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Abstract

We propose, develop and implement the simulation extrapolation (SIMEX) method-

ology for Cox regression models when the log hazard function is linear in the model

parameters but nonlinear in the variables measured with error (LPNE). The class of

LPNE functions contains but is not limited to strata indicators, splines, quadratic and

interaction terms. The first order bias correction method proposed here has the advan-

tage that it remains computationally feasible even when the number of observations

is very large and multiple models need to be explored. Theoretical and simulation

results show that the SIMEX method outperforms the naive method even with small

amounts of measurement error. Our methodology was motivated by and applied to the

study of time to chronic kidney disease (CKD) progression as a function of baseline

kidney function and applied to the Atherosclerosis Risk in Communities (ARIC), a

large epidemiological cohort study.
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1 Introduction

Survival analysis has developed from the analysis of life tables in actuarial sciences and has

enjoyed remarkable success with modern applications in medicine, epidemiology, and the

social sciences. The popularity of survival analysis models, such as the Cox proportional

hazards model, is probably surpassed only by the popularity of standard linear regression

models.

Survival data are the product of a continuous death process coupled with a censoring

mechanism. Typically, the death rate depends on a number of factors and time to death is

only partially observed for those subjects with censored observations. Standard analyses of

survival data assume that all covariates affecting survival rates are observed without error.

However, in many applications some of the covariates are subject to measurement error or

are available without error only for a subsample of the population.

Survival analysis when covariates are measured with error has witnessed an explosion

in the last decade. However, the case when the log hazard rate is nonlinear in the covari-

ates measured with error has been overlooked, probably because of its inherent inferential

complexity, not because of its lack of relevance. Indeed, once measurement error has been

acknowledged it is only natural to ask how it may impact the fitting of nonlinear functions,

such as strata indicators, splines, quadratic or interaction terms. One common feature of

such functions is that they are linear in the model parameters but nonlinear in the covariates

measured with error (LPNE). We propose a new inferential method based on simulation ex-

trapolation (SIMEX) for Cox regression models when some of the risk factors are observed

with error and the log–hazard function is LPNE.

Substantial methodological and applied research has been dedicated in recent years to

survival analysis with covariates subject to measurement error, starting with the seminal

paper by Prentice (1982) [17]. The regression calibration approach was expanded and re-

fined by Pepe, Self & Prentice (1989) [16] and Wang, Hsu, Feng & Prentice (1997) [24].

Clayton (1991) [5] used regression calibration within risk sets thus avoiding the rare disease

assumption. For data containing a validation sample, Zhou & Pepe (1995) [25] and Zhou &

Wang (2000) [26] proposed nonparametric estimators of the induced hazard function. For

data with at least two replicates Huang & Wang (2000) [11] have proposed a consistent

nonparametric estimator based on a modification of the partial likelihood score equation.

Augustin (2004) [2] showed that Nakamura’s (1992) [15] methodology of adjusting the like-

lihood can be applied to the Breslow likelihood to provide an exact corrected likelihood.

This result circumvented the impossibility result derived by Stefanski (1989) [19] for the

partial likelihood. Hu, Tsiatis & Davidian (1998) [10] have proposed likelihood maximiza-

tion algorithms for parametric and nonparametric specifications of the distribution of the

unobserved variables. Greene & Cai (2004) [8] established the asymptotic properties of the
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SIMEX estimators for models with measurement error and multivariate failure time data.

Hu & Lin (2004) [9] introduced a modified score equation and established the asymptotic

properties of the estimators for multivariate failure time data. Li & Lin (2003) [13] used

the EM algorithm and SIMEX respectively to provide maximum likelihood estimators for

frailty models with variables observed with error. Song & Huang (2005) [18] compare the

conditional score estimation of Tsiatis & Davidian (2001) [23] with Nakamura’s (1992) [15]

parametric adjustment.

Current statistical approaches for Cox regression with risk factors measured with sizeable

error have one or more of the following theoretical and practical limitations: 1) Biased and

misspecified variability of risk factor effect estimators leading to invalid tests for exposure

effect; 2) Sensitivity of results to assumptions such as rare disease and linearity; 3) Need

for intensive computing that drastically limits the size of data sets; 4) Focus on linear

log-hazard function. SIMEX has emerged as a natural, computationally usable methodology

that accounts for nonlinearity, measurement error structure and circumvents the rare disease

assumption.

Our proposed methodology was motivated by the analysis of time to event data from

the Atherosclerosis Risk In Communities (ARIC) study. ARIC is a large multipurpose

epidemiological study conducted in four US communities (Forsyth County, NC; suburban

Minneapolis, MN; Washington County, MD; and Jackson, MS). A detailed description of

the ARIC study is provided by the ARIC investigators (1989) [12]. In short, from 1987

through 1989, 15, 792 male and female volunteers aged 45 through 64 were recruited from

these communities for a baseline and three subsequent visits.

Time to event data is observed continuously for multiple end points, but for reasons of

brevity we focus here on the event incidence of CKD, the least severe phase of kidney disease.

For the purpose of this study all primary CKD events up to January 1, 2003 were included

and the time to event data was obtained from annual participant interviews and review of

local hospital discharge lists and county death certificates.

