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Abstract

We propose fast and scalable statistical methods for the analysis of hun-

dreds or thousands of high dimensional vectors observed at multiple visits.

The proposed inferential methods avoid the difficult task of loading the entire

data set at once in the computer memory and use sequential access to data.

This allows deployment of our methodology on low-resource computers where

computations can be done in minutes on extremely large data sets. Our meth-

ods are motivated by and applied to a study where hundreds of subjects were

scanned using Magnetic Resonance Imaging (MRI) at two visits roughly five

years apart. The original data possesses over ten billion measurements. The

approach can be applied to any type of study where data can be unfolded into

a long vector including densely observed functions and images.
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1 Introduction

Massive and complex data sets raise a host of statistical challenges that were un-

thinkable, even a few years ago. For example, functional and anatomic imaging data

on many subjects at one or multiple visits is now routinely being collected in many

scientific studies. The volume and dimensionality of these types of data make stan-

dard inferential tools computationally infeasible and lead to intensive methodological

research (Di et al. (2008), Crainiceanu et al. (2009), Staicu et al. (2010), Greven

et al. (2009), Di and Crainiceanu (2010), Zipunnikov et al. (2010), Crainiceanu et al.

(2010), Mohamed and Davatzikos (2004), Reiss et al. (2005), Reiss and Ogden (2008),

Reiss and Ogden (2010)). Specifically, in this paper we are concerned with modelling

data with the following structure: 1) measurements are observed on hundreds or

thousands of subjects; 2) each subject is observed at multiple visits; and 3) each in-

dividual observation at each visit is very high dimensional. In particular, we focus on

MRI data where each image is composed of rougly 3 million measurements at each

subject and visit. These types of data are opening an area of research refered to as

large n (number of subjects), large J (number of visits), and large p (dimensionality

of the observations) problem (Crainiceanu et al., 2010).

To address challenges arising from these types of data we develop Multilevel Func-

tional Principal Component Analysis for High Dimensional (HD-MFPCA) data. HD-

MFPCA combines powerful data compression techniques and statistical inference to

decompose the observed data in population- and visit-specific means and subject-

specific within and between level variability. Our inferential methods are very fast

even on personal computers for the analysis of hundreds or thousands of very large

images. To be precise, it currently takes roughly 16 minutes on a standard personal

computer for HD-MFPCA analysis of images of hundreds of subjects at two visits.

This was achieved by 1) designing new methods for obtaining Karhunen-Loeve (K-
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L) expansions of covariance operators; 2) obtaining best linear unbiased predictors

(BLUPS) of subject-and visit-specific scores as a by-product of a singular value de-

composition (SVD); 3) using the parallel between KL expansion and SVD; 4) relying

on partitioning of images into blocks that can be loaded into the computer memory;

5) changing all calculations to rely only on block calculations and sequential access

to memory; and 6) using SVD for matrices that have at least one dimension smaller

than 10, 000. Using these methods our algorithms are linear in the dimensionality

of the data and do not require loading the data matrix into memory, an impossible

and wasteful task in many applications. HD-MFPCA opens up a road for multilevel

modelling of data of size that was previously thought to be prohibitively large for

statistically principled analysis.

The motivation for this work came from the analysis of cross-sectional and longi-

tudinal brain volume via magnetic resonance imaging (MRI). The data arise from a

population-based study of lead exposure and its relationship to brain structure and

function (Schwartz et al., 2007; Caffo et al., 2008; Su et al., 2008; Chen et al., 2009)

1.1 Description of imaging data and its processing

In this manuscript, we consider voxel (three dimensional pixel) based analysis of

brain magnetic resonance imaging (MRI) data. The motivating data arises from a

study of voxel-based morphometry (VBM) (Ashburner and Friston, 2000) in former

lead manufacturing workers. VBM is a whole-brain technique for studying localized

changes in brain shape which has become a standard component in the toolbox for

neuroscientists. The primary benefits of VBM are the lack of need for a-priori specified

regions of interest and its exploratory nature that facilitates identification of spatio-

temporally complex and perhaps previously unknown patterns of brain structure and

function.
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Typically, VBM is performed via the following steps: 1) registration methods

warp each subject’s brain into a template brain space where the Jacobian of the

transformation is retained for analysis, 2) the Jacobian maps, which are aligned in

template space, are then smoothed using an aggressive filter, and 3) the maps are

analyzed across subjects using voxel-wise regression models; in this paper we do not

analyze voxels separately and focus instead on the joint analysis of the whole-brain

data. Steps 1) and 2) imply that the image used for analysis in VBM is not the

original MRI and that intensities represent relative sizes of the original image in

normalized space. That is, the intensity of a given voxel represents how relatively

large or small that same space was in the subject’s original image. For example, two

subjects with different head sizes would have the same VBM image shape; however

the smaller subject would have a darker overall image while the larger subject would

have a brighter image.

The specific method we use for creating VBM images, step 1), in this study is

a generalization of regional analysis of volumes in normalized space (RAVENS) al-

gorithm (Davatzikos et al., 2001). This method is an early and influential standard

in VBM analysis. To obtain more accurate registration and analysis, each subject’s

brain is segmented into gray matter, white matter and cerebrospinal fluid. Hence,

analysis is separated by tissue type (gray or white). Moreover, the data for this

analysis uses a new 4D longitudinal registration technique that reduces errors by ac-

counting for within-subject correlations. We registered brains to a template that was

aligned with the International Consortium for Brain Mapping’s ICBM152 template

(Mazziotta et al., 1995). For smoothing we used a 10 mm full width at half max-

imum (FWHM) isotropic Gaussian smoother, where the FWHM is the diameter of

the spherical cross-section of the 3D Gaussian kernel at one half of the height at the

mode.
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The data were derived from an epidemiologic study of the central nervous system

effects of organic and inorganic lead in former organolead manufacturing workers

(Stewart et al. (1999), Schwartz et al. (2000), Schwartz et al. (2000)). Subject scans

were from a GE 1.5 Tesla Signa scanner. RAVENS image processing was performed

on the T1-weighted volume acquisitions.

