~dnorm(0,taub)}

This specifies that the bk are independent and normally distributed with mean 0 and

precision τb = σ−2
b . Here num.knots is the number of knots (K = 20) and is introduced

in WinBUGS as a constant. The prior distributions of model parameters described in

equation (4) are specified in WinBUGS as follows

for (l in 1:2){beta[l]~dnorm(0,1.0E-6)}

taueps~dgamma(1.0E-6,1.0E-6)

taub~dgamma(1.0E-6,1.0E-6)

The prior normal distributions for the β parameters are expressed in terms of the preci-

sion parameter and the Gamma distributions are specified for the precision parameters

τε = σ−2
ε and τb = σ−2

b .

Note that the code is very short and intuitive presenting the model specification in

rational steps. After writing the program one needs to load the data: the n–dimensional

vector response (y) and the design matrices X[,] (X) and Z[,] (Z), the sample size

n (n), the number of knots num.knots (K). At this stage the program needs to be

compiled and initial values for all random variables have to be loaded.

3.3 Model inference

Convergence to the posterior distributions was assessed using several initial values of

model parameters and visually inspecting several chains corresponding to the model

parameters. Convergence was attained in less than 1, 000 simulations, but we discarded

the first 10, 000 burn-in simulations. For inference we used 90, 000 simulations. These

simulations took approximately 6 minutes on a PC (3.6GB RAM, 3.4GHz CPU).

6
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Table 1: Posterior median and 95% credible interval for some parameters of model (3) for
the Canadian age–income data

Parameter 2.5% 50% 97.5%

β0 10.12 14.47 19.79
β1 −0.14 −0.02 0.08
σb 0.0029 0.0066 0.0161
σε 0.48 0.53 0.59

Table 1 shows the posterior median and a 95% credible interval for some of the

model parameters. We also obtained the posterior distributions of the mean function

of the response, mi = m(xi). Figure 1 displays the median, 2.5% and 97.5% quantiles

of these posterior distributions for each value of the covariate xi. The greyed area

corresponds to pointwise credible intervals for each m(xi) and is not a joint credible

band for the mean function. An important advantage of Bayesian over the typical

frequentist analysis is that in the Bayesian case the credible intervals take into account

the variability of each parameter and do not use the “plug-in” method. Prediction

intervals at an in-sample x value can be obtained very easily by monitoring random

variables of the type

y∗i = mi + ε∗i ,

with ε∗i being independent realizations of the distribution N(0, σ2
ε ). This can be im-

plemented by adding the following lines to the WinBUGS code

for (i in 1:n)

{epsilonstar[i]~dnorm(0,taueps)

ystar[i]<-m[i]+epsilonstar[i]}

4 The Wage–Union Membership Data

Figure 2 displays data on wages and union membership for 534 workers described

by Berndt [1]. The data were taken from the Statlib website at Carnegie Mellon

University lib.stat.cmu.edu/. This data set was analyzed by Ruppert, Wand and

Carroll [23] who show that standard linear, quadratic and cubic logistic regression are

7
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not appropriate in this case. Instead, they model the logit of the union membership

probability as a penalized spline, which allows identification of features that are not

captured by standard regression techniques. In this section we show how to implement

a semiparametric Bernoulli regression in WinBUGS using low–rank thin plate splines.

4.1 Generalized P–spline model

Denote by y the binary union membership variable, by x the continuous wage variable

and by p(x) the union membership probability for a worker with wage x in dollars/hour.

The logit of p(x) is modeled nonparametrically using a linear (p = 1) penalized spline

with K = 20 knots. We used the following model




yi|xi ∼ Bernoulli{p(xi)}
logit{p(xi)} = β0 + β1xi +

∑K
k=1 bkzik

bk ∼ N(0, σ2
b )

εi ∼ N(0, σ2
ε )

, (5)

where zik is the (i, k)th entry of the design matrix Z = ZKΩ−1/2
K defined in Section

2. The following prior distributions were used
{

β0, β1 ∼ N(0, 106)
σ−2

b ∼ Gamma
(
10−6, 10−6

) . (6)

4.2 WinBUGS program for wage–union data

While model (5) is very similar to model (3) the Bayesian analysis implementation in

MATLAB, C or other software is significantly different. Typically, when the model is

changed one needs to rewrite the entire code and make sure that all code bugs have

been removed. This is a lengthy process that requires a high level of expertise in

statistics and MCMC coding. WinBUGS cuts short this difficult process, thus making

Bayesian analysis appealing to a larger audience.