The relationship between various risk factors, such as race, age or sex, and progression

time to incidence of CKD may be confounded by a series of baseline confounders. An im-

portant confounder is the baseline kidney function as measured by the glomerular filtration

rate (GFR). Because GFR can only be obtained through a long and awkward procedure, the

estimated GFR (eGFR) is used in practice. eGFR is obtained from a prediction equation

based on creatinine, sex, gender and age and is subject to regression and biological mea-

surement error. Incidence CKD is defined as either achievement of follow–up eGFR < 60

ml/min/1.73m2 or a post–baseline hospitalization or death with CKD (Marsh–Manzi et al.,

2005 [14]). As is the case in many biological applications, subjects with lower baseline GFR

(higher risk) are expected to progress faster towards primary CKD (clinical endpoint), but

the effect of GFR on the risk of CKD is likely to be nonlinear. Given the measurement
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error in eGFR, estimating the dose–response curve is a difficult inferential problem, while

its result is of interest to nephrologists, internists and researchers (Stevens et al. 2006, [21]).

2 Notations and assumptions

Assume that n subjects are observed over time and their failure times T1, . . . , Tn are subject

to right censoring and C1, . . . , Cn are the corresponding censoring times. Let δi = I(Ti < Ci)

be the failure indicator and Yi = min(Ti, Ci) be the time to failure or censoring for subject i.

Denote by Ri = {j : Yj ≥ Yi} the risk set when the event corresponding to subject i occurs.

Ri is the index set for those subjects who have not failed and are uncensored at the time the

ith subject fails or is censored. The at-risk indicator process for the ith subject is defined as

Yi(t) = I(Yi ≥ t).

We assume that the survival probability for each subject depends on covariates that are

subject to measurement error, X i, as well as on covariates that are not, Zi. The covariate

X i is measured through the usual classical measurement error model

W i = X i + U i (1)

where U i is the additive measurement error. For simplicity of presentation we will assume

that U i ∼ N(0,Ω), which is a reasonable assumption in most applications after appropriate

data transformations. The covariance matrix Ω is assumed to be known or estimable. Note,

however, that the methodology proposed in this paper can be easily extended to other

measurement error distributions as well as non-additive measurement error.

We also assume that (Ti, X
t
i, Ci,U

t
i)

t are independent random vectors, Ci is independent

of (Ti, X
t
i)

t and U i is independent of (Ti,X
t
i, Ci)

t. Note that our methodology will allow

X i to depend on other covariates, Zi, even though our application to CKD progression does

not contain this additional complexity. The observed data are the vectors (Yi, δi,W
t
i,Z

t
i)

t

where (Yi, δi)
t is a proxy observation for (Ti, Ci)

t and W i is a proxy observation for X i.

The distribution of the failure time of subject i, Ti, is completely described by the hazard

rate, λi(t|X i,Zi). The proportional hazards model introduced by Cox (1972) [7] is the most

commonly used model for the hazard rate and assumes that

λi(t|X i, Zi) = λ0(t) exp(αt
xX i + αt

zZi), (2)

where λ0(·) is an unspecified baseline hazard function that does not depend on the covariate

values. With these notations, the log hazard rate, βt
xX i + βt

zZi, is linear both in the

parameters and in the variables observed with error, Xi. In order to accommodate such
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simple functions as strata indicators, splines, quadratic and interaction terms we consider a

hazard ratio of the type

λi(t|X i,Zi) = λ0(t) exp{βth(X i,Zi)}. (3)

In the standard regression case when X i are observed model (3) would be indistinguishable

from model (2) by simply relabelling the components of the h(·, ·) function. However, when

X i is observed with error and h(·, ·) is non-linear at least in one of the components of Xi,

βth(X i,Zi) is linear in the model parameters (LP) but nonlinear in the measurement error

(NE). We label this class of functions LPNE for the remainder of the paper.

In the standard regression case, Cox (1972) [7] suggested that inference on β be based

on the log partial likelihood function

l(β) =
n∑

i=1

δi

(
βth(X i,Zi)− log

[∑
j∈Ri

exp{βth(X i,Zi)}
])

(4)

which does not depend on λ0(·). An alternative strategy is to use the log of the full likelihood

of the model (2)

L(β) =
n∑

i=1

δi

[
βth(X i,Zi) + log{λ0(Yi)}

]− eβ
t
h(X i,Z i)

∫ Yi

0

λ0(s)ds. (5)

In measurement error models the variables X i are not available and standard Cox

regression cannot be used. It is well documented, e.g. in Carroll et al., 2006 [4], that

naively replacing X i by its missmeasured version W i typically leads to biased estimates and

misspecified variability of exposure effects. In principle, regression calibration techniques

could be used to provide a first order bias corrected estimator of β by simply replacing

h(X i,Zi) by its conditional expectation E{h(X i,Zi)|W ,Z}, where W = {W 1, . . . , W n}
and Z = {Z1, . . . , Zn}. However, when h(·, ·) is not linear the conditional expectation is

hard or impossible to obtain explicitly requiring additional approximations. Moreover, as

described by Prentice (1982) [17], regression calibration requires the rare disease assump-

tion, which is violated in many practical applications, including our study of progression to

primary CKD. In contrast, the SIMEX method avoids these problems and remains compu-

tationally feasible.

