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Abstract

We investigate the degree to which a reduction in ocular sunlight ultra-violet B

(UVB) exposure mediates a relationship between wearing eyeglasses and a decreased

risk of cataracts. An estimand is proposed in which causal effects are estimated locally

within strata based on potential UVB exposure without glasses and the degree to which

glasses use reduces UVB exposure. We take advantage of the structure of the data

in which the counterfactual UVB exposures if the participants in the study who wore

glasses had not worn glasses are considered observable.
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1 Introduction

We review traditional methods and describe identification and estimation of a causal

estimand for investigating mediation. We provide an example of a potential outcomes

analysis in which a counterfactual outcome can be thought of as observable. This is an

example of a potential outcomes analysis in which the counterfactuals are not inherently

metaphysical.

The motivating example for this work is the degree to which a reduction in

sunlight exposure mediates a relationship between eye glass use and a reduced risk of

cataracts. Cataracts are a major source of vision loss in older persons, and billions are

spent each year on corrective surgery (West et al., 1998). Many authors have found that

lifelong sunlight or ultra-violet B (UVB) exposure is a risk factor for the development of

cortical cataracts (West et al. 1998, Cruickshanks, Klein, and Klein 1992, Delcourt et

al. 2000). While there is evidence in the literature that glasses are effective in reducing

cortical cataracts in older age, (Cruickshanks et al. 1992) to our knowledge no study

has tried to quantify the degree to which the effect of glasses on preventing cataracts is

related to their effectiveness at reducing sunlight UVB exposure.

1.1 Salisbury Eye Evaluation

Data came from the Salisbury Eye Evaluation (SEE) project, a population-based cohort

study of 2,520 older adults in Salisbury, MD (West et al., 1997). At baseline enrollment,

which occurred during 1993-1995, participants were asked about their past use of glasses

and sun exposure. In addition, photographs of the eye were taken and the percent of

the cortical opacification was later assessed by 2 trained graders. The participants were

coded as having developed clinically significant cortical cataracts in at least one eye if

more than 3/16 sectors were affected, as described previously (West, et al. 1998).

Our aim was to estimate the degree to which corrective- and sun-glasses protected

the wearer from cortical cataract development as a function of the amount of reduction

in sunlight UVB afforded by glasses. In addressing this aim, we defined the use of glasses

as reporting any daytime outside use of corrective- or sun-glasses at the age of 31. The

amount of sunlight UVB exposure to the eyes, measured in Maryland Sun Years (MSY)

(West et al. 1998, Duncan, Munoz, Bandeen-Roche, West 1997), was defined for the

four-year age period 31-34. We used 34 as the cut-off for exposure to reduce problems
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with eyeglass cross-over; many of those who did not wear glasses at age 31 began to

wear glasses later in life. In the data, recalled UVB exposure in the early thirties had

a 0.79 correlation with total recalled UVB exposure suggesting that early exposure is a

reasonable proxy measure for recalled total exposure.

2 Data Structure and Notation

We define the data structure for a random individual. Let Z denote the observable

indicator of use of eyeglasses (1 if use, 0 otherwise). Let M(1) and M(0) denote the UVB

exposure under use and non-use of glasses, respectively. The observable UVB exposure

is M = M(Z). Let Y (1,m) and Y (0,m) denote the indicators of clinically significant

cataracts under use and non-use of glasses and UVB-exposure level m, respectively

(1 if cataracts, 0 otherwise). We define Y (z) = Y (z,M(z)) to be the indicator of

clinically significant cataracts under glasses use level z. The observable outcome is

Y = Y (Z) = Y (Z,M(Z)). Let X denote a vector of covariates.

As one cannot observe an individual in multiple states of nature at the same point

in time, the canonical observed data structure is O = (Z, M, Y, X). An interesting fea-

ture of our study is that eye researchers have previously defined a mathematical formula,

based on survey responses and optical physics regarding ambient UVB, that maps, for an

individual subject who reported wearing corrective- or sun-glasses at ages 31, the UVB

exposure she would have received if she had not worn glasses. With this substantive

knowledge, we can think of M(0) as observable. We could not reconstruct M(1) for the

whole sample because we did not know how much people in the study observed not to

wear glasses would have worn glasses if they were glasses users. In our investigation, the

observed data structure for an individual will be O† = (Z,M(0),M, Y, X). We assume

that we observe n i.i.d. copies of O or O†.