In this case, changing the model from (3) to (5) requires only small changes in the

WinBUGS code. Specifically, the two lines specifying the conditional distribution of

the response variable are replaced with

for (i in 1:n)

{response[i]~dbern(p[i])

logit(p[i])<-mfe[i]+mre110[i]+mre1120[i]}

8
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while the rest of the code remains practically unchanged. Given this very simple change,

we do not provide the rest of the code here, but we provide a commented version in

the accompanying software file.

4.3 Model inference

Table 2 shows the posterior median and a 95% credible interval for some of the model

parameters. We also obtained the posterior distributions of pi = p(xi) and Figure 2

displays the median, 2.5% and 97.5% quantiles of these distributions. The greyed area

corresponds to credible intervals for each p(xi) and is not a joint credible band. The

credible intervals take into account the variability of each parameter. Convergence

was attained in less than 1, 000 simulations, but we discarded the first 10, 000 burn-

in simulations. For inference we used 90, 000 simulations. These simulations took

approximately 80 minutes on a PC (3.6GB RAM, 3.4GHz CPU).

Table 2: Posterior median and 95% credible interval for some parameters of the model
presented in equations (5) and (6)

Parameter 2.5% 50% 97.5%

β0 −7.48 −4.15 −2.43
β1 −0.03 0.34 1.08
σb 0.045 0.100 0.229

5 The Sitka spruce data

The mixed model representation of penalized splines allows simple extensions additive

mixed models. As an example we will use data on the growth of Sitka spruces displayed

in Figure 1.3 of Diggle, Heagerty, Liang and Zeger (2002) [7]. The data consist of growth

measurements of 79 trees over two seasons: 54 trees were grown in an ozone–enriched

atmosphere while the remaining 25 comprise the control group.

9
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Figure 2: Logistic spline fit to the union and wages scatterplot (solid) with 95% credible sets.
Raw data are plotted as pluses, but with values of 1 for union replaced by 0.5 for graphical
purposes. A worker making $44.50/hour was used in the fitting but not shown to increase
detail.
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5.1 Additive mixed models

A useful mixed model for the Sitka data is
{

yij = Ui + αwi + f(xij) + εij

Ui ∼ N(0, σ2
U )

, (7)

where yij , 1 ≤ i ≤ 79, 1 ≤ j ≤ 13, is the log size of spruce i at the time of measurement

j taken on day xij . Also Ui are independent random intercepts for each tree, wi is the

ozone exposure indicator and εij are random errors. We model f(·) using low–rank

thin–plate splines
{

f(xij) = β0 + β1xij +
∑K

k=1 bkzijk

bk ∼ N(0, σ2
b )

, (8)

where the xij observations are stacked in one vector and (ij) corresponds to the

{13 ∗ (i− 1) + j}th observation. Here zijk is the (13 ∗ (i − 1) + j, k)th entry of the

design matrix Z = ZKΩ−1/2
K defined in Section 2. The random parameters bk are

assumed independent normal with σ2
b controling the shrinkage of the thin–plate spline

function towards the first degree polynomial.

10
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5.2 WinBUGS program for the Sitka spruce data

The WinBUGS program has essentially the same structure as the previous programs.

The likelihood part of the program is

for (k in 1:n)

{log.size[k]~dnorm(mu[k],tauepsilon)

mu[k]<-U[id.num[k]]+alpha*ozone[k]+m[k]

m[k]<-beta[1]*X[k,1]+beta[2]*X[k,2]+b[1]*Z[k,1]+b[2]*Z[k,2]+

b[3]*Z[k,3]}

The indexing structure is induced by stacking the vectors of observations corre-

sponding to trees. For example the kth observation corresponds to the index (i, j)

such that k = 13 ∗ (i− 1) + j. The first line of the program specifies that, conditional

on its mean yij are independent with mean µij and precision τε = 1/σ2
ε . The second

line of of code specifies the structure of the mean function as the sum between a ran-

dom intercept Ui, the ozone treatment effect αwi and a nonparametric mean function

f(·). The third line describes the mean function f(·) as a low–rank thin–plate spline.

Nested indexing is a powerful feature of WinBUGS and was used here to define

the clusters corresponding to trees. To achieve this we defined a new vector id.num[]

which is the tree indicator. More precisely, id.num[k]=i if and only if the kth obser-

vation corresponds to tree i. In this way U[id.num[k]] is Ui, the random intercept

corresponding to tree i, if and only if kth observation corresponds to tree i.