5
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3 SIMEX for LPNE Functions

SIMEX was proposed by Cook and Stefanski, 1995 [6] and further developed by Carroll,

Küechenhoff, Lombard and Stefanski (1996) [3] and Stefanski and Cook (1995) [20]. For the

case of multivariate failure time data Greene and Cai (2004) [8] have established the consis-

tency and asymptotic normality of the SIMEX estimator for a linear log hazard function. Li

and Lin (2003) [13] have used SIMEX coupled with the EM algorithm to provide inference

for clustered survival data when some of the covariates are subject to measurement error.

The SIMEX idea is to simulate new data by adding increasing amounts of noise to

the measured values W i of the error prone covariate X i, compute the estimator on each

simulated data set, model the expectation of the estimator as a function of the measurement

error variance, and extrapolate back to the case of no measurement error. More precisely, if

Ω is a known positive definite Q × Q measurement error covariance matrix and Ω1/2 is its

positive square root then remeasured data is generated as

W b,i(υ) = W i +
√

υ Ω1/2 U b,i, b = 1, . . . , B

where U b,i are independent Normal(0, IQ) vectors, υ is a positive scalar, and B is the number

of simulations for each value of υ. The measurement error covariance of the contaminated

observations W b,i(υ) is

Cov
{
W b,i(υ)

}
= (1 + υ) Ω,

which converges to the zero matrix as υ → −1. By replacing X i with W b,i(υ) in the hazard

function (3) we obtain

λi

{
t|W b,i(υ),Zi

}
= λ0(t) exp

[
βth{W b,i(υ),Zi}

]
(6)

and either the partial likelihood (4) or the full likelihood (5) could be used to produce

estimators β̂
b
(υ). Here β is a P × 1 dimensional vector characterizing the proportional

hazard function. The linearity assumption of the log hazard function in β plays an important

because when both W b,i and Zi are known, model (6) is a standard Cox regression model.

Thus, fitting model (6) can be done using existent software designed for proportional hazards

models, such as R or S–plus (coxph() and survreg() functions) or SAS (PHREG procedure).

For each level of added noise υ and each scalar component βp of β, p = 1, . . . , P , one

obtains

β̂p(υ) =
1

B

B∑

b=1

β̂b
p(υ).

A quadratic or rational extrapolant can then be used to obtain the estimated values corre-
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sponding to υ = −1. More precisely, if m̂p(υ) is an extrapolant fitted to β̂p(υ) then

β̂p,SIMEX = lim
υ→−1

m̂p(υ) (7)

The variance estimation of the SIMEX estimator is obtained using a similar, but slightly

more involved procedure. Indeed, there are two components of the variability at each level

of added noise that need to be extrapolated separately: 1) the average of the variances of

parameter estimators; 2) the variance of the parameter estimates around their average. More

precisely, the average of the variances at noise level (1 + υ) is

Var{β̂p(υ)} =
1

B

B∑

b=1

V̂ar{β̂b
p(υ)},

where V̂ar{β̂b
p(υ)} is the estimated variance of the βp parameter based on the bth simulation.

The variance of the parameter estimates around their average is

V̂ar{β̂p(υ)} =
1

B

B∑

b=1

{β̂b
p(υ)− β̂p(υ)}2.

Extrapolating Var{β̂p(υ)} can be done using, for example, a quadratic extrapolant. How-

ever, extrapolating V̂ar{β̂p(υ)} is more challenging because V̂ar{β̂p(υ = 0)} = 0 and all

extrapolants at υ = −1 will be negative. To overcome this problem, Stefanski and Cook

(1995) [20] suggested the following SIMEX estimator of the variance

σ̂2
p,SIMEX = lim

υ→−1
{σ2

p(υ)− σ̂2
p(υ)}, (8)

where σ2
p(υ) and σ̂2

p(υ) are the extrapolant functions corresponding to Var{β̂p(υ)} and

V̂ar{β̂p(υ)}, respectively.

We end this section by noting that SIMEX works well on any linear transformation of

the model parameters using exactly the same extrapolation techniques. This observation

will be especially useful when we discuss changes in the relationship between GFR and log

hazard of CKD.
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4 Theoretical results

To establish the theoretical properties of the SIMEX estimator a few notations need to

be introduced. Suppose that when X’s are known the unknown parameter β0 could be

estimated solving the estimating equation

n∑
i=1

ψ(Yi, δi,X i,Zi; β) = 0 (9)

where

ψ(Yi, δi,X i, Zi; β) = δi

[
h(X i,Zi)− exp{βth(X i,Zi)}∑

j∈Ri
exp{βth(X i, Zi)}

]
.

Note that ψ(·) is a P × 1 vector and equation (9) is a set of P equations with P unknowns.

Following Carroll et al. (1996) [3] define β̂
b
(υ) as the solution to

n∑
i=1

ψ(Yi, δi,W i + υ1/2Ω1/2εib,Zi; β) = 0

where εib are i.i.d. random variables N(0, IQ), where Q = dim(Ω) is the number of covariates

measured with error. Let β̂(υ) =
∑B

b=1 β̂
b
(υ)/B. Under regularity conditions described

originally by Tsiatis (1981) [22] , β̂(υ) converges in probability to β0(υ), the solution of

E{ψ(Y, δ, W + υ1/2Ω1/2ε,Z; β)} = 0.