Our analysis is different from VBM by exploring hierarchical models of morpho-

metric variation using a generalization of multilevel functional principal components.

That is, we offer the first approach to decompose a population of morphometric

(RAVENS) images into cross-sectional and longitudinal directions of variation. While

our methods are motivated by and applied to a large longitudinal study of RAVENS

images, they are general and can be adapted or scaled up to other longitudinal studies

where images or very large vectors are collected at multiple visits.

The remainder of the paper is organized as follows. Section 2 briefly describes

the MFPCA approach and its limitation when dealing with high-dimensional data.

Section 3 provides a solution to the problem and introduces HD-MFPCA as well as

shows an efficient way of calculating Best Linear Unbiased Predictors (BLUPs) for

principal scores of the model. The results of two simulation studies are provided in

Section 4. Our methods are applied to RAVENS data in Section 5. The paper is

concluded with discussion in Section 6.

2 Basic multilevel model for high-dimensional data

In this section we will provide a basic framework for MFPCA developed in (Di et al.,

2008). We will discuss the reasons why the methods can not be applied directly to

high-dimensional data sets such as the one described above in Section 1.1.

Suppose that we have a sample of images Xij, where Xij is a recorded brain image

of the ith subject, i = 1, . . . , I at visit j, j = 1, . . . , J . Every image is a 3-dimensional
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array structure of dimension p = p1 × p2 × p3. For example, in the RAVENS data

example introduced in Section 1.1 p = 256×256×198 = 12, 976, 128. For the purpose

of this paper we represent the data Xij as a p× 1 dimensional vector containing the

voxels in a particular order, where the order is preserved across all voxels.

Following (Di et al., 2008) we consider the following functional two-way ANOVA

model

Xij(v) = µ(v) + ηj(v) + Zi(v) +Wij(v), (1)

where µ(v) is the overall mean image, ηj(v) is the visit-specific image shift from

the overall mean image, Zi(v) is a subject-specific image deviation from the visit-

specific population mean, and Wij(v) is the visit-specific image deviation from the

subject-specific mean. We make the standard assumptions that µ(v) is smooth and

that Zi(v) and Wij(v) are realizations of a square integrable stochastic process with

smooth covariance matrix.

We denote by KB and KW the covariance operators of the latent (unobserved)

processes Zi(v) and Wij(v) in (1), respectively. Using the standard argument about

the Karhunen-Loeve expansions of the random processes (Karhunen, 1947) Zi(v) =∑∞
k=1 ξikφ

(1)
k (v) and Wij(v) =

∑∞
l=1 ζilφ

(2)
l (v), where φ

(1)
k and φ

(2)
l are the eigenfunc-

tions of the KB and KW operators, respectively. With these changes the MFPCA

model becomes a mixed effect model Xij(v) = µ(v) + ηj(v) +
∑∞

k=1 ξikφ
(1)
k (v) +

∑∞
l=1 ζijlφ

(2)
l (v)

ξik
i.i.d.∼ (0, λ

(1)
k ), ζijl

i.i.d.∼ (0, λ
(2)
l ),

(2)

where
i.i.d∼ (0, σ2) indicates that variables are i.i.d. with mean zero and variance σ2;

please note that no distributional assumptions are required.

For practical purposes we consider a model projected on the first N1 and N2
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components, respectively. Assuming that N1 and N2 are known the model becomes

 Xij(v) = µ(v) + ηj(v) +
∑N1

k=1 ξikφ
(1)
k (v) +

∑N2

l=1 ζijlφ
(2)
l (v)

ξik
i.i.d.∼ (0, λ

(1)
k ), ζijl

i.i.d.∼ (0, λ
(2)
l ).

(3)

As the number of principal components, or eigenvectors, N1 and N2 is typically small

(Di et al. (2008)), this is a particularly nice representation of the family of images over

multiple visits. Statistical estimation of this model conditional on the eigenvectors

is not very difficult; see, for example, the projection idea (Di et al., 2008). Thus,

estimating the eigenvectors is a crucial first step of the methods. As both KB and KW

are p×p dimensional matrices, diagonalizing them is not possible when p exceeds, say,

10, 000. Below we explain in more details the problems associated with the standard

MFPCA analysis in this context. In Section 3 we show how these problems can be

avoided.

The main reason why MFPCA is infeasible within the high dimensional settings is

that the covariance operators involved can not be calculated, stored or diagonalized.

Indeed, standard MFPCA proceeds as follows. The mean image µ̂ is estimated by the

sample average
∑

ij Xij/(IJ). All visit effects η̂j, j ≥ 1 are estimated by
∑

i Xij/I−µ̂.