The distribution of random intercepts is specified as

for (i in 1:M){U[i]~dnorm(0,tauU)}

where M = 79 is a constant in the program and tauU is the precision τU = 1/σ2
U of

the random intercept. The rest of the program is identical to the program for age–

log income data and is omitted. A file containing the commented program and the

corresponding R programs is attached.

11
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5.3 Model inference

Table 3 shows the posterior median and a 95% credible interval for some of the model

parameters. We also obtained the posterior distributions of f(xij) and Figure 3 dis-

plays the median, 2.5% and 97.5% quantiles of these distributions. The greyed area

corresponds to credible intervals for each f(xij)) and is not a joint credible band. Con-

vergence was attained in less than 1, 000 simulations, but we discarded the first 10, 000

burn-in simulations. For inference we used 90, 000 simulations. These simulations took

approximately 5.5 minutes on a PC (3.6GB RAM, 3.4GHz CPU).

Table 3: Posterior median and 95% credible interval for some parameters of the model
presented in equations (7) and (8)

Parameter 2.5% 50% 97.5%

α −0.61 −0.31 −0.007
β0 3.39 7.20 10.99
β1 −0.92 −0.30 0.32
σU 1.87 2.62 3.55
σb 0.34 0.70 2.35
σε 0.178 0.187 0.195

6 The Coronary sinus potassium data

We consider the coronary sinus potassium concentration data measured on 36 dogs

published by Grizzle and Allan [16] and Wang [31]. The measurements on each dog

were taken every 2 minutes from 1 to 13 minute (7 observations per dog). The 36 dogs

come from 4 treatment groups.

Wang [31] presents four smoothing spline analyses of variance models for this data.

Crainiceanu and Ruppert [5] also present a hierarchical model of curves including

a nonparametric overall mean, nonparametric treatment deviations from the overall

curve, and nonparametric subject deviations from the treatment curves. In this section

we show how to implement such a complex model in WinBUGS.

12
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Figure 3: Thin–plate spline fit for the function f(·) for Sitka spruce data (solid) with 95%
credible sets. Sampling days are plotted as pluses.
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6.1 Longitudinal Nonparametric ANOVA model

Denote by yij and tij the potassium concentration and time for dog i at time j (in

this example tij = 2j − 1, but we keep the presentation more general). Consider the

following model for potassium concentration

yij = f(tij) + fg(i)(tij) + fi(tij) + εij , (9)

where f(·) is the overall curve, fg(i)(·) are the deviations of the treatment group from

the overall curve and fi(·) are the deviations of the subject curves from the group

curves. Here g(i) represents the treatment group index corresponding to subject i. All

three functions are modeled as low–rank thin–plate splines as follows




f(t) = β0 + β1t +
∑K1

k=1 bkztk

fg(t) = γ0gI(g>1) + γ1gtI(g>1) +
∑K2

k=1 cgkz
(g)
tk

fi(t) = δ0i + δ1it +
∑K3

k=1 dikz
(i)
tk

(10)

where I(g>1) is the indicator that g > 1, that is that the treatment group is g = 2,

or 3 or 4. Here ztk is the (t, k)th entry of the design matrix for the thin–plate spline

random coefficients, Z = ZKΩ−1/2
K corresponding to the overall mean function f(·).

Similarly, we defined z
(g)
tk and z

(i)
tk as the (t, k)th entries of the design matrices for
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random coefficients corresponding to the group level fg(·), 1 ≤ g ≤ 4, and subject

level curves fi(·), 1 ≤ i ≤ 36. The number of knots can be different for each curve

and one can choose, for example, more knots to model the overall curve than each

subject specific curve. However, in our example we used the same knots for each curve

(K1 = K2 = K3 = 3).

The model also assumes that the b, c, d and δ parameters are mutually independent

and 



bk ∼ N(0, σ2
b ), k = 1, . . . ,K1

cgk ∼ N(0, σ2
c ), g = 1, . . . , 4, k = 1, . . . , K2

dik ∼ N(0, σ2
d), i = 1, . . . , N, k = 1, . . . , K3

δ0i ∼ N(0, σ2
0), i = 1, . . . , N

δ1i ∼ N(0, σ2
1), i = 1, . . . , N

, (11)

where σ2
b , σ2

c and σ2
d control the amount of shrinkage of the overall, group and indi-

vidual curves respectively and σ2
0 and σ2

1 are the variance components of the subject

random intercepts and slopes. We could also add other covariates that enter the model

parametrically or nonparametrically, consider different shrinkage parameters for each

treatment group, etc. All these model transformations can be done very easily in

WinBUGS.