The SIMEX procedure assumes that a true extrapolant is available such that β(υ) = Γ(Θ, υ),

where Θ is a vector of parameters. Typical extrapolants are linear, quadratic or fractional,

all with at most 3 parameters for each component of β(υ). For simplicity of presentation we

focus on the popular quadratic extrapolant, but results hold more generally. Thus, one fits

the model

β̂p(υm) = θp1 + θp2υm + θp3υ
2
m + ηpm, p = 1, . . . , P ; m = 1, . . . ,M,

where P is the number of Cox model parameters, M is the number of grid points used in the

simulation step, and ηpm ∼ Normal(0, σ2
η) are mutually independent. Denoting by β̂(υm) =

vec{β̂p(υm) : p = 1, . . . , P}, β̂(Υ) = vec{β̂(υm) : m = 1, . . . , M}, θp = (θp1, θp2, θp3)
t,

θ = vec{θp : p = 1, . . . , P}, Υm = diag{(1, υm, υ2
m)}, and Υ the MP × 3P dimensional

8
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matrix obtained by stacking the Υm matrices, m = 1, . . . , M , then

β̂(Υ) = Υθ + η

where η = vec{ηpm : p = 1, . . . , P ; m = 1, . . . , M}. The true parameters in the case of no

measurement error are βp(−1) = θp1 − θp2 + θp3 or, in matrix format β(−1) = Υ(−1)θ,

where Υ(−1) = diag{(1 − 1 1)} is a P × 3P dimensional matrix. It follows that β̂(−1) =

Υ(−1)(ΥtΥ)−1Υtβ̂(Υ). We are now in the position to provide the main theoretical result

of our paper.

Theorem 1 Assume that the covariance matrix of the measurement error, Ω, is known and

an exact extrapolant is available. Under conditions similar to those in Andersen and Gill

(1982) [1] the SIMEX estimator satisfies

n1/2(β̂SIMEX − β0) ⇒ Normal(0,Σ).

If the extrapolant is quadratic then Σ = Υ(−1)(ΥtΥ)−1ΥtΞΥ(ΥtΥ)−1Υt(−1), where Ξ =

A−1CA−t and A and C are given by

i. A = diag[A{υm,β(υm)} : m = 1, . . . ,M ] which is an MP ×MP matrix with diagonal

elements given by the P × P matrices

A{υm,β(υm)} = − lim
n→∞

1

n

∂

∂βt

n∑
i=1

ψ{Yi, δi,W i + υ1/2Ω1/2εib,Zi; β
∗(υm)}

for any random β∗(υm) such that β∗(υm) → β(υm).

ii. C = limn→∞ 1
n

∑n
i=1 Var{Di(υ1)

t, . . . , Di(υM)t}t where

Di(υ) =
1

B

B∑

b=1

ψ{Yi, δi,W i + υ1/2Ω1/2εib,Zi; β(υ)}.

To prove this result we follow essentially the steps described in the proof of Carroll et

al. (1996) [3] in the general case of unbiased estimating equations. The major difference

between our proof and the proof of Carroll et al. (1996) [3] is that the the Taylor expansion

of the estimating equation around the true parameter cannot be obtained using standard

asymptotic theory results. Instead, one needs to use martingale representation theory to

show that the Taylor series expansion of the score equation is asymptotically equivalent to

a sum of i.i.d. random vectors. The same strategy was used by Greene and Cai (2004) [8]

who then went on to prove the asymptotic normality following step by step the proof of

9
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Carroll et al. (1996) [3]. Because our model is linear in the parameters β the proof of

the asymptotic normality results also follows the same steps, even though the log-hazard

function is non-linear in the measurement error.

The result in Theorem 1 was derived for the case of a known measurement error covariance

matrix Ω. The estimating equation approach accommodates the case when the variance of

the measurement error is estimated. For simplicity we consider the case when one variable is

observed with error and σ2, the variance of the measurement error, is estimated based on an

estimating equation. The strategy for proving asymptotic normality of the SIMEX estimator

is based on stacking the Cox model estimating equation, ψB(β(Υ)), with the measurement

error variance estimating equation, ψvar(σ
2). The proofs use methods similar to those in

Caroll et al. (1996) [3] and Carroll et al. (2006) [4]. Let β̂(Υ) and σ̂2 be the solution to the

system of estimating equations





ψB(β(Υ)) = 0

ψvar(σ
2) = 0

(10)

Under standard regularity assumptions for estimating equations one can show that

n1/2








β̂(Υ)

σ̂2




−





β0(Υ)

σ2






 ⇒ Normal(0,Ξ∗) (11)

where Ξ∗ = (A∗)−1C∗(A∗)−t,

C∗ = var


n−1/2





ψB(β0(Υ))

ψvar(σ
2
0)






 , A∗ =




A∗
11 A∗

12

01×PM A∗
22

,




A∗
11 = A, A∗

12 = limn→∞ 1
n

[− ∂
∂σ2 ψB{β(Υ)}] |

(β,σ2)∗ for any random (β, σ2)∗ → (β0(Υ), σ2
0),

and A∗
22 = limn→∞ 1

n

[− ∂
∂σ2 ψvar{σ2}|(σ2)∗

]
for any random (σ2)∗ → σ2

0.