3 Mediation

Our causal hypothesis is that the effect of glasses on cortical cataracts is mediated by

the effect of glasses on reducing sunlight UVB exposure. To our knowledge, there is no

scientifically plausible mechanism by which eyeglasses would be causally linked to cortical

cataracts beyond their impact on UVB exposure; any other association would likely be
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Figure 1: Mediational Model Discussed by Baron and Kenny (1986)

through non-causal confounding, such as by sociodemographic status. In this paper, we

will not examine other types of cataracts, such as nuclear, with which glasses use might

be associated through their relationship with other risk factors, such as myopia (Chang,

Congdon, Bykhovskaya, Munoz, West 2005). To place our work in a broader context,

we use this section to review and comment on traditional methods for investigating

mediation. The best known method for investigating mediation in the social sciences is

the path analytic model described by Baron and Kenny (1986) and represented in the

directed acyclic graph in Figure 1. This model is expressed in terms of the canonical

observed data random vector O. Their model can be summarized as follows:

E[Y |Z = z] = γ1 + τz

E[M |z = z] = γ2 + αz

E[Y |Z = z, M = m] = γ3 + τ ′z + βm

The common way in which this model is used to investigate mediation involves the eval-

uation of three conditions: (1) the total effect (τ) is clinically relevant and statistically

significant; (2) the associations between exposure and the mediator (α) and between

mediator and outcome after controlling for exposure (β) are statistically significant; and

(3) the direct effect (τ ′) is smaller in absolute value, from both a clinical and statistical

perspective, than the total effect τ . The influence of Baron and Kenny’s paper cannot

be understated. A social-science citation index reveals that their paper has been cited

in over 6,200 papers.

Using the potential outcomes framework and proper assumptions, we can assign

causal meaning to Baron and Kenny’s direct and indirect measures. Before turning to

these assumptions, we discuss two types of causal direct and indirect measures.

3
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3.1 Prescriptive and Descriptive Effects

Direct and indirect effects in the causal inference literature are generally defined as either

prescriptive or descriptive (Pearl 2001). Prescriptive effects are defined as a contrast

between a functional of the distribution of Y (z, m) and a functional of the distribution

of Y (z∗,m∗). When z = 1, z∗ = 0, and m = m∗, the prescriptive effect contrasts the

distribution of cataract outcomes in a world in which all subjects wear eyeglasses and

have UVB exposure m and a world in which all subjects do not wear eyeglasses and

have UVB exposure m.

Descriptive effects are defined as a contrast between a functional of the distribu-

tion of Y (z, M(z)) and a functional of the distribution of Y (z∗,M(z∗∗)), where either

z∗ = z, z∗∗ 6= z or z∗ 6= z, z∗∗ = z. When z = 1, z∗ = 0, and z∗∗ = 1, the descriptive

effect contrasts the distribution of cataract outcomes in a world in which all subjects

wear eyeglasses and a world in which all subjects do not wear eyeglasses and have UVB

exposure equal to what they would have had, had they worn glasses.

In the next subsection, we describe sufficient conditions for identification of pre-

scriptive and descriptive effects and make the connection to the parameters of the Baron

and Kenny model.

3.2 Identification of Prescriptive and Descriptive Effects

To start, we assume that we can randomize Z; we will later generalize the results to the

observational study setting. For the moment, we consider the cataract outcome to be

continuous, for example, the maximum of the proportions of each eye that are covered

with cataracts. We examine identification in the context of the canonical data, O.

Under randomization of Z, we have that

Z⊥{M(z), Y (z,m) : for all m, z} (3.1)

4
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Under the Baron and Kenny model and (3.1),

E[M(z)] = E[M(z)|Z = z]

= γ2 + αz

E[Y (z)] =

∫
E[Y (z, m)|Z = z, M(z) = m]dFM(z)(m)

= (γ3 + βγ2) + (τ ′ + βα)z

E[Y (z)] = E[Y (z,M(z))|Z = z]

= γ1 + τz

This implies that γ1 = γ3 + βγ2 and τ = τ ′ + βα. Furthermore, note that Baron and

Kenny’s total effect can be written as:

τ = E[Y (1)− Y (0)]

Hence, the total effect is the expected difference between the cataract outcome under

glasses and the cataract outcome under no glasses.

To attach causal meaning to τ ′, we need additional assumptions. In the next two

subsections, we introduce two sets of assumptions. First we discuss the assumptions of

Robins (2003) and next we discuss the assumptions of Pearl (2001).

3.2.1 Assumptions of Robins (2003)

Robins (2003) assumed that

Y (z, m)⊥M(z) | Z = z for all z and m (3.2)

In words, Assumption (3.2) states that, among subjects with observed glasses use level

z, the potential cataract outcomes under glasses level z and UVB exposure level m is in-

dependent of UVB exposure under glasses use z. Robins (2003) refers to this assumption

as the fully randomized structured tree graph (FRCISTG) model.

In this section, we show how this assumption can be used to give causal meaning

to Baron and Kenny’s estimand; we later discuss the limitations of this assumption.

Under the Baron and Kenny model and Assumptions (3.1,3.2),

E[Y (z,m)] = E[Y (z, m)|Z = z, M(z) = m]

= E[Y |Z = z, M = m]

= γ3 + τ ′z + βm
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Thus,

τ ′ = E[Y (1,m)− Y (0,m)]

Baron and Kenny’s direct effect is then the expected difference between the cataract

outcome if an individual is forced to wear glasses and have UVB exposure m and the

cataract outcome if she retains the same UVB exposure level but is forced not to wear

glasses. Here, the use of glasses varies, while the UVB exposure level is kept fixed at m.

Thus, τ ′ measures the causal effect of glasses on cataracts holding UVB exposure fixed

at m. Pearl (2001) refers to this effect as the controlled directed effect (CDE). Baron

and Kenny’s model assumes that the CDE is constant with respect to m.