To completely specify the Bayesian nonparametric model one needs to specify prior

distributions for all model parameters. The following priors were used
{

β0, β1, γ0g, γ1g ∼ N(0, 106), g = 1, . . . , 4
σ−2

b , σ−2
c , σ−2

d , σ−2
ε , σ−2

0 , σ−2
1 ∼ Gamma

(
10−6, 10−6

) . (12)

6.2 WinBUGS program for the dog data

We provide the entire WinBUGS code for this model in Appendix A3. Equation (10)

is coded in WinBUGS as

for (k in 1:n)

{response[k]~dnorm(m[k],taueps)

m[k]<-f[k]+fg[k]+fi[k]

f[k]<-beta[1]*X[k,1]+beta[2]*X[k,2]+b[1]*Z[k,1]+

b[2]*Z[k,2]+b[3]*Z[k,3]

fg[k]<-(gamma[group[k],1]*X[k,1]+gamma[group[k],2]*X[k,2])

*step(group[k]-1.5)+c[group[k],1]*Z[k,1]+

14
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c[group[k],2]*Z[k,2]+c[group[k],3]*Z[k,3]

fi[k]<-delta[dog[k],1]*X[k,1]+delta[dog[k],2]*X[k,2]+

d[dog[k],1]*Z[k,1]+d[dog[k],2]*Z[k,2]+d[dog[k],3]*Z[k,3]}

The response is organized as a column vector obtained by stacking the information for

each dog. Because there are 7 observations for each dog, the observation number k

can be written explicitly in terms of (i, j), that is k = 7(i − 1) + j. The number of

observations is n = 36× 7 = 252.

We used two n × 1 column vectors with entries dog[k] and group[k], that store

the dog and treatment group indexes corresponding to the k-th observation.

The first two lines of code in the for loop correspond to equation (9), where dnorm

specifies that response[k] has a normal distribution with mean m[k] and precision

taueps. The mean of the response is specified to be the sum of f[k], fg[k] and fi[k],

which are the variables for the overall mean, treatment group deviation from the mean

and individual deviation from the group curves.

The following lines of code in the for loop describe the structure of these curves in

terms of splines. We keep the same notations from the previous sections. Because in

this example we use the same knots and covariates the matrices X and Z do not change

for the three types of curves.

The definition of the overall curve f[k] follows exactly the same procedure with

the one described in Section 3.2. The definition of fg[k] follows the same pattern

but it involves two WinBUGS specific tricks. The first one is the use of the step

function, described in Section 5.2. Here step(group[k]-1.5) is 1 if the index of the

group corresponding to the k-th observation is larger than 1.5 and zero otherwise.

This captures the structure of the fg(·) function in equation (10) because the possible

values of group[k] are 1, 2, 3 and 4. The second trick is the nested indexing used

in the definition of the γ and c parameters using the dogs vector described above.

For example, the γ parameters are stored in a 4 × 2 matrix gamma[,] with the g-th

line gamma[g,] corresponding to the parameters γ0g, γ1g of the fg(·) function. Note

that if g is replaced by group[k] we obtain the parameters corresponding to the k-th

observation. Similarly, c[,] stores the cgk parameters of fg(·) and is a 4 × 3 matrix

15
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because there are 4 treatment groups and 3 knots. The definition of fi[k] curve

uses the same ideas, with the only difference that the vector dog[k] is used instead

of group[k]. Here, delta[,] is a 36 × 2 matrix with the i-th line containing the δ0i

and δ1i, the random slope and intercept corresponding to the i-th dog. Also, d[,] is

a 36 × 3 matrix with the i-th line storing the di1, di2 and di3, the parameters of the

truncated polynomial functions for the i-th dog.

The WinBUGS coding of the distributions of b, c, d and δ follows almost literally

the definitions provided in equation (11)

for (k in 1:num.knots){b[k]~dnorm(0,taub)}

for (k in 1:num.knots)

{for (g in 1:ngroups){c[g,k]~dnorm(0,tauc)}}

for (i in 1:ndogs)

{for (k in 1:num.knots){d[i,k]~dnorm(0,taud)}}

for (i in 1:ndogs)

{for (j in 1:2){delta[i,j]~dnorm(0,taudelta[j])}}

For example, the parameters cj,k are assumed to be independent with distribution

N(0, σ2
c ) and the WinBUGS code is c[g,k]~dnorm(0,tauc). Here num.knots, ngroups

and ndogs are the number of knots of the spline, the number of treatment groups and

the number of dogs respectively. These are constants and are entered as data in the

program. Using the same notations as in Section 3.2 the normal prior distributions

described in equation (12) are coded as

for (l in 1:2){beta[l]~dnorm(0,1.0E-6)}

for (l in 1:2)