Theorem 2 Assume that σ2 is estimated from the estimating equations (10) and an exact

extrapolant is available. Under conditions similar to those in Andersen and Gill (1982) [1]

the SIMEX estimator satisfies

n1/2(β̂SIMEX − β0) ⇒ Normal(0,Σ∗).

If the extrapolant is quadratic then Σ∗ = Υ(−1)(ΥtΥ)−1ΥtΞ∗Υ(ΥtΥ)−1Υt(−1), where Ξ∗
11

10
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is the upper left PM × PM submatrix of Ω∗.

In the following sections we turn our attention to the application of SIMEX to the study

of progression to primary CKD, while a simulation study will show the practical relevance

of our methodology.

5 SIMEX for CKD Progression

5.1 Simple example

To illustrate our proposed methodology we consider the following simple Cox proportional

hazard model for time to primary CKD

λi(t) = λ0(t) exp{β1AAi + β2Agei + β3Sexi + f(eGFRi)}, (12)

where f(·) is a function of the eGFR, and AA denotes the African-American race. We used

a linear regression spline with four knots at 90, 105, 125, and 140. More precisely,

f(x) = β4x +
4∑

j=1

βj+4(x− κj)+, (13)

where κj, j = 1, . . . , 4 are the knots of the spline and a+ is equal to a if a > 0 and 0

otherwise. In this parameterization the βj parameter represents the change in the slope of

the log hazard ratio at knot κj. The proportional hazard model (12) using the linear spline

(13) with fixed knots to describe the effect of eGFR is linear in the β parameters but is

nonlinear in the variable measured with error. The sample size was 15, 080 with 1, 605 cases

of incidence CKD after a median follow-up time of 5, 089 days (roughly 14 years) per subject.

Following the SIMEX methodology we simulated data sets from eGFRυ,b
i ∼ N(eGFRi, υσ2

u)

b = 1, . . . , B where σ2
u = 77.56 was estimated from a different replication study. We used 10

values for υ on an equally spaced grid between 0.2 and 2 and B = 50 simulated data sets

for each value of υ. The entire program was implemented in R and ran in approximately

5 minutes on a PC (3.6GHz CPU, 3.6Gb RAM), with more than 99% of the computation

time being dedicated to fitting the 500 Cox models, each with 15, 080 observations.

The parameter estimates β̂υ,b
j , j = 1, . . . , 8, were obtained by replacing eGFRυ,b

i for

GFRi in model (12), and the SIMEX estimates β̂υ
j were obtained by averaging β̂υ,b

j over b.

Figure 1 (web supplement) displays β̂υ
j , j = 1, 2, 3 in the left column as filled black circles.

The parameter estimates are obtained using a quadratic extrapolant evaluated at υ = −1,

which corresponds to zero measurement error variance and are shown as empty circles. The

11
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AA Age Sex

Naive 0.50 0.070 0.011
SE 0.059 0.0047 0.051

SIMEX 0.63 0.054 0.061
SE 0.062 0.0049 0.052

Table 1: Estimates and standard errors (SE) of risk factors using all subjects with eGFR > 60
(15, 080 subjects) using events up to 2002. Naive is the regression using the observed eGFR;
Here “AA” is African-American race, sex = 1 indicates males.

variance of the parameter estimates was obtained using the procedure described in Section 3

and corresponding estimates are presented in the right column of Figure 1 (web supplement).

Table 1 provides a comparison between the naive and SIMEX estimates showing that taking

measurement error into account increased the log relative hazard for African-American race

by 22% The effect of age was decreased by 23%. The effect of sex was not statistically

significant either under the naive or the SIMEX procedure.

To obtain the SIMEX estimator of the GFR effect we estimated the function f(·) on an

equally spaced grid of points xg, g = 1, . . . , G = 100, between the minimum and maximum

observed eGFR. For each level of added noise, υσ2
u, the SIMEX estimator at each grid point,

xg, is f̂υ(xg), the average over the estimated functions at xg, f̂υ,b(xg). For every grid point

we then used a quadratic extrapolant to obtain the SIMEX estimator f̂ {υ=−1}(xg). The

solid lines in Figure 2 (web supplement) represent the estimated function f(·), f̂υ(xg), for

υ = 0, 0.4, 0.8, 1.2, 1.6, 2, with higher values of noise corresponding to higher intercepts and

less shape definition. The bottom dashed line is the SIMEX estimated curve. All functions

correspond to 60 year old non-African American males.

The dose/response model implied by the SIMEX estimator displays a number of scien-

tifically interesting details: 1) steeper relative risk for GFR between [60, 90]; 2) close to no

association with risk between [90,140]; 3) higher relative risk for GFR above 140. Testing

whether these features are actually statistically relevant is the focus of the next section.

5.2 Hypotheses testing

Hypothesis testing starts with the observation that many of the hypothesis about the

dose/effect function can be expressed in terms of linear combinations of the model pa-

rameters. Indeed, the log relative hazard rate for GFR between knots j and j + 1 is

θj+1 = β4 +
∑j

l=1 β4+l, for j = 0, . . . , 4. To simplify notation, knots 0 and 5 are de-
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fined as the minimum and maximum observed eGFR, respectively. If θ = (θ1, . . . , θ5)
t

and β = (β1, . . . , β8)
t then θ = Lβ, where L = [05×3|T ], 05×3 is a 5 × 3 matrix with zero

entries and T is a 5 × 5 matrix with all entries equal to zero above the main diagonal and

equal to one below and on the main diagonal.