Baron and Kenny’s measure of the indirect effect, α×β, is equal to τ − τ ′. From

above, we see that

τ − τ ′ = {E[Y (1)]− E[Y (0)]} − {E[Y (1,m)]− E[Y (0,m)]}
= α× β

Thus, α×β represents the expected difference between the treatment effect for an individ-

ual when she wears and does not wear glasses and the treatment effect for an individual

when she wears and does not wear glasses but is forced to have UVB exposure m. We re-

fer to this expected difference as the controlled indirect effect (CIE). Baron and Kenny’s

model assumes that the CIE does not depend on m. The CDE and CIE are prescriptive

effects.

Robins’ (2003) introduced the no-interaction assumption that allows τ ′ and α×β

to be interpreted as descriptive direct and indirect effect measures. His no-interaction

assumption states that

Y (1,m)− Y (0,m) = B (3.3)

where B is a random variable that does not depend on m. This assumption says that,

when each individual is forced to have UVB exposure m, the difference between their

cataract outcome under glasses and their cataract outcome under no glasses does not

vary with m. Under (3.1,3.2) and Baron and Kenny’s model, we know that E[B] = τ ′.

Under (3.1,3.2,3.3), we see that Robins’ (2003) pure direct effect (PDE) and

6
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Pearl’s (2001) natural direct effect (NDE) is

PDE(NDE) = E[Y (1,M(0))]− E[Y (0,M(0))]

=

∫
E[Y (1,m)− Y (0,m)|M(0) = m]dFM(0)(m)

=

∫
E[B|M(0) = m]dFM(0)(m)

= E[B] = τ ′

Similarly, Robins’ (2003) total direct effect (TDE) and Pearl’s (2001) natural direct

effect (NDE) is τ ′. We can also show that Robins’ (2003) pure indirect effect (PIE),

total indirect effect (TIE), and Pearl’s (2001) natural indirect effect (NIE) is α× β.

3.2.2 Pearl’s Identifying Assumption

Pearl (2001) presents alternative identifying assumptions that do not require the no-

interaction assumption and can be used for binary outcomes. Specifically, he assumes

that Z and M are randomized and that

Y (z, m)⊥M(1− z) for all z, m

(Pearl (2001) actually assumes that this independence holds within levels of confounding

covariates; for didactic purposes, we have excluded such covariates.) Since we view the

data temporally, i.e., Z precedes M and M precedes Y , we find it natural to adapt

Pearl’s assumptions as follows. We assume (3.1,3.2) hold and that

Y (z, m)⊥M(1− z)|Z = z for all z, m (3.4)

Under (3.1,3.2,3.4) and Baron and Kenny’s model, the pure and natural direct

effects under Pearl’s identification assumption equal the same values as shown in section

3.2.1.

The key difference between Robins’ assumptions and our adaptation of Pearl’s

assumptions is that under the latter assumptions E[Y (z,M(1− z))] is identifiable since

E[Y (z, M(1− z))] =

∫
E[Y (z, m)|M(1− z) = m,Z = z]dFM(1−z)(m)

=

∫
E[Y (z, m)|M(z) = m,Z = z]dFM(1−z)(m)

= γ3 + τ ′z + βE[M(1− z)]

Thus, one can estimate non-linear measures of direct and indirect effects, e.g.,

E[Y (0,M(1))]/E[Y (1, M(1))].
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3.2.3 Binary Outcomes

For binary outcomes, such as the presence or absence of cataracts, practitioners of statis-

tics have commonly sought to assess mediation by extrapolating Baron and Kenny’s

framework to the generalized linear model domain (see, for example, Bridge, Day,

Richardson, Birmaher, and Brent 2003, O’Leary et al. 2005, Ayalon, Arean, and

Alvidrez 2005). In general, they fit models of the form:

g(E[Y |Z = z]) = γ1 + τz

h(E[M |z = z]) = γ2 + αz

g(E[Y |Z = z, M = m]) = γ3 + τ ′z + βm

where g(·) and h(·) are specified link functions. It is important to note that, due to

the non-linearity of the link functions, there is, in general, a complicated relationship

between the model parameters. In using this model, practitioners use the same procedure

to infer mediation as in Baron and Kenny’s linear model.

Can we use Assumption (3.4) to interpret τ ′ as the PDE or NDE? In other words,

is τ ′ a contrast between a functional of the distribution of Y (z, M(z)) and a functional

of the distribution of Y (1− z, M(z)). Under Assumptions (3.1,3.2,3.4),

P [Y (z, M(z)) = 1] = logit−1(γ1 + τz)

P [Y (1− z, M(z)) = 1] =

∫
logit−1(γ3 + τ ′(1− z) + βm)dFM(z)(m)

Due to the complicated nature of the expression for P [Y (1 − z, M(z)) = 1], it is not

possible to, in general, interpret τ ′ as PDE or NDE. By similar arguments, it is not

possible to interpret a function of τ and τ ′ as a PIE or NIE. Furthermore, CDE (CIE)

is not equal to PDE (PIE) or NDE (NIE).