{for (j in 1:ngroups){gamma[j,l]~dnorm(0,1.0E-6)}}

and the prior gamma distributions on the precision parameters are coded as

taub~dgamma(1.0E-6,1.0E-6)

tauc~dgamma(1.0E-6,1.0E-6)

taud~dgamma(1.0E-6,1.0E-6)
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taueps~dgamma(1.0E-6,1.0E-6)

for (j in 1:2){taudelta[j]~dgamma(1.0E-6,1.0E-6)}

Here taub, tauc, taud and taueps are the precisions σ−2
b , σ−2

c , σ−2
d and σ−2

ε re-

spectively. taudelta[1] and taudelta[2] are the precisions σ−2
0 and σ−2

1 for the

δ-parameters.

6.3 Model inference

Figure 4 shows the data for the 36 dogs corresponding to each treatment group together

with the posterior mean and 90% credible interval for the treatment group mean func-

tions. Recall that the treatment group functions are the sums between the overall

mean function and the functions for the treatment group deviations from the mean

functions, that is

fgroup(t) = f(t) + fg(t)

This is achieved in WinBUGS by monitoring a new variable fgroup[] defined as

for (k in 1:n){fgroup[k]<-f[k]+fg[k]}

For inference we used 90, 000 simulations. These simulations took approximately 4.5

minutes on a PC (3.6GB RAM, 3.4GHz CPU).

7 Improving mixing

Mixing is the property of the Markov chain to move rapidly throughout the support

of the posterior distribution of the parameters. Improving mixing is very important

especially when computation speed is affected by the size of data set or model complex-

ity. In this section we present a few simple but effective techniques that help improve

mixing.

Model parameterization can dramatically affect MCMC mixing even for simple

parametric models. Therefore careful consideration should be given to the complex

semiparametric models, such as those considered in this paper. Probably the most

important step for improving mixing in this framework is careful choice of the spline

basis. While we have experimented with other spline bases, the low–rank thin–plate
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Figure 4: Coronary sinus potassium concentrations for 36 dogs in four treatment groups
with posterior median and 90% credible intervals of the group means
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splines seem best suited for the MCMC sampling in WinBUGS. This is probably due to

the reduced posterior correlation between the spline parameters. The truncated poly-

nomial basis provides similar inferences about the mean function but mixing tends to

be very poor with serious implications about the coverage probabilities of the pointwise

confidence intervals.

In our experience with WinBUGS, centering and standardizing the covariates also

improve, sometimes dramatically, mixing properties of simulated chains.

Another, less known technique is hierarchical centering (Gelfand et al. [12]; Gelfand

et al. [13]). Many statistical models contain random effects that are ordered in a natural

hierarchy (e.g. observation/site/region). The hierarchical centering of random effects

generally has a positive effect on simulation mixing and we recommend it whenever the

model contains a natural hierarchy. Bayesian smoothing models presented in this paper

also contain the exchangeable random effects, b, which are not part of an hierarchy

and they cannot be “hierarchically centered”.

Crainiceanu et al. [6] show that even for a simple Poisson–Log Normal model the

amount of information has a strong impact on the mixing properties of parameters.

A practical recommendation in these cases is to improve mixing, as much as possible,

for a subset of parameters of interest. These model specification refinements pay off

especially in slow WinBUGS simulations.

8 Prior Specification

Any smoother depends heavily on the choice of smoothing parameter, and for P-splines

in a mixed model framework, the smoothing parameter is the ratio of the error variance

to the prior variance on the mean (Ruppert, Wand and Carroll, 2003 [23]). The smooth-

ness of the fit depends on how these variances are estimated. For example, Crainiceanu

and Ruppert (2004), [4] showed that, in finite samples, the (RE)ML estimator of the

smoothing parameter is biased towards oversmoothing.

In Bayesian mixed models, the estimates of the variance components are known to

be sensitivity to the prior specification, e.g., see Gelman (2004). To study the effect

of this sensitivity upon Bayesian P-splines, consider model (3) with one smoothing

parameter and homoscedastic errors so that σ2
b and σ2

ε are constant. In terms of the
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precision parameters τb = 1/σ2
b and τε = 1/σ2

ε , the smoothing parameter is λ = τε/τb =

σ2
b/σ2

ε and a small (large) λ corresponds to oversmoothing (undersmoothing).