To obtain the first and second level decompositions of (3) for the unexplained part

of the image, X̃ij = Xij − µ̂− η̂j, an eigenanalysis has to be performed. Denote by

X̃ = (X̃1, . . . , X̃J) where X̃j is a centered p×I matrix where the column i, i = 1, . . . , I,

contains the unfolded image for subject i at visit j. The overall covariance operator

K̂T is estimated as K̂T = 1
IJ

∑J
j=1 X̃jX̃

′
j, which can be decomposed as a sum of

“between” and “within” covariance operators defined as

K̂B =
1

I(J2 − J)

∑
j1 6=j2

X̃j1X̃
′

j2
and K̂W =

1

2I(J2 − J)

∑
j1 6=j2

(X̃j1 − X̃j2)(X̃j1 − X̃j2)
′
,

(4)
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respectively. It is easy to see that K̂T = K̂B + K̂W . The size of operators is p × p

and the standard eigenanalysis requires O(p3) operations, which makes calculations

infeasible for p > 104. The data in our application is 4 to 5 orders of magnitude

larger than the infeasibility limit. Even the storage of the covariance operators for

the RAVENS data with p×p = 1.6·1014 is impossible. Therefore, for high-dimensional

problems MFPCA, which performs extremely well when the functional dimensionality

is in the thousands, fails in very high dimensional setting. The next section provides

a methodology capable of handling multi-level models of very high dimensionality.

While some attention is required to understand the technical details, our solution

works because the ranks of the matrices involved do not exceed the sample size of the

study.

3 HD-MFPCA

We now describe our statistical model and inferential methods, with particular focus

on solving computational problems. In particular, we show how to calculate all neces-

sary quantities using sequential access to data that cannot be loaded into the computer

memory. We introduce high-dimensional MFPCA (HD-MFPCA), which overcomes

the problems discussed in the previous section and provides new and deep insights

into the geometry of MFPCA. While our approach was inspired by the RAVENS

data, HD-MFPCA has enormous potential for the analysis of populations of high

dimensional data.

3.1 Eigenanalysis

Constructing and diagonalizing covariance operators for high dimensional data is im-

possible, which makes a brute-force implementation of the methods in (Di et al.,
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2008) infeasible to the type of problems discussed here. In this section we propose

an algorithm for calculating the eigenvalues and eigenvectors of the relevant covari-

ance operators that avoids the problem mentioned above. This crucial result uses a

sequential access to the data and allows to perform multilevel principal component

analysis on observations of extremely high dimensionality.

Our approach starts with constructing the SVD of the matrix X̃, the matrix

obtained by column-binding the centered subject-specific data matrices

X̃ = VΣ1/2U
′
. (5)

Here, the matrix V is p × IJ dimensional with IJ orthonormal columns, Σ is a

diagonal IJ × IJ dimensional matrix and U is a IJ × IJ dimensional orthogonal

matrix. Calculating the SVD of X̃ requires only a number of operations linear in

the number of parameters p. Indeed, consider the IJ × IJ symmetric matrix X̃
′
X̃

with its spectral decomposition X̃
′
X̃ = UΣU

′
. Note that for high-dimensional p the

matrix X̃ can not be loaded into the memory. The solution is to partition it into

M slices as X̃
′

= [(X̃1)
′ |(X̃2)

′ | . . . |(X̃M)
′
]
′
, where the size of the mth slice, X̃m, is

p/M × IJ and can be adapted to the available computer memory and optimized to

reduce implementation time. The matrix X̃
′
X̃ is calculated as

∑M
m=1(X̃

m)
′
X̃m.

From the SVD (5) the p× IJ matrix V can be obtained as V = X̃UΣ−1/2. The

actual calculations can be performed on the slices of the partitioned matrix X̃ as

Vm = X̃mUΣ−1/2,m = 1;M . The concatenated slices [(V1)
′ |(V2)

′| . . . |(VM)
′
]
′

form

the matrix of the left singular vectors V
′
. Therefore, the SVD (5) can be constructed

with a sequential access to the data X̃ with p-linear effort.

After obtaining the SVD decomposition of X̃ the visit-specific p× I dimensional

matrix X̃j can be represented as X̃j = VΣ1/2Uj, where Uj is the jth block of the
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matrix U
′

= (U1, . . . ,UJ) corresponding to the matrix X̃j. Note that the p × I

matrices X̃j differ only via the matrix factors Uj of dimension IJ×I. Thus, the high

dimensional covariance operators K̂B and K̂W can be expressed as

K̂B = VΣ1/2K̂U
BΣ1/2V

′
and K̂W = VΣ1/2K̂U

W Σ1/2V
′
, (6)

where the inner matrices K̂U
W and K̂U

B are

K̂U
B =

1

I(J2 − J)

∑
j1 6=j2

Uj1U
′

j2
and K̂U

W =
1

2I(J2 − J)

∑
j1 6=j2

(Uj1 −Uj2)(Uj1 −Uj2)
′
.

(7)

Equation (6) establishes the correspondence between high-dimensional operators,

K̂B and K̂W , and their low-dimensional counterparts, K̂U
B and K̂U

W , respectively

through the “sandwich” operator VΣ1/2 [ · ] Σ1/2V
′
. These crucial identities can be

used to obtain the spectral decompositions K̂B = ΦBΛBΦ
′

B and K̂W = ΦW ΛW Φ
′

W

through the spectral decompositions of the low-dimensional matrices Σ1/2K̂U
BΣ1/2

and Σ1/2K̂U
W Σ1/2.

Indeed, using the spectral decompositions Σ1/2K̂U
BΣ1/2 = ABΣBA

′
B and

Σ1/2K̂U
W Σ1/2 = AW ΣW A

′
W , where matrices AB and AW are orthogonal of size IJ ×

IJ and matrices ΣB and ΣW are diagonal, the covariance operators (6) can be written

as

K̂B = (VAB)ΣB(VAB)
′

and K̂W = (VAW )ΣW (VAW )
′
. (8)

The matrices AB and AW are orthogonal of size IJ × IJ . This implies that the

p× IJ matrices VAB and VAW have orthonormal columns. From the uniqueness of

the spectral decomposition of a symmetric matrix it follows that (8) is an alternative

representation of the spectral decomposition of the covariance operators. It implies
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that

ΦB = VAB, ΦW = VAW and ΛB = ΣB, ΛW = ΣW (9)

Therefore, diagonalizing the operators K̂B and K̂W requires a few simple steps that

can be performed in p-linear time. Algorithm 1 summarizes these steps in a series

of simple actions that can be implemented using linear number of calculations in the

dimensionality of the problem and sequential access to the data. The entire data set

cannot and is not loaded into computer memory.