3.2.4 Observational Studies

So far, we have assumed that Z is randomized. The results above can be extended to

the setting where we further condition (3.1), (3.2), and (3.4), on a subset of observed

baseline covariates, X. The assumptions are, respectively,

Z⊥{M(z), Y (z, m) : for all m, z} | X = x for all x (3.5)

Y (z, m)⊥M(z) | Z = z, X = x for all z, x and m (3.6)

Y (z, m)⊥M(1− z)|Z = z, X = x for all z, x and m (3.7)

8
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3.2.5 Identification with O†

We have discussed identification specifically with the canonical data structure, O, not

O† in which M(0) is considered observable. Knowing M(0) on those in whom Z = 1

does allow us to weaken the above assumptions slightly. To identify E[Y (1,M(0))], we

would just need assumption (3.1) and the following assumption under randomization.

Y (1,m)⊥M(1) | M(0) = m,Z = 1 for all m (3.8)

Then, the following holds where the terms in the final equality are identifiable from the

observed data.

E[Y (1,M(0))] =

∫
E[Y (1,m)|M(1) = m,M(0) = m,Z = 1]dFM(0)(m)

=

∫
E[Y |M = m,M(0) = m,Z = 1]dFM(0)(m)

Also, we could incorporate M(0) into X in assumption (3.6) for identification of E[Y (1,m)].

3.3 Limitations of the Direct and Indirect Paradigm

As shown above, Baron and Kenny’s path analytic conceptualization of mediation as

the linear decomposition of effects into direct and indirect effects has heavily dominated

the literature. For example, Holland (1988), Pearl (2000, 2001), Robins and Greenland

(1992), Robins (2003), and van der Laan and Peterson (2004) have written extensively

on assumptions necessary to assign causal interpretations to varying estimates of direct

and indirect effects in linear models.

One problem with Robins’ and Pearl’s causal presentation of direct and indirect

effects is that the assumptions necessary for identification are quite strong. For example,

imagine a study assessing whether high triglyceride levels partially mediate a relationship

between Highly Active Antiretroviral Therapy (HAART) for HIV and mortality that is

independent of HIV’s effect on mortality. We could imagine that the development of

abnormally high triglyceride levels might be indicative of general system dysregulation

or frailty (Fried, Ferrucci, Darer, Williamson, and Anderson et al. 2004) which is hard

to measure. It might be difficult to find a set of covariates, X, comprehensive enough

for assumptions (3.5),(3.6), and (3.7) to hold.

Another problem with Robins’ and Pearl’s descriptive effects is that it is difficult

to imagine an experiment which could directly identify them. By definition, media-

tors are in the causal pathway between an exposure and an outcome. Temporally, an
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investigator assigns treatment and then the treatment affects the mediator. Hence, it

would not be possible to construct any experiment in which we could directly observe

Y (1,M(0)).

A limitation of Baron and Kenny’s path analytic approach in general is that

the path models are only valid for continuous mediators and outcomes. Robins’ no-

interaction assumption might identify path analytic models, but it is not directly gen-

eralizable to a probability scale.

The limitations of Baron and Kenny’s estimands, along with the limitations of

the direct and indirect estimands as they have been conceptualized in the literature

in general, lead us to break with the strict direct and indirect paradigm. Instead, we

develop a strata specific estimand based on M(0) and M(1) that allows for investigations

of mediation. In this regard, we are following the advice given by Rubin (2004) who

advocates that researchers look for more creative tools of investigating mediation, rather

than strictly defining mediated effects as indirect effects.

4 Causal Estimand

For this study, our estimand of interest is the relative risk,

ν(p,m) =
P [Y (1) = 1|P = p,M(0) = m]

P [Y (0) = 1|P = p,M(0) = m]
(4.1)

where P = M(1)/M(0) represents the proportion of baseline (no glasses) exposure that

a person receives if he wears glasses. This is the relative risk of developing cataracts

for an individual under glasses versus no glasses conditional upon being in the principal

stratum (Frangakis and Rubin 2002) in which P = p and M(0) = m.

We chose such an estimand because it is interpretable and relevant to the question

at hand. If the effect of glasses on reducing the risk of cataracts is mediated by their

effectiveness at reducing UVB exposure, we would expect that ν(1,m) = ν(1,m′) = 1

for all m and m′ and ν(p,m) > ν(p′,m) if p > p′. If there is no mediational effect, then

we would expect that ν(p,m) = ν(p′, m) for all p, p′, and m.

The monotonicity of ν(p,m) > ν(p′,m) if p > p′ might be violated if the indi-

viduals in the principal strata defined by {P = p,M(0) = m} and {P = p′,M(0) = m}
differ substantially by confounding covariates such as diabetes. However, we believe

that within neighborhoods of P = p where M(0) = m, the principal strata should be

10
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comparable enough that we would generally expect such monotonicity. Outdoor work-

ers had high baseline UVB exposure, for example, while housewives did not. We are

hence making local inferences about causality within similar subpopulations, not global

inferences across the whole population.

5 Identification and Models

Here we discuss the assumptions necessary to identify our estimand and the regression

models used for estimation. In order to identify the causal estimand, we need to estimate

P [Y (0) = 1|P = p,M(0) = m] and P [Y (1) = 1|P = p,M(0) = m]. The structure of the

data necessitates that we identify and estimate them in different ways.