It is standard to assume that the fixed effects parameters, βi, are apriori indepen-

dent, with prior distributions either [βi] ∝ 1 or βi ∝ N(0, σ2
β), where σ2

β is very large.

In our applications we used σ2
β = 106, which we recommend if x and y have been

standardized or at least have standard deviations with order of magnitude one.

As just mentioned, the priors for the precisions τb and τε are crucial. We now show

how critically the choice of τb may depend upon the scaling of the variables. The

gamma family of priors for the precisions is conjugate. If [τb] ∼ Gamma(Ab, Bb) and,

independently of τb, [τε] ∼ Gamma(Aε, Bε) where Gamma(A,B) has mean A/B and

variance A/B2, then

[τb|Y , β, b, τε] ∼ Gamma
(

Ab +
Km

2
, Bb +

||b||2
2

)
(13)

and

[τε|Y , β, b, τε] ∝ Gamma
(

Aε +
n

2
, Bε +

||Y −Xβ −Zb||2
2

)
.

Also,

E(τb|Y , β, b, τε) =
Ab + Km/2
Bb + ||b||2/2

, Var(τb|Y ,β, b, τε) =
Ab + Km/2

(Bb + ||b||2/2)2
,

and similarly for τε.

The prior does not influence the posterior distribution of τε when both Ab and Bb are

small compared to Km/2 and ||b||2/2 respectively. Since the number of knots is Km ≥ 1

and in most problems considered Km ≥ 5, it is safe to choose Ab ≤ 0.01. When Bb <<

||b||2/2 the posterior distribution is practically unaffected by the prior assumptions.

When Bb increases compared to ||b||2/2, the conditional distribution is increasingly

affected by the prior assumptions. E(τb|Y ,β, b, τε) is decreasing in Bb so large Bb

compared to ||b||2/2 correspond to undersmoothing. Since the posterior variance of

τb is also decreasing in Bb a poor choice of Bb will likely result in underestimating

the variability of the smoothing parameter λ = τε/τb causing too narrow confidence

intervals for m. The condition Bb << ||b||2/2 shows that the “noninformativeness”

of the gamma prior depends essentially on the scale of the problem, because the size

of ||b||2/2 depends upon the scaling of the x and y variables. If y is rescaled to ayy
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and x to axx, then the regression function becomes aym(axx) whose p-th derivative

is aya
p
xm(p)(axx) so that ||b||2/2 is rescaled by the factor a2

ya
2p
x . Thus, ||b||2/2 is

particularly sensitive to the scaling of x.

A similar discussion holds true for τε but now large Bε corresponds to oversmoothing

and τε does not depend on the scaling of x. In applications it is less likely that Bε is

comparable in size to ||Y −Xβ−Zb||2, because the latter is an estimator of nσ2
ε . If σ̂2

ε

is an estimator of σ2
ε a good rule of thumb is to use values of Bε smaller than nσ̂2

ε /100.

This rule should work well when σ̂2
ε does not have an extremely large variance.

Alternative to gamma priors are discussed by, for example, Natarajan and Kass

(2000), [19] and Gelman (2004), [14]. These have the advantage of requiring less care

in the choice of the hyperparameters. However, we find that with reasonable care, the

conjugate gamma priors can be used in practice. Nonetheless, exploration of other

prior families for P-splines would be well worthwhile, though beyond the scope of this

paper.

9 Interface with and processing in R

WinBUGS 1.4 provides a Graphical User Interface (GUI) that is user friendly and

provides important information including the chain histories that can be used to asses

mixing. However, the WinBUGS script language is relatively limited and is hard to

use for effective simulation studies involving repeated calls for WinBUGS.

R2WinBUGS is an R package developed by Sturtz, Ligges and Gelman [25] that

calls WinBUGS 1.4 and export results into R. We used this package into our own R

function that also does processing of data. R functions for each model described in

this paper are attached to this paper. We present here important parts of the R code,

while commented R programs are attached to this paper.

The R program starts with

data.file.name="smoothing.norm.txt"

program.file.name="scatter.txt"

inits.b=rep(0,20)

inits<-function(){list(beta=c(0,0),b=inits.b,taub=0.01,taueps=0.01)}
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parameters<-list("lambda","sigmab","sigmaeps","beta","b","ystar")

The first two code lines define the file names for data and WinBUGS program respec-

tively. The third and fourth lines define the initial values to be used in the WinBUGS

program and the fifth line indicates the name of the parameters to be monitored in the

MCMC sampling. These parameters must correspond to parameters in the WinBUGS

program. The R program continues with

data<-read.table(file=data.file.name,header=TRUE)

attach(data)

n<-length(covariate)

X<-cbind(rep(1,n),covariate)

knots<-quantile(unique(covariate),

seq(0,1,length=(num.knots+2))[-c(1,(num.knots+2))])

The first and second lines read and attach the data, the third line defines the sample

size, and the fourth line defines the X matrix of fixed effects for the thin–plate spline.