Algorithm 1: Computing eigendecompositions in p-linear time.

Input: Matrix X̃ = (X̃1, . . . , X̃J) of size p× IJ .

Output: (φ
(1)
k , λ

(1)
k ), k = 1, . . . , IJ and (φ

(2)
l , λ

(2)
l ), l = 1, . . . , IJ .

begin1

Step 1. Construct the spectral decomposition of the symmetric matrix2

X̃X̃
′
= UΣU

′
.

Step 2. Construct the spectral decomposition of the symmetric3

semi-positive definite matrix Σ1/2K̂U
W Σ1/2 = AW ΣW A

′
W .

Step 3. Construct the spectral decomposition of the symmetric matrix4

Σ1/2K̂U
BΣ1/2 = ABΣBA

′
B.

Step 4. Calculate VAB = X̃UΣ−1/2AB and VAW = X̃UΣ−1/2AW .5

Result: (VAB and ΣB) and (VAW and ΣW ) contain first and second level6

eigenvectors and eigenvalues, respectively.

end7

Note that the low-dimensional matrices AB and AW completely determine the

geometry of the high-dimensional “between” and “within” spaces as well as the inter-

action between the two. In the next section, we provide more insight on the matrices

AB and AW . In particular, we show that AB and AW paired with the right singular

vectors Uj provide all the necessary information for estimating the principal scores
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of model (3).

3.2 Principal scores

In this section we will show how the BLUP for scores in the model (3) can be obtained

without using high-dimensional matrices or vectors. This is essential as a brute force

extension of methods in (Crainiceanu et al., 2009) and (Di and Crainiceanu, 2010)

would require inversion of p × p dimensional matrices. In this section we propose

a completely different approach to calculating the BLUPS that is computationally

feasible for samples of massive images; new insights into the MFPCA geometry are

obtained as a by-product.

We introduce some notation first. The subject level principal scores are ξi =

(ξi1, . . . , ξiN1)
′
, ζi = (ζi1, . . . , ζiJ)

′
, where ζij = (ζij1, . . . , ζijN2). We split the p × IJ

dimensional matrix X̃ into the p×J-dimensional blocks X̃i, i = 1, . . . , I, correspond-

ing to subjects. The jth column of the X̃i matrix contains data for visit j of subject

i. We refer to this as the by-subject partition to distinguish it from the by-visit

partition of the matrix X̃ in Section 3.1. After rearranging the columns we denote

X̃ = (X̃1, . . . , X̃I). As in Section 3.1, the SVD of the matrix X̃ can be written in

by-subject blocks as X̃i = VΣ1/2U
′
i, where the IJ × J matrix U

′
i corresponds to

subject grouping. The following theorem contains the main result in this section;

in particular it provides a simple and fast recipe for calculating the BLUPs for the

MFPCA model in the context of high dimensional data.

Theorem 1: Under the MFPCA model (3), the estimated best linear unbiased

predictor (EBLUP) of ξi and ζi is given by

ξ̂i

ζ̂i

 =

 J · IN1 1
′
J ⊗CBW

1J ⊗C
′
BW IJ ⊗ IN2


−1  AN1

B Σ1/2U
′
i1J

vec(AN2
W Σ1/2U

′
i)

 , (10)
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where CBW = AN1
B (AN2

W )
′

is of size N1×N2, the matrix AN1
B is of size N1×IJ and its

rows are the first N1 columns of the matrix AB. The N2 × IJ matrix AN2
W is defined

in a similar way. Vector 1J is a J × 1 vector of ones, ⊗ is the Kronecker product of

matrices, and operation vec(·) stacks the columns of a matrix on the top of each other.

The fundamental property of the EBLUP is that all the matrices involved in (10)

are low-dimensional and do not depend on the dimension p. Therefore, the EBLUP

calculations are almost instantaneous. Careful inspection of the results in Theorem

1 provides novel insights into single and multilevel functional principal component

analysis. Indeed, the matrices AN1
B and AN2

W are computed using only the right singu-

lar vectors in the equation (5). Thus, all the necessary information for estimating the

scores is projected onto the low-dimensional space spanned by the vectors orthogonal

to the right singular vectors. The BLUPs (10) provide a unique geometrical insight.

For illustration, assume that “between” and “within” eigenvectors are orthogonal,

that is CBW = 0. Then ξ̂i = AN1
B Σ1/2U

′
i1J/J and ζ̂i = vec(AN2

W Σ1/2U
′
i). The ith

block U
′
i of size IJ × J is composed of the IJ directions each of which is of size J .

The product Σ1/2U
′
i1J/J results in averaging over each of the directions and scaling

those averages by the singular values. The matrix AN1
B then defines the BLUPs of the

“between” scores by calculating N1 orthonormal linear combinations of the values of

Σ1/2U
′
i1J/J . If we set J = 1 the MFPCA model (3) reduces to the single-level func-

tional model obtained in (Zipunnikov et al., 2010). In this case, there is no “within”

level, AB = II and the BLUPs of the “between” scores are ξ̂i = (ΣN1)1/2(UN1
i )

′

exactly the ones obtained in (Zipunnikov et al., 2010). Similarly, the matrix AN2
W

defines the BLUPs of the “within” scores ζ̂ij = AN2
W Σ1/2U

′
ij as the N2 orthonormal

combinations of the coordinates of the jth column of the block U
′
i weighted by the

singular values. For non-orthogonal “between” and “within” bases the interaction
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matrix CBW has to be taken into account. This generalizes the results of (Zipun-

nikov et al., 2010) and unifies the theory of single and multilevel functional principal

component analysis for low, moderate and high dimensional data.