5.1 A Non-metaphysical Counterfactual

As mentioned in Section 2, there is a unique aspect of our data structure, O†. Using an

empirical model that has been previously been developed (West et al. 1998), we were

able to determine, for those who wore eyeglasses, the UVB exposure they would have

had, had they not worn eyeglasses. In particular, the empirical model states,

M =
12∑

s=1

G(s)R(s)
18∑

t=5

F (t, s)H(t, s)Thats(t, s)Teye(t, s) (5.1)

where

M = Total UVB exposure

s = Month

t = Hour of day

G(s) = Geographic correction factor

R(s) = Ocular ambient exposure ratio

F (t, s) = Fraction of time spent outdoors

H(t, s) = Global ambient exposure

Thats(t, s) = Percent of possible UVB exposure penetrating hats

Teye(t, s) = Percent of possible UVB exposure penetrating glasses

As shown in the equation, the model included terms for season, “the fraction of time

spent outdoors for each period of the day, the global ambient exposure during this day,

fixed factors that reflect diminutions conferred by the use of hats and eyewear, [and]

11
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a geographic correction factor.”(West et al., 1998) The effect of glasses on exposure

reduction (Teye(t, s)) was calculated using two pieces of information. First, participant

responses were used to determine how frequently and during which activities participants

wore glasses. Next, the fraction of sunlight UVB by which a pair of glasses reduced ex-

posure was adjusted for the predominant type of eyeglasses, such as plastic or glass, in

use during that historical time period.

By setting Teye(t, s) = 1 for all s and t, we are able to determine the counter-

factual M(0) for subjects who wore glasses. Here we are implicitly assuming that an

individual would still have the same sunlight-exposure related activities if they did not

wear glasses. This assumption is reasonable since partaking in exposure related-activities

drives eyeglass use, and not vice versa.

The ability to determine UVB exposure under both states of glasses use for par-

ticipants who wore glasses allows us to make less stringent assumptions for identification

than those of Dominici, Zeger, Parmigiani, Katz, and Christian (2004) who proposed

a conceptually similar estimand. Dominici et al. (2004) had to make untestable as-

sumptions about the joint distribution of the potential outcomes; in particular the joint

distribution of M(0) and M(1). In our work, we can identify the joint distribution of

M(1) and M(0) in the group who wore glasses since we observe both variables in this

group.

5.2 Assumptions

Here we define the assumptions necessary to identify our causal estimand.

Assumption 1: Stable Unit Treatment Value Assumption (SUTVA)

Our first assumption is the Stable Unit Treatment Value Assumption (SUTVA)

(Rubin 1980) which states that an individual’s potential outcomes are unrelated to

glasses use of other study participants and the mechanism by which participants come

to wear glasses. In a randomized trial setting, the second component of SUTVA implies

that there are no more than two well-defined treatment arms of a study. We expand this

assumption by assuming that participants are consistent in their pattern of glasses use

in their early thirties. Such an assumption of “perfect compliance” is reasonable given

that we defined eyeglass use in such a way as to minimize eyeglass use cross-over.

Assumption 2: Z⊥{Y (0), Y (1),M(1)} | M(0), X

12
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This states that eyeglass use is independent of the potential outcomes given the

confounding covariates, X, and baseline exposure level M(0). This is an observational

study equivalent of the randomization assumption in randomized trials. In this study we

define X to be job status in the participants’ thirties (outdoor work over water, outdoor

work over land, inside work, and homemaker), age modeled as a natural cubic spline

with 3 knots, sex, race (black vs. white), high school graduate, and diabetic status.

The few individuals in our study who were students, or disabled in their thirties were

grouped with the inside workers.

Assumption 3: Y (0)⊥M(1) | Z,M(0), X

Assumption 3 assumes that within levels of covariates, X, and baseline UVB

exposure, M(0), glasses-wearers’ observed UVB exposures are not associated with their

counterfactual cataract outcomes had the wearers not worn glasses. The assumption

similarly holds for those who do not wear glasses. This is similar to assumption (3.7)

but weaker because we condition on baseline UVB exposure and do not require the

independence to be for Y (0,m) for all m where both glasses use and UVB exposure are

considered fixed for an individual.

This is similar to an assumptions made explicitly by Dominici et al. (2004) and

implicitly by Taylor, Wang, and Thiebaut (2005) in their work. However, Dominici et al.

had to make additional assumptions, as stated above, and Taylor et al. (2005) discussed

identification in a hypothetical example where the number of principal strata are finite.

5.3 Identification

Here we discuss identification of P [Y (1) = 1|P = p,M(0) = m]. For ease of presentation

we demonstrate how we can identify E[Y (1)|Pdp = 1,M(0) = m] where Pdp is a random

variable indicating whether an individual’s value of P falls within a neighborhood dp of

p; that is Pdp = 1 when P = p falls within dp, 0 otherwise. The following equality holds

by assumption 2.