The same SIMEX methodology can be applied for estimation of θ by noting that at

each level of added noise, υ, θ̂(υ) = Lβ̂(υ) while Var{θ̂(υ)} = LVar{β̂(υ)}Lt. Moreover,

V̂ar{θ̂(υ)} can be obtained as the variance of θ̂
b
(υ) = Lβ̂

b
(υ) calculated over all simula-

tions b = 1, . . . , B. Thus, all quantities needed for inference about θ can be obtained by

simple matrix manipulations of standard Cox regressions output software. Point and vari-

ance estimators of θ are obtained using techniques identical to those described for β. Table

2 displays the näıve and SIMEX estimators of the θ parameters, their variances and the

t-statistic based p-values for testing that H0 : θj = 0, j = 1, . . . , 5.

Results in Table 2 coupled with inspection of Figure 2 (web supplement) shows how

our method can uncover and quantify interesting biological features of the dose/response

relationship.

Indeed, the nonmonotonic shape of all curves is clear in Figure 2 (web supplement), with

unexpected estimated increase in CKD hazard for very large values of GFR. This increase is

statistically significant under the näıve approach (p-value=0.009) but is not significant under

the SIMEX approach (p-value=0.067). Such results should be interpreted cautiously for two

reasons. First, there are only 30 CKD cases with baseline eGFR > 140. The total number of

CKD cases in our data set was 1605. Second, eGFR is obtained from a prediction equation

based on creatinine, which is a muscle product that is filtered out by the kidney. Thus, very

low values of creatinine may occur either because the kidney filtration is high or because

the subject has lower muscular mass. The latter mechanism may actually be the one that is

providing the increasing pattern corresponding to eGFR > 140, irrespective of its statistical

significance. While SIMEX cannot identify such subjects, accounting for measurement error

reduces (not enhances!) the spurious signal.

Interestingly, the GFR effect is strongly significant in the [60, 90] interval both under

the näıve and SIMEX approaches, indicating high progression hazards above the current

standard, GFR < 60. Correcting for measurement error de-attenuated the already strong

signal in the interval [60, 90], left signals largely unchanged between [90, 140], and attenuated

the spurious signal above 140. The latter effect may just be the result of a lucky combination

of factors, since we do not model the likely cause of the measurement error above 140.

5.3 Multiple models

Because the SIMEX methodology is computationally fast, multiple models can be fit in rea-

sonable time. For illustration we fitted a series of models similar to (12), called here Model

13
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[60, 90] [90, 105] [105, 125] [125, 140] [140, 200]

Naive −.084 −.014 −.007 .000 .022
SE .003 .009 .010 .018 .008
p–value < .001 .108 .527 .980 .009

SIMEX −.143 .023 −.012 .014 .019
SE .005 .013 .017 .028 .011
p–value < .001 .088 .486 .633 .067

Table 2: Results for the Cox proportional hazard model of time to primary CKD using a 4
knot linear spline to model GFR and AA, age, and sex as risk factors. t–tests for statistical
significance of log relative risk. The naive testing is based on the naive point estimates and
standard errors obtained by using the observed eGFR value. The SIMEX testing is based on
the SIMEX point estimates and their standard errors that take into account the measurement
error in the observed eGFR.

1, where we added scientifically relevant confounders while GFR was modeled as a linear

spline with 4 knots. More precisely, Model 2 added education (3 ordered levels), income (3

ordered levels), and insurance status (YES/NO); Model 3 added smoking (YES/NO), drink-

ing (YES/NO) and physical activity (continuous); Model 4 added glucose (continuous), body

mass index (continuous) and triglycerides (continuous); Model 5 added diabetes (YES/NO),

myocardial infarction (YES/NO) and hypertension (YES/NO).

Table 3 displays results for all 5 models using the SIMEX and the näıve approach. For

lack of space, we only provide the point estimates where “*” denotes significance at the 95%

level using a t-test. Interestingly, the relative hazards for African American race and age are

attenuated but remain statistically significant even under increasing covariate adjustments.

Education remains statistically significant even in Model 5, while income becomes insignifi-

cant after adjustment for behavioral risk factors (smoking, drinking, activity). Insurance and

BMI are statistically insignificant under all models, while activity level becomes insignifi-

cant after adjusting for biological risk factors (glucose, etc.). Smoking, glucose, triglycerides,

diabetes, myocardial infarction, and hypertension are significant in all models that include

them. Baseline drinking status is significant in all models except Model 5.

5.4 Model selection

The 4 knots used for our linear spline in model (12) were chosen based on scientific input.