4 Simulations

In this section, we will illustrate our HD-MFPCA method with two simulation studies.

The first one replicates the simulation scenario in (Di et al., 2008) and shows the

equivalence of the two approaches in low and moderate dimensional applications.

The second one tests how well spatial bases are recovered by HD-MFPCA in an

application where the approach of (Di et al., 2008) cannot be implemented. Both

studies were run on a four core i7-2.67Gz PC and 6Gb of RAM memory.

First, we start with the scenario considered by (Di et al., 2008). Data are generated

according to the following model

 Xij(v) =
∑N1

k=1 ξikφ
(1)
k (v) +

∑N2

l=1 ζijlφ
(2)
l (v), v ∈ V

ξik
i.i.d.∼ N(0, λ

(1)
k ) and ζijl

i.i.d.∼ N(0, λ
(2)
l ),

where ξik’s and ζijl’s are mutually independent. To match the RAVENS data design

we slightly deviate from (Di et al., 2008) and choose I = 350 and J = 2. We set

the number of eigenfunctions at level 1, N1, to 4 and at level 2, N2, to 4. The true

eigenvalues at level 1 and level 2 are the same, λ
(1)
k = λ

(2)
k = 0.5k−1, k = 1, 2, 3, 4. We

follow Case 2 of Section 4 in (Di et al., 2008) and choose the following non-orthogonal

bases

Level 1: {
√

2 sin(2πv),
√

2 cos(2πv),
√

2 sin(4πv),
√

2 cos(4πv) },

Level 2: { 1,
√

3(2v − 1),
√

5(6v2 − 6v + 1),
√

7(20v3 − 30v2 + 12v − 1) },

which are measured on a regular grid of p equidistant points of interval [0, 1], V =
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{1/p, 2/p, 3/p, . . . , 1} with p = 50, 000. Note that a brute-force extension of standard

MFPCA would be infeasible for such a large p even for one data set. HD-MFPCA

allows to easily handle such a large dimension and conduct a simulation study in 27

minutes. The simulation study was implemented in Matlab 2010a and the software

is available upon request.

Figure 1: True and estimated eigenfunctions φ(1)
k and φ

(2)
l for scenario 1 replicated 100

times. Each box shows the estimated functions (cyan solid lines), a true function (solid
black line), the pointwise median and the 5th and 95th pointwise percentile curves (dashed
black lines).

Figure 1 displays the true and estimated eigenfunctions using the HD-MFPCA

approach at levels 1 and 2, respectively. The results for φ
(1)
k are displayed in the top

panel and φ
(2)
l are shown in the bottom panel. Shown are the true function (solid black

line), the estimated functions (cyan lines), the pointwise median of estimated eigen-

vectors (indistinguishable from the true functions) and the pointwise 5th and 95th

percentiles of estimated eigenvectors (black dashed lines). Comparing Figure 1 with

Figure 5 in (Di et al., 2008) we conclude that our estimation procedure completely

reproduce the eigenfunction results obtained using the standard MFPCA approach.

Figure 2 shows the boxplots of the estimated level 1 and level 2 eigenvalues.

We display the centered and standardized eigenvalues, (λ̂
(1)
k − λ

(1)
k )/λ

(1)
k and (λ̂

(2)
l −

λ
(2)
l )/λ

(2)
l , respectively. The results confirm the very good performance of the estima-
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Figure 2: Boxplots of the normalized estimated level 1 eigenvalues, (λ̂(1)
k −λ

(1)
k )/λ(1)

k , (left
box) and the normalized estimated level 2 eigenvalues, (λ̂(2)

l − λ
(2)
l )/λ(2)

l , (right box) based
on scenario 1 with 100 replications. The zero is shown by the solid black line.

tion procedure and are consistent with those reported for the no noise case in Figure

4 of (Di et al., 2008).

To estimate the scores ξik and ζijl, we use the EBLUP results of Theorem 1. Each

replication of the scenario provides 350 estimates of level 1 scores, ξik, k = 1, 2, 3, 4,

and 700 estimates of level 2 scores, ζijl, l = 1, 2, 3, 4. The total number of the scores

ξik estimated in the study is 35, 000 for each k. Similarly, the total number of the

estimated scores ζijl is 70, 000 for each l. However, the estimated scores within each

replication are dependent even if they are a-priori independent. The boxplots of the

normalized estimated scores (ξik − ξ̂ik)/

√
λ

(1)
k and (ζijl − ζ̂ijl)/

√
λ

(2)
l are reported in

the left panels of Figure 3, respectively. The distribution of the normalized estimated

scores corresponding to the fourth eigenfunction at level 1, φ
(1)
4 , has a slightly wider

spread around zero; this is likely due to the smaller signal/noise ratio. The right panels

of Figure 3 display the medians, 0.5%, 5%, 90% and 99.5% quantiles of the distribution

of the normalized estimated scores. These plots confirm the theoretical results of

Theorem 1 stating that the EBLUPs given by equation (10) are unbiased. This

demonstrates that the estimation procedures are unbiased for both approaches. To

summarize, the first simulation study showed that HD-MFPCA approach replicates
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Figure 3: Top row shows the distribution of the normalized estimated level 1 scores, (ξik−
ξ̂ik)/

√
λ

(1)
k . Boxplots are given in left column. The right column shows the medians

(black marker), 5% and 95% quantiles (blue markers), and 0.5% and 99.5% quantiles (red
markers). Similarly, the distribution of the normalized estimated level 2 scores, (ζijl −

ζ̂ijl)/
√
λ

(2)
l is provided at the bottom row.

the results of the standard MFPCA but has the key advantage of being able to

efficiently handle arbitrarily high-dimensional multilevel functional data.