E[Y (1)|Pdp = 1,M(0)]

= E

[
P [Y = 1|Z = 1, Pdp = 1,M(0), X]P [Pdp = 1 |Z = 1,M(0), X]

E[P [Pdp = 1 |Z = 1,M(0), X]]
M(0)

]

Each of the terms on the right hand side of the equality is identifiable from the observed

data because we observe M(0) on all individuals and we observe P on individuals in

whom Z = 1.
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Similarly, we can use the following equality to demonstrate the identifiability of

P [Y (0) = 1|P = p,M(0) = m]. As above, for ease of presentation we demonstrate how

we can identify E[Y (0)|Pdp = 1,M(0) = m] using Assumptions 2 and 3.

E[Y (0)|Pdp = 1,M(0)]

= E

[
P [Y = 1|Z = 0,M(0), X]P [Pdp = 1 |Z = 1, M(0), X]

E[P [Pdp = 1 |Z = 1,M(0), X]]
M(0)

]

5.4 Models

Here we define a set of models we need for estimation of the causal estimand. Define

ψ∗ = (β0
∗′ , β1

∗′ ,γ∗
′
, η∗

′
, φ∗)

to represent the true model parameters. We assume that ψ∗ ∈ ψ, where

ψ = {ψ = (β0

′
, β1

′
,γ ′,η′, φ)′ : βz ∈ Rjz ,γ ∈ Rk,η,∈ Rl, φ ∈ R, z = 0, 1}

where jz, k, and l are equal to the number of parameters indexing the respective models.

Let gz(P, M(0); βz), h(M(0), X; γ), k(M(0), X; η) represent smooth functions

(in this study P and M(0) are modeled using natural cubic splines with four knots)

indexed by βz, γ, and η respectively. We are assuming the following regression models.

logit P [Y (0) = 1|P, M(0)] = g0(P, M(0); β∗0) (5.2)

logit P [Y (1) = 1|P, M(0)] = g1(P, M(0); β∗1) (5.3)

logit P [Z = 1|M(0), X] = h(M(0), X; γ∗) (5.4)

logit E[P |M(0), X] = k(M(0), X; η∗) (5.5)

Since 1 > P > 0, we model P as a Beta random variable since the Beta distribution is

a flexible distribution for continuous variables bounded between 0 and 1. We estimate

f(p | M(0), X, Z = 1; η∗, φ∗) using a Beta regression as proposed by Ferrari and Cribari-

Neta (2004). A Beta regression is a generalized linear model using a logit link and a

Beta family. Under our parameterization, we assume that P has a conditional mean and

variance equal to,

E[P |M(0), X] = µ(M(0), X; η∗)

V ar[P |M(0), X] =
µ(M(0), X; η∗)(1− µ(M(0), X; η∗))

1 + φ∗

where µ(M(0), X; η∗) = expit{k(M(0), X; η∗)}, expit{U} = exp{U}/(1 + exp{U}) and

φ∗ is a scalar.
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5.5 Estimation

We can estimate γ∗, η∗, and φ∗ by maximum likelihood via logistic and Beta regressions,

respectively. The unbiased estimating equations for these parameters are as follows.

Uγ∗(O†; ψ∗) = h′(M(0), X; γ∗)(Z − expit {h(M(0), X; γ∗}))
Uη∗(O†; ψ∗) = µ′(M(0), X, η∗)

∂

∂µ(X; η∗)
l(O†, φ∗, µ(M(0), X, η∗))

Uφ∗(O
†; ψ∗) =

∂

∂φ∗
l(O†, φ∗, µ(M(0), X, η∗))

where,

l(O†, φ∗, µ(M(0), X, η∗))

= Z(log Γ(φ∗)− log Γ(µ(X; η∗)φ∗)− log Γ((1− µ(X; η∗))φ∗) +

(µ(X; η∗)φ∗ − 1) log P + ((1− µ(X; η∗))φ∗ − 1) log(1− P )),

Γ(·) is the gamma function, and h′(M(0), X; γ∗) and µ′(M(0), X, η∗) represent the par-

tial derivatives of the functions with respect to the parameters but evaluated at the

truth.

An unbiased estimating equation for β1 is

Uβ1
(O†; ψ∗) =

Zg′1(P,M(0); β∗1) (Y − expit {g1(P, M(0); β∗1)})
expit {h(M(0), X; γ∗)}

Estimation of β∗0 is similar but more complex since we do not observe M(1) on

those who did not wear glasses. We can estimate β0 by the unbiased estimating equation,

Uβ0
(O†; ψ∗)

= E

[
(1− Z)g′0(P, M(0); β∗0) (Y − expit {g0(P,M(0); β∗0)})

(1− expit {h(M(0), X; γ∗))} O†
]