The last assignment defines the num.knots number of knots at the sample quantiles

of the covariate. An important step in using thin–plate splines is to define the ZK ,

ΩK and the design matrix of random coefficients Z = ZKΩ−1/2
K . The following lines

of code achieve this

Z_K<-(abs(outer(covariate,knots,"-")))^3

OMEGA_all<-(abs(outer(knots,knots,"-")))^3

svd.OMEGA_all<-svd(OMEGA_all)

sqrt.OMEGA_all<-t(svd.OMEGA_all$v %*%

(t(svd.OMEGA_all$u)*sqrt(svd.OMEGA_all$d)))

Z<-t(solve(sqrt.OMEGA_all,t(Z_K)))

At this stage data is defined, WinBUGS is called from R and the output of the

program is loaded into R for further processing. The main function for doing this is

bugs() implemented in the R2WinBUGS package.

data<-list("response","X","Z","n","num.knots")
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Bayes.fit<- bugs(data, inits, parameters, model.file = program.file.name,

n.chains = 1, n.iter = n.iter, n.burnin = n.burnin,

n.thin = n.thin,debug = FALSE, DIC = FALSE, digits = 5,

codaPkg = FALSE,bugs.directory = "c:/Program Files/WinBUGS14/")

attach.all(Bayes.fit)

10 Pros and cons

An advantage of WinBUGS is the simple programming that translates almost literally

the Bayesian model into code. This saves time by avoiding the usually lengthy im-

plementations of the MCMC simulation algorithms. For example, total programming

time for one model is approximately 1–2 hours. Programs designed by experts for

specific problems can be more refined by taking into account properties of the model

and using a combination of art and experience to improve mixing and computation

time. However, when we compare a WinBUGS with an expert program in terms of

computation speed, programming time needs to be taken into account.

WinBUGS allows simple model changes to be reflected in simple code changes,

which encourages the practitioner or the expert to investigate a much wider spectrum

of models. Expert programs are usually restrictive in this sense.

Our recommendation is to start with WinBUGS, implement the model for the

specific data set. If it runs in a reasonable time and has good mixing properties, then

continue with WinBUGS. Otherwise consider designing an expert program. Even if one

decides to use the expert program we still recommend using WinBUGS as a method

of checking results. Programming errors and debugging time are also dramatically

reduced in WinBUGS.
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Appendix A1: WinBUGS code for the age-income example.

Model. This is the complete code for scatterplot smoothing used in the age-income

example.

model{ #Begin model

#This model can be used for any simple scatterplot smoothing. It

#can be easily modified to accommodate other covariates and/or

#random effects

#Likelihood of the model

for (i in 1:n)

{response[i]~dnorm(m[i],taueps)

m[i]<-mfe[i]+mre110[i]+mre1120[i]

mfe[i]<-beta[1]*X[i,1]+beta[2]*X[i,2]

mre110[i]<-b[1]*Z[i,1]+b[2]*Z[i,2]+b[3]*Z[i,3]+b[4]*Z[i,4]+

b[5]*Z[i,5]+b[6]*Z[i,6]+b[7]*Z[i,7]+b[8]*Z[i,8]+

b[9]*Z[i,9]+b[10]*Z[i,10]

mre1120[i]<-b[11]*Z[i,11]+b[12]*Z[i,12]+b[13]*Z[i,13]+b[14]*Z[i,14]+

b[15]*Z[i,15]+b[16]*Z[i,16]+b[17]*Z[i,17]+b[18]*Z[i,18]+

b[19]*Z[i,19]+b[20]*Z[i,20]}

#Prior distributions of the random effects parameters

for (k in 1:num.knots){b[k]~dnorm(0,taub)}

#Prior distribution of the fixed effects parameters

for (l in 1:2){beta[l]~dnorm(0,1.0E-6)}

#Prior distributions of the precision parameters

taueps~dgamma(1.0E-6,1.0E-6); taub~dgamma(1.0E-6,1.0E-6)
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#Deterministic transformations. Obtain the standard deviations and

#the smoothing parameter

sigmaeps<-1/sqrt(taueps);sigmab<-1/sqrt(taub)

lambda<-pow(sigmab,2)/pow(sigmaeps,2)

#Predicting new observations

for (i in 1:n)

{epsilonstar[i]~dnorm(0,taueps)

ystar[i]<-m[i]+epsilonstar[i]}

} #end model

Data. Data consists of the response variable (response[]) design matrix for fixed

effects (X[,]) design matrix of random effects (Z[,]) sample size (n), and number of

knots (num.knots).