In the second scenario, we considered the extension of our methods to 2D bases.

We simulated 100 data sets from the model Xij(v) =
∑3

k=1 ξikφ
(1)
k (v) +

∑2
l=1 ζijlφ

(2)
l (v), v ∈ V

ξik
i.i.d.∼ N(0, λ

(1)
k ) and ζijl

i.i.d.∼ N(0, λ
(2)
l ),

(11)

where V = [1, 300]× [1, 300]. Level 1 and 2 eigenbases, or eigenimages, are displayed

at the top and bottom of Figure 4, respectively. The images in this scenario can be

thought of as 2D grayscale images with pixel intensities on the [0, 1] scale. The black

pixels are set to 1 and the white ones are set to zero. Eigenimages are uncorrelated

17



within the same level but are correlated across levels. We assume that I = 350, J = 2,

and the true eigenvalues at level 1, λ
(1)
k = 0.5k−1, k = 1, 2, 3, and the ones at level 2,

λ
(2)
l = 0.5l−1, l = 1, 2. To apply HD-MFPCA we unfold each image Xij and obtain

vectors of size p = 300× 300 = 90, 000. The simulation study took 32 minutes.

Figure 4: Level 1 (top row) and Level 2 (bottom row) grayscale eigenimages for the 2nd
scenario.

Figures 5, 6, and 7 display the mean of the estimated eigenimages and the point-

wise 5th and 95th percentile images, respectively. To obtain a grayscale image with

pixel values in the [0, 1] interval, each estimated eigenvector, φ̂ = (φ̂1, . . . , φ̂p), was

normalized as φ̂ → (φ̂ − mins φ̂s)/(maxs φ̂s − mins φ̂s). Figure 5 displays how on

average our method recovers the spatial configuration of both bases. The percentile

images in Figures 6 and 7 show a similar pattern as the average with small distortions

from the true functions (please note the light gray areas). To better understand the

quantile patterns consider as an example the behavior of φ̂
(2)
1 . A closer inspection of

K̂W and model (11) will reveal that an estimated eigenvector φ̂
(2)
1 is a linear combina-

tion of the true level 2 eigenvectors φ
(2)
1 and φ

(2)
2 , with the weights being functions of
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the level 2 eigenvalues and principal scores. The larger the sample size, the closer the

estimated eigenfunction φ̂
(2)
1 to φ

(2)
1 . Large differences between the weights create the

pattern observed in the 5% quantile plot of Figure 6. Small differences between the

weights result in the pattern shown in the 95% quantile plot of Figure 7. Similarly, it

can be shown that the estimates of the first level eigenvectors are linear combinations

of both true level 1 and level 2 eigenvectors. This leads to the overlapping patterns

shown in the top row panels of Figures 6 and 7. We conclude that the estimation of

the 2D eigenimages is very good.

Figure 2 shows the boxplots of the estimated level 1 and level 2 eigenvalues.

As before, we display the estimated normalized eigenvalues, (λ̂
(1)
k − λ

(1)
k )/λ

(1)
k and

(λ̂
(2)
l − λ

(2)
l )/λ

(2)
l , respectively. The results confirm the very good performance of the

estimation procedure and are consistent with those reported for the no noise case in

Figure 4 of (Di et al., 2008).

Figure 8 shows the boxplots of the estimated level 1 and level 2 eigenvalues. We

plot the estimated normalized eigenvalues, (λ̂
(1)
k − λ

(1)
k )/λ

(1)
k and (λ̂

(2)
l − λ

(2)
l )/λ

(2)
l ,

indicating that eigenvalues are estimated with essentially no bias. Similarly to Sce-

nario 1, the total number of the estimated scores ξik is 35, 000 for each k and there

are 70, 000 estimated scores ζijl for each l. The boxplots of the normalized estimated

scores (ξik − ξ̂ik)/

√
λ

(1)
k and (ζijl − ζ̂ijl)/

√
λ

(2)
l are displayed in the left panels of Fig-

ure 9, respectively. Results show that the EBLUPs approximate true scores very

well. The scores corresponding to the second and third eigenimages at level 1 have

a slightly larger spread due to a reduced signal to noise ratio. The right panels of

Figure 9 display the medians, 0.5%, 5%, 90% and 99.5% quantiles quantiles of the

distribution of the normalized estimated scores.
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5 The analysis of the RAVENS data

In this section we apply HD-MFPCA to RAVENS images discussed in Section 1.1.

The RAVENS images are 256 × 256 × 198 dimensional for 352 subjects, each with

two visits. This is on the order of ten billion (1010) numbers. Assuming 32 bits per

number, this represents 34 gigabytes of data for the gray matter images alone. To

emphasize processing issues, one must multiply this number by three to represent

both tissue types (gray and white) and cerebro-spinal fluid and hence at least an

additional one hundred gigabytes is required for every processing step saved. However,

even restricting ourselves only to the processed gray matter data, the data matrix is

too large (ten billion) to work with in statistical models without further restrictions;

therefore, the following strategy was executed. First, after processing, the intersection

of non-background voxels across images was collected. Such an intersection greatly

reduces the dimension of the data matrix from ten billion numbers to two billion

numbers divided as three million relevant voxels per subject per visit, and seven

hundred and four subjects/visits. However, even this relevant intersection remains

prohibitive for modern systems. Hence the data matrix, of size 704 by 3 million, was

divided into 100 submatrices of size 704 by 30 thousand (ten million numbers each).