After addressing the GFR measurement error issues, considerable scientific interest has cen-

tered on the sensitivity of estimators and dose/response curve to the number and locations
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Model 1 Model 2 Model 3 Model 4 Model 5

N S N S N S N S N S

AA .50∗ .63∗ .36∗ .50∗ .27∗ .41∗ .27∗ .40∗ .21∗ .35∗

age .070∗ .054∗ .065∗ .049∗ .065∗ .050∗ .061∗ .046∗ .056∗ .042∗

sex .011 .061 .046 .078 .056 .082 .013 .051 .005 .031
educ.2 −.182∗ −.207∗ −.142∗ −.167∗ −.117 −.150∗ −.110 −.137∗

educ.3 −.163∗ −.193∗ −.091 −.124 −.046 −.093 −.014 −.057
inco.1 −.139 −.064 −.116 −.037 −.092 −.011 −.053 .029
inco.2 −.237∗ −.189∗ −.178∗ −.126 −.123 −.072 −.074 −.031
insur. −.003 .019 −.006 .009 .034 .021 −.010 −.011
smok. .141∗ .172∗ .168∗ .185∗ .181∗ .201∗

drink. −.193∗ −.170∗ −.160∗ −.144∗ −.131∗ −.107
activ. −.134∗ −.114∗ −.092 −.072 −.090 −.063
gluc. .297∗ .303∗ .190∗ .192∗

bmi .008 .005 .001 −.000
tri .284∗ .243∗ .217∗ .190∗

diab. .444∗ .456∗

MI .376∗ .312∗

HTN .358∗ .278∗

Table 3: Cox proportional hazard model of time to primary CKD using a 4 knot linear
spline to model GFR and increasing adjustment. Comparing point estimates using the naive
procedure (N) with SIMEX estimates (S). In all these models the GFR is modeled as a linear
spline with 4 knots. Here “*” in the exponent denotes significance at the 95% level using a
t-test using the corresponding model.
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of knots. We address this issue by considering 8 models starting with a model without

knots (linear log-hazard) and ending with a model with 8 knots placed at 65, 75, 80, 85, 90,

105, 125, and 140. More knots were added in the [60, 90] interval because current scientific

controversy has focused on the shape of risk just above 60 ml/min/1.73m2.

To illustrate our methodology we focus on the model having African American race,

Age and Sex effects in addition to GFR. Figure 3 (web supplement) displays superimposed

SIMEX inferences for these three parameters in three models: 1) linear log-hazard (small

empty circle); 2) four knot linear spline (larger empty circle); 3) eight knot linear spline.

As was probably expected, point estimators become closer to those of the full model, while

variances increase, as the number of knots increases.

To compare the effect of increasing the number of knots on estimation of the linear effects

we used the mean square error (MSE). The MSE for a model parameter is estimated by

M̂SE
2
(β̂j,k) = b̂ias

2
(β̂j,k) + V̂ar(β̂j,k),

where β̂j,k is the SIMEX estimator of βj based on the model with k knots. The squared bias

b̂ias
2
(β̂j,k) is estimated by assuming that the the model with 8 knots is the saturated model,

that is

b̂ias
2
(β̂j,k) = (β̂j,k − β̂j,8)

2.

The variance V̂ar(β̂j,k) is the estimated SIMEX variance of β̂j,k. Figure 4 (web supplement)

displays the squared bias (empty circles), variance (empty squares) and MSE (filled circles)

for the parameter estimates of African American race, Age and Sex across models. An in-

teresting feature of the plot is that the square bias and not the variance plays an important

role in choosing a reasonable number of knots. The MSE risk seems roughly similar across

the range of models for the African American race. However, the MSE for age drops dra-

matically from the model with a linear log-hazard function to the model with two knots, and

remains roughly constant thereafter. An interesting, and reassuring, conclusion is that if one

is interested in parameter estimation the MSE does not change dramatically with the adjust-

ment for baseline GFR, as long as the adjustment captures the shape of the dose/response

function reasonably well.

We now turn our attention to estimating the dose response relationship. One way of

comparing the likelihood of various models would be to simulate and extrapolate the log-

likelihood of various models following the same recipe as the one used for parameters. While,

in theory this sounds reasonable, we discovered a practical problem that has prevented the

implementation of this approach. Indeed, the log-likelihood based on observed data does not

change much when knots are added. Moreover the slope of the estimated log-likelihood with

increased noise is, in some cases, shallower for more complex models which leads to smaller
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extrapolated log-likelihood for more complex models. This lead us to compare models based

on their log-likelihood calculated on the observed data.

Using observed data, twice the log-likelihood ratio between the models with two knots (at

90 and 125) and without knots (linear log-hazard) was 285.06 (p-value ≈ 0) indicating strong

evidence against the linearity of the log-hazard as a function of the eGFR. The log-likelihood

improved only marginally when adding knots in the following sequence 105, 140, 75, 65, 80,

85. The two cases worth mentioning were adding the knots 75 and 85 with log-LRT=3.68

(p-value=0.055) and log-LRT=2.92 (p-value=0.087) respectively. To better understand the

effect of adding knots on the shape of the dose/response model Figure 5 (web supplement)

shows the same type of results as Figure 2 (web supplement) but for 8 knots instead of 4.

Even though two knots were added above 90 the general shape of the dose/response remains

very similar to the shape obtained with 4 knots above 90. A small detail is revealed below

90 by the addition of knots at 80 and 85. These knots were not statistically significant

in the observed data indicating that there is no evidence in the data for the small bump

in the dose response curve between knots 80 and 85. Even if the bump were statistically

significant it would not be scientifically relevant. Indeed, its existence would merely indicate

insufficient covariate adjustment and not the existence of a “magic” very narrow range of

kidney function corresponding to small hazard nestled between intervals with high hazard

for progression to primary CKD. Interestingly, SIMEX exacerbates such spurious features of

the data leading us to conclude that likelihood ratio testing on the observed data performs

well in this particular application.