Initial values. Initial values are provided for the fixed effects β (beta[]) random

coefficients b (b[]) precision τb (taub) and precision τε (taueps). All other initial

values are generated by WinBUGS from their prior distributions.

Both data and initial values are specified and processed in R and then used in

WinBUGS through the bugs() function implemented in the R2WinBUGS package as

described in Section 9.
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Appendix A2: WinBUGS code for the wage–union and Sitka spruce
examples.

Omitted here because they are similar to the age–income example. For complete com-

mented programs see the models “P-spline fitting with Bernoulli variation” and “Ad-

ditive mixed model” in the attached WinBUGS file.
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Appendix A3: WinBUGS code for coronary sinus potassium example.

Model. This is the complete code for the Bayesian semiparametric model for coronary

sinus potassium example presented in Section 6.

model{ #Begin model

#This model was designed for the coronary sinus potassium model

#described in this paper. However, the basic coding ideas can be

#applied more generally to longitudinal models that involve a

#hierarchy of parametric and/or nonparametric curves

#Likelihood of the model

for (k in 1:n)

{response[k]~dnorm(m[k],taueps)

m[k]<-f[k]+fg[k]+fi[k]

f[k]<-beta[1]*X[k,1]+beta[2]*X[k,2]+b[1]*Z[k,1]+

b[2]*Z[k,2]+b[3]*Z[k,3]

fg[k]<-(gamma[group[k],1]*X[k,1]+gamma[group[k],2]*X[k,2])

*step(group[k]-1.5)+c[group[k],1]*Z[k,1]+

c[group[k],2]*Z[k,2]+c[group[k],3]*Z[k,3]

fi[k]<-delta[dog[k],1]*X[k,1]+delta[dog[k],2]*X[k,2]+

d[dog[k],1]*Z[k,1]+d[dog[k],2]*Z[k,2]+d[dog[k],3]*Z[k,3]}

#Prior for the random parameters of the overall curve

for (k in 1:num.knots){b[k]~dnorm(0,taub)}

#Prior for the random parameters for the curves describing group

#deviations from the overall curve

for (k in 1:num.knots)

{for (g in 1:ngroups){c[g,k]~dnorm(0,tauc)}}

#Prior for the random parameters for the individual deviations
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#from the group curve

for (i in 1:ndogs)

{for (k in 1:num.knots){d[i,k]~dnorm(0,taud)}}

#Prior for monomial parameters of the overall curve

for (l in 1:2){beta[l]~dnorm(0,1.0E-6)}

#Prior for monomial parameters of curves describing the group

#deviations from the overall curve

for (l in 1:2)

{for (j in 1:ngroups){gamma[j,l]~dnorm(0,1.0E-6)}}

#Prior for monomial parameters of curves describing the individual

#deviations from the group curve

for (i in 1:ndogs)

{for (j in 1:2){delta[i,j]~dnorm(0,taudelta[j])}}

#Priors of precision parameters

taub~dgamma(1.0E-6,1.0E-6)

tauc~dgamma(1.0E-6,1.0E-6)

taud~dgamma(1.0E-6,1.0E-6)

taueps~dgamma(1.0E-6,1.0E-6)

for (j in 1:2){taudelta[j]~dgamma(1.0E-6,1.0E-6)}

#Define the group curves

for (i in 1:n){fgroup[i]<-f[i]+fg[i]}

} #End model

Data. Data consists of the response variable (response[]) design matrix for fixed

effects (X[,]) and design matrix of random effects (Z[,]), sample size (n), number

of knots (num.knots), number of subjects (nsubjects), number of groups (ngroups),
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subject indicator vector (dog), and group vector indicator (group).

Initial values. Initial values are provided for the fixed effects for all curves β

(beta[]), γ (gamma[,]), δ (delta[,]), random coefficients for all curves b (b[]), c

(c[,]), d (d[,]), precisions τb (taub), τc (tauc), τd (taud) and precision τε (taueps).

Both data and initial values are specified and processed in R and then used in

WinBUGS through the bugs() function implemented in the R2WinBUGS package as

described in Section 9.
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