=

∫ 1

0
(1− Z)g′0(p,M(0); β∗0)Y (0)f(p|M(0), Z = 1, X; η∗, φ∗)dp−

(1− expit {h(M(0), X; γ∗))}∫ 1

0
(1− Z)g′0(p,M(0); β∗0)expit {g0(p,M(0); β∗0)}f(p|M(0), Z = 1, X; η∗, φ∗)dp

(1− expit {h(M(0), X; γ∗))}

5.6 Large Sample Theory

To estimate ψ∗, denoted ψ̂ = {β̂′0, β̂
′
1, γ̂, , η̂′, φ̂}, we can solve the following estimating

equation.
n∑

i=1

U(O†
i ; ψ) = 0

15
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where

U (O†
i ; ψ) =

[
Uβ0

(O†
i ; ψ)′,Uβ1

(O†
i ; ψ)′,Uγ(O†

i ; ψ)′,Uη(O†
i ; ψ)′, Uφ(O

†
i ; ψ)

]′

Where i = 1, ..., n indexes the study participants and E[U (O†
i ; ψ

∗)] = 0 as demonstrated

above. Solving the estimating equation is equivalent to estimating γ∗, η∗, and φ∗ via

maximum likelihood, estimating β∗1 by a weighted logistic regression, and estimating

β∗0 by numerical optimization. Under mild regularity conditions (Huber 1964), by the

theory of M-estimation, it can be shown that for ψ∗ ∈ ψ,

√
n(ψ̂ −ψ∗) D−→ Normal(0, Σ∗)

where

Σ∗ = E

[
∂U (O†

i ; ψ)

∂ψ

]−1

E
[
U (O†

i ; ψ
∗)U (O†

i ; ψ
∗)
′
]
E

[
∂U (O†

i ; ψ)

∂ψ

]−1′

and
∂U (O†i ;ψ)

∂ψ
is evaluated at ψ∗. The variance-covariance Σ∗ can be estimated by

Σ̂ = En

[
∂U (O†

i ; ψ̂)

∂ψ

]−1

En

[
U (O†

i ; ψ̂)U (O†
i ; ψ̂)

′
]
En

[
∂U (O†

i ; ψ̂)

∂ψ

]−1′

where En[Ui] = 1
n

∑n
i=1 Ui. Natural estimates of ν(p,m), π0(p,m) = P [Y (0) = 1|P =

p,M(0) = m] and π1(p,m) = P [Y (1) = 1|P = p,M(0) = m] would be π0(p, m; β̂0) =

expit {g0(p,m; β̂0)}, π1(p,m; β̂1) = expit {g1(p, m; β̂1)}, ν(p,m; β̂0, β̂1) = π̂1(p, m)/π̂0(p,m).

Since the distribution of estimators of relative risk are better approximated by the nor-

mal distribution on the log scale, let ξ = log ν(p,m; β∗0, β
∗
1). By the δ-method, we know

that,
√

n(ξ̂ − ξ∗) D−→ Normal

(
0,

∂ξ

∂ψ
Σ∗ ∂ξ

∂ψ

′)

where ∂ξ/∂ψ is evaluated at ξ∗. We can exponentiate the bounds of the confidence

interval derived for ξ∗ to obtain the confidence interval for ν(p,m; β∗0, β
∗
1).

6 Analysis

The SEE study had 2,520 participants. Of these, 170 did not report any significant

outside sun exposure in their thirties. Since we defined eyeglass use based on outside

use, this group was not eligible to have the exposure of interest and was excluded from the
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Table 1: Baseline characteristics of sample

Variable No Eyeglass Use Eyeglass Use

Number of participants 830 (42%) 1125 (58%)

Sun exposure if glasses never worn, M(0) .17 (.11) .16 (.11)

Age 73.5 (5.0) 72.7 (4.8)

Diabetic 17.4% 17.2%

Male 54.6% 39.9%

Black 30.7% 22.1%

<12 years education 58.0% 45.6%

Job characteristics

Worked over water 1.7% 1.2%

Worked outside on land 41.1% 28.5%

Worked inside 38.9% 44.2%

Worked as homemaker 18.3% 26.1%

analysis. A further 171 participants were excluded due to missing covariate or outcome

data not related to prior eye-surgery. Finally, 221 participants were excluded based on

having prior surgery that precluded assessment of cataracts. Three participants with

extreme values of baseline UVB exposure (M(0) > .54) were excluded from the study to

avoid leverage problems in estimation; our results cannot be extrapolated to those with

extreme baseline UVB exposure. This left 1,955 in our study; 1,125 (58%) wore glasses

outside in their early thirties, 830 (42%) did not.

Table 1 notes the baseline characteristics of the sample. There were not substan-

tial differences between those in the dataset who did and did not wear glasses based

on age or diabetic status, although the difference in ages was statistically significant

(p-value<0.05). However, those who did wear glasses outside were more likely to be

women, white, and more likely to have a high school education. The distribution of jobs

between the two groups also differed.

Table 1 also reveals a statistically significant (p-value<0.05) baseline difference

in UVB exposure that would have occurred if no one had worn glasses (M(0)) across the

glass wearing groups, but the magnitude of the difference was small. The difference was

likely related to the different job characteristics of those who wore glasses in the study.

The difference in baseline exposure demonstrates the importance of including baseline
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UVB exposure under no glasses in our propensity model to account for confounding. Af-

ter weighting by the estimated propensity of having the eyeglasses use actually observed,

the means and proportions of the covariates were almost identical across glass wearing

groups, thus indicating that our propensity score models were self-consistent (Tan 2006).