In what follows, we demonstrate methods for performing all calculations in such a

way that only one of the manageable submatrices of ten million needs to be stored

in memory at any given moment. Note that on lower-resource computers the only

change would be to reduce the size of subsets. A parallel computation implementation

of our approach would be practically instantaneous. The entire analysis performed in

Matlab 2010a took around 16 minutes on a PC with a quad core i7-2.67Gz processor

and 6Gb of RAM memory.

A small technical concern was of a few artifactual negative values in the data

from the preprocessing. These voxels were removed from the analysis. In addition,
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negative eigenvalues occurred when calculating the spectral decomposition of the

between covariance operator, K̂B. Estimating a non-negative definite matrix, it is

not necessarily non-negative definite itself (see Section 2.2 of Di et al. (2008) and

(Hall et al., 2008)). The negative eigenvalues of K̂B represented 2.27 percent of

the overall variation. Following Hall et al. (2008) all the negative eigenvalues with

corresponding eigenvectors were trimmed to zero for the analysis.

In the analysis, we first estimated the mean and the visit effects by the methods of

moments. The visit specific mean images are uniform over the template and simply

convey the message that localized changes in morphometry within subgroups get

averaged over in the visit-specific mean calclulations. In our eigenimage analysis we

de-mean the data by subtracting out these vectors.

Next, the total variation was decomposed into “between” and “within” levels.

Most of the total variability, 91.42%, is explained by the level 1 (between-subject)

variability while 8.58% is explained by level 2 (within-subject between visit) variabil-

ity. This is expected, but nonetheless, scientifically interesting. That is, the majority

of variation in brain shape in this large sample is cross-sectional across subjects rather

than longitudinal. A big contribution of our approach is to actually quantify these

differences. It would be of interest to see how the ratio of between to within variation

changes with the age of the sample. For example, we would expect the proportion

of variability explained longitudinally to be much higher when comparing infants

and their first five years of life or very elderly subjects, where there is much more

longitudinal change.

Table 1 provides the percentages of explained variability by the first 10 eigenimages

for between and within levels, respectively. We also plot the the percentages explained

by the first 30 between and within eigenimages on Figure 10. First 30 between

eigenimages explain roughly 47.13% of the between variability. For the within level,
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Figure 10 indicates that 52.52% of the within variability is explained by the first 30

within eigenimages.

The 3D-renderings of the first three estimated between eigenimages at five different

angles are shown on Figure 11. Similar renderings are presented for the within level

on Figure 12. Figures 13 and 14 show eleven equidistant axial slices of the first three

estimated between and within eigenimages, respectively.

We interpret the between eigenimages as follows. The first eigenimage loads pos-

itively on the whole cortex and has a small negative region around the ventricles.

This clearly represents overall brain size and shape. A person loading positively on

this eigenimage will have a larger brain. This component of variation is expected,

simply due to variation in head sizes within the sample. The second loads positively

on the majority of the cortex and negatively on the temporal lobe and cerebellum.

The third loads negatively on the cerebellum. It is extremely encouraging, that the

eigenimages obey regional boundaries fairly strictly, despite the algorithm’s complete

ignorance of spatial relationships. We believe that this is the first characterization of

cross-sectional brain morphometry using VBM data.

The within eigenimages are more difficult to interpret. They appear to load pos-

itively and negatively on layers of the cortex and no clear anatomical boundaries are

seen. Moreover, they appear to span large areas of the brain. We interpret this as

suggesting that the most common form of longitudinal brain aging is a uniform vol-

umetric loss. Such effects could also be seen if there are localized volume losses, yet

the locations are random across subjects. It is also important to note that a longer

follow up time, or investigation different populations might display more longitudinal

variation. Moreover, specific diseases, such as Alzheimer or multiple sclerosis, may

differentially affect regional brain loss across time. Our method is designed to identify

and quantify such potentially interesting processes.
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6 Discussion

Longitudinal observational studies that collect high-dimensional functional measure-

ments at multiple visits appear in an increasing number. These studies create a great

demand for methods that allow the separation of the observed functional variabil-

ity into cross-sectional and longitudinal components. However, high dimensionality

and size of the observed data pose enormous computational challenges for existing

methods of multilevel analysis. We have developed a powerful and computationally

efficient solution responding to these challenges, HD-MFPCA. The conducted simu-

lation studies confirmed the high potency of the methodology to recover the spatial

configurations in high-dimensional subject-specific and subject/visit-specific spaces.

The approach was applied to analyze a large imaging study of 704 RAVENS images

containing over ten billion measurements. The high-dimensional multilevel method-

ology developed in this paper can be applied equally to any longitudinal study with

the assumed design.