6 Simulations

Even the most appealing theories have to pass the minimal performance tests under various

relevant simulation scenarios. Given the complexity of the problem described in this paper,

especially when the methodology is applied to large cohort studies, we designed our simu-

lation study to be relevant for the CKD application. We were especially interested in the

effects of measurement error both at and below the estimated level of variability.

More precisely we used the Cox model (12) and the covariates (race, age, sex, GFR) from

the original ARIC data with β1 = 0.63 (race), β2 = 0.054 (age), β3 = 0.06 (sex), β4 = 0.14,

β5 = −0.14, β6 = β7 = β8 = 0 (GFR spline). The observed eGFR in the ARIC data was

treated as the known GFR (this values will be denoted by GFR in this section and will be

treated as true values). The follow-up times for each subject were the follow-up times from

the original ARIC study.

Simulations were conducted according to the following algorithm
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1. Simulate survival times by

Y ∼ Exponential(Xβ + α)

where X is the matrix with columns corresponding to race, age, sex and the linear

regression spline with 4 knots at 90, 105, 125, 140, β = (β1, . . . , β8)
t, and α = 6 was

chosen to ensure roughly 50% censoring.

3. Obtain eGFR by injecting independent normal noise into each observed GFR value by

simulating from

eGFR
(s)
i ∼ Normal(GFRi, σ

2
u)

where σ2
u is known at fixed at one of the levels 9, 16, or 77.56. This is a way to simulate

noisy measurements and is not part of the SIMEX fitting algorithm.

4. Obtain the naive estimates by fitting the Cox model (12) using the eGFR(s) values

instead of the true GFR.

5. Obtain the SIMEX corrected estimates for the Cox model (12) using σ2
u as the known

measurement error variance.

For every level of noise, σ2
u, we have simulated 100 data points and calculated the naive

and SIMEX estimates. For each parameter the log of the squared bias and MSE was esti-

mated from simulations as

̂log(Bias2)(β̂j) = log{ 1

S

S∑
s=1

(β̂j − βj)
2}, j = 1, . . . , 8,

and

̂log(MSE)(β̂j) = log{ 1

S

S∑
s=1

(β̂j − βj)
2 +

1

S

S∑
s=1

V̂ar(β̂j)},

respectively, where S = 100 is the number of simulations, β̂j is the estimated βj parameter,

and V̂arβ̂j} is the estimated variance for a given method.

Table 4 displays the log squared bias and MSE for all the parameters of model (12)

calculated based on S = 100 simulations using naive and SIMEX estimation. As expected,

SIMEX consistently outperforms the naive method both in terms in squared bias and MSE,

most of the improvement being in reducing the squared bias with a small price paid in

terms of variance. Another consistent feature is that both squared bias and MSE seem to

be getting smaller when the variance of the measurement error process increases. The only

exceptions are the estimators of the β6 = β7 = β8 = 0 parameters for which the bias and
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MSE decrease when measurement error variance increases and SIMEX is outperformed by

the naive analysis when σ2
u = 77.56. Interestingly the bias of these estimators is at least one

order of magnitude smaller than the bias for parameters that are not zero. Moreover the

biases of the naive and SIMEX estimators are both scientifically negligible. For example,

the mean of the naive and SIMEX estimators for β7 are 0.001 and −0.01 respectively. Both

these values correspond to changes of the log hazard that are not scientifically relevant.

7 Comments

In this paper we proposed a simple and computationally usable extension of the SIMEX

methodology for first order bias correction in Cox models with a log hazard function that is

linear in parameters but non-linear in variables measured with error (LPNE). Our solution

addresses a real need for new and feasible inferential methodology in apparently simple cases

when the log-hazard contains strata indicators, splines, quadratic and interaction terms of

variables observed with error. While SIMEX is consistent only if a correct extrapolant is

available, our results indicate that SIMEX can substantially improve estimation even when

this is not the case. An important characteristic of our methodology is that it can be used

with realistic data sets, such as the ARIC study.
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Table 4: Log squared bias and MSE estimated from S = 100 simulated data sets from model
(12) using naive and SIMEX estimation (smaller is better)

σ2
u = 9 σ2

u = 77.56
Naive SIMEX Naive SIMEX

β1 log(Bias2) -4.94 -6.02 -2.93 -3.98
log(MSE) -4.84 -5.72 -2.92 -3.93

β2 log(Bias2) -10.59 -10.94 -11.16 -12.04
log(MSE) -10.42 -10.73 -10.86 -11.50

β3 log(Bias2) -6.80 -7.05 -5.69 -5.97
log(MSE) -6.41 -6.53 -5.55 -5.75

β4 log(Bias2) -6.91 -9.25 -5.10 -6.08
log(MSE) -6.91 -9.20 -5.10 -6.08

β5 log(Bias2) -5.39 -7.54 -4.46 -5.16
log(MSE) -5.38 -7.49 -4.46 -5.15

β6 log(Bias2) -5.71 -7.67 -7.00 -6.53
log(MSE) -5.70 -7.56 -6.96 -6.47

β7 log(Bias2) -6.74 -8.14 -9.15 -7.71
log(MSE) -6.67 -7.81 -8.47 -7.31

β8 log(Bias2) -8.19 -8.68 -9.09 -8.10
log(MSE) -7.86 -8.16 -8.41 -7.59
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