Further, the range of the estimated probabilities of wearing eyeglasses was similar be-

tween the two groups suggesting that there was sufficient overlap in the covariate space.

None of the propensity weights were near 0 or 1.

We first assessed the evidence for mediation using a method similar to that ad-

vocated by Baron and Kenny; the major difference being that here we use a logistic

rather than linear model. As noted before, Baron and Kenny’s method is not directly

generalizable to logistic models, although researchers have applied it in such settings.

Table 2 presents the results of logistic models fit on the observed data. We see in Model

1 that wearing eyeglasses is protective of the development of cortical cataracts and is

statistically significant after controlling for the possible confounders. In Model 2, the

effect of glasses changes slightly and is no longer significant. In Model 3, glasses use is

a significant predictor of UVB exposure after controlling for the possible confounders in

a linear regression, which is a necessary condition for mediation to occur under Baron

and Kenny’s framework. This last finding was not surprising since glasses use was used

to derive the observed UVB exposure in equation (5.1).

To practitioners of Baron and Kenny’s method, the analysis on the observed

data provides limited if any evidence of a mediational effect. After controlling for the

hypothesized mediator, glasses use was no longer a statistically significant predictor of

cataracts, but the magnitude of the estimated coefficient barely changes. However, the

coefficient of UVB exposure is not statistically significant in the full model, which is

not consistent with a hypothesis that UVB exposure is in the causal pathway. Since

job status was related to UVB exposure, we repeated the analysis but excluded the

job indicators from the logistic models; the results were not substantially changed. As

discussed in Section 3, however, such an analysis is causally flawed.
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Table 2: Logistic models of cataract development (with coefficients reported as odds

ratios) and linear model of observed UVB exposure.

Variable Model 1 95% CI Model 2 95% CI

Cataract Models

Age 1.17 (1.07, 1.28) 1.17 (1.07, 1.28)

Age spline term 0.89 (0.78, 1.03) 0.89 (0.78, 1.03)

Diabetic 1.43 (1.02, 2.00) 1.43 (1.02, 2.00)

Male 0.64 (0.45, 0.92) 0.63 (0.44, 0.91)

Black 4.23 (3.13, 5.72) 4.22 (3.12, 5.71)

<12 years education 1.10 (0.81, 1.48) 1.09 (0.81, 1.48)

Worked over water Reference Reference

Worked outside 0.50 (0.20, 1.27) 0.52 (0.20, 1.32)

Worked inside 0.64 (0.25, 1.66) 0.70 (0.26, 1.90)

Worked as homemaker 0.54 (0.19, 1.51) 0.57 (0.20, 1.61)

Glasses 0.74 (0.56, 0.99) 0.78 (0.57, 1.09)

UVB 1.80 (0.30, 10.76)

Variable Model 3 95% CI

UVB Model

Intercept 0.31 (0.16, 0.45)

Age 0.00 (0.00, 0.00)

Age spline term 0.00 (0.00, 0.00)

Diabetic 0.00 (-0.01, 0.01)

Male 0.03 (0.02, 0.04)

Black 0.00 (-0.01, 0.01)

<12 years education 0.01 (0.00, 0.01)

Worked over water Reference

Worked outside -0.05 (-0.08, -0.02)

Worked inside -0.14 (-0.17, -0.11)

Worked as homemaker -0.08 (-0.11, -0.05)

Glasses -0.10 (-0.10, -0.09)
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Figure 2: Estimates of P [Y (0) = 1 | P = p,M(0) = m]: Probabilities of developing

cataracts under no glasses within strata.
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In the sample, 16.1% of those who did not wear glasses and 11.6% of those

who did developed cortical cataracts. Figure 2 presents a contour plot of estimates of

P [Y (0) = 1|P, M(0)], the probabilities of developing cataracts under no glasses within

levels of P and M(0). There does not seem to be much impact of either UVB exposure or

UVB reduction on the probability of developing cataracts under no glasses. The lack of

a strong relationship between outcomes under no glasses and exposure under no glasses

was not expected. We would expect that the probability of developing cataracts would

increase as UVB exposure increases, as was found by West et al. (1998) This finding

could be related to the data structure. We have missing cortical cataract data in those

who had surgery; it is possible those in the dataset with high UVB exposure developed

cataracts early and hence had surgery by the time of the study. Hence, we might be

underestimating the true probability of developing cataracts for those with high levels

of exposure.

Figure 3 presents estimates of ν(p, m), the relative risk of developing cataracts

related to glasses use given the proportion of UVB rays not filtered by glasses and MSY

exposure under no glasses. As expected, glasses do not have a protective effect on

cataract development when baseline exposure under no glasses is 0 or when glasses do

not filter any UVB. The RR is generally near or greater than 1 when P = 1 or M(0) = 0;
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Figure 3: Estimates of ν(P = p,M(0) = m): RR of developing cataracts under glasses

versus under no glasses given strata.
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however, there are relatively few observations with P near 1 or M(0) near 0 with which

to estimate such effects precisely. The contour plot achieves a minimum when P = 0.50

and M(0) = 0.15 MSYs (RR=0.48, 95% CI 0