A potential limitation of our approach is the need to have the total number of

functional observations not prohibitively large. In particular, the number of subjects,

I, and the number of observations per subject, J , must be of moderate size to be

able to perform a spectral decomposition of a IJ × IJ matrix. Our methods are

designed for IJ of the order of 10, 000 to 15, 000 and arbitrarily large p. Although,

to the best of our knowledge, there are currently no longitudinal imaging studies of

such a size, it is not difficult to predict a new generation of observational studies

where the number of subjects reaches tens of thousands with dozens or hundreds of

observations per subject. In such a situation, a possible alternative to our approach

would be an adaptive aggregation of the eigen-decompositions calculated on sub-

samples of the subjects. Efficient ways of aggregation remain an open problem and

will need to be addressed in future. Another limitation is that our methods assume
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a balanced design. Motivated by RAVENS data which represent preprocessed and

smoothed images we have not assumed noise in the model. However, one can easily

think of applications where functional observations are measured with non-ignorable

noise. Another possible scenario is the sparsity of the high-dimensional functional

observations. These situations have been considered in (Di et al., 2008) and (Di and

Crainiceanu, 2010), respectively, and efficient solutions have been proposed. How-

ever, these solutions require smoothing of the covariance operators which is infeasible

for high-dimensional data. Thus, a computationally efficient procedure of covariance

smoothing or its equivalent is highly desirable to address these problems in the high

dimensional context.
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8 Appendix.

Proof of Theorem 1. We assume µ = 0 and ηj = 0 for all j = 1, . . . , J . Model (3)

can be written in a vector form as X̃i = Aui, i = 1, . . . , I, where X̃i = (X̃
′
i1, . . . , X̃

′
iJ)

′

is a pJ-dimensional vector, principal scores ui = (ξ
′

i, ζ
′

i)
′

and p × (N1 + JN2) parti-

tioned matrix A = [AB|AW ] with AB = 1J ⊗ ΦB and AW = IJ ⊗ ΦW . From (3)

it follows that ui
i.i.d.∼ (0,Λu) where Λu =

ΛB 0

0 IJ ⊗ΛW

 . If p ≤ N1 + JN2 the

BLUP of ui is given by ûi = Cov(ui, X̃i)V ar(X̃i)
−1X̃i = ΛuA

′
(AΛuA

′
)−1X̃i. When

p > N1 + JN2 matrix AΛuA
′

is not invertible and the generalized inverse of AΛuA
′

is used. In that case, ûi = ΛuA
′
(AΛuA

′
)−X̃i = Λ1/2

u (Λ1/2
u A

′
AΛ1/2

u )−1Λ1/2
u A

′
X̃i =
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ûi = (A
′
A)−1A

′
X̃i. Estimated BLUPs use (5) and (9) which gives

A
′
A =

 J · IN1 1
′
J ⊗CBW

1J ⊗C
′
BW IJ ⊗ IN2

 and A
′
X̃i =

 AN1
B Σ1/2U

′
i1J

vec(AN2
W Σ1/2U

′
i)

 .

Figure 5: Grayscale images of the averages for the level 1 (top row) and level 2 (bottom
row) estimated eigenimages calculated from 100 replications of the 2nd scenario.

Level 1 eigenvalues

Component 1 2 3 4 5 6 7 8 9 10

eigenvalue (×108) 8.79 1.97 1.84 1.50 1.22 1.03 0.90 0.89 0.87 0.83

cum % var 13.46 16.48 19.30 21.60 23.47 25.06 26.43 27.79 29.13 30.40

Level 2 eigenvalues

Component 1 2 3 4 5 6 7 8 9 10

eigenvalue (×107) 7.47 4.71 2.99 1.62 1.44 1.14 1.12 0.92 0.79 0.74

cum % var 11.91 19.44 24.21 26.80 29.09 30.91 32.70 34.16 35.42 36.60

Table 1: Estimated eigenvalues for Level 1 and Level 2 for RAVENS data using HD-
MFPCA. Ten first components are reported for each level. cum % var shows the cumulative
percentage of variance explained.

28



Figure 6: Grayscale images of the 5th pointwise percentiles for the level 1 (top row) and
level 2 (bottom row) estimated eigenimages calculated from 100 replications of the 2nd
scenario.

Figure 7: Grayscale images of the 95th pointwise percentiles for the level 1 (top row) and
level 2 (bottom row) estimated eigenimages calculated from 100 replications of the 2nd
scenario.
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Figure 8: Boxplots of the normalized estimated level 1 eigenvalues, (λ̂(1)
k −λ

(1)
k )/λ(1)

k , (left
box) and the normalized estimated level 2 eigenvalues, (λ̂(2)

l − λ
(2)
l )/λ(2)

l , (right box) based
on scenario 2 with 100 replications. The zero is shown by the solid black line.

Figure 9: Top row shows the distribution of the normalized estimated level 1 scores,

(ξik − ξ̂ik)/
√
λ

(1)
k . Boxplots are given in left box. The right box shows the medians

(black marker), 5% and 95% quantiles (blue markers), and 0.5% and 99.5% quantiles
(red markers). Similarly, the distribution of the normalized estimated level 2 scores,

(ζijl − ζ̂ijl)/
√
λ

(2)
l is provided at the bottom row.
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Figure 10: On the left: proportions explained by the 2nd to 30th Level 1 eigenimages.
First ”between” eigenimage explains 13.15% of the ”between” variation. On the right:
proportions explained by the 2nd to 30th Level 2 eigenimages. First ”within” eigenimage
explains 11.91% of the ”within” variation.

Figure 11: 3-Dimensional rendering of the first three between eigenimages overlaid with a
thresholded template. Snapshots taken under five different angles. Negative loadings are
depicted in red, positive ones are in blue.
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Figure 12: 3-Dimensional rendering of the first three within eigenimages overlaid with a
thresholded template. Snapshots taken under five different angles. Negative loadings are
depicted in red, positive ones are in blue.
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Figure 13: The first three estimated between eigenimages. Each eigenimage is represented
by eleven equidistant axial slices. Negative loadings are depicted in red, positive ones are
in blue.
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Figure 14: The first three estimated within eigenimages. Each eigenimage is represented
by eleven equidistant axial slices. Negative loadings are depicted in red, positive ones are
in blue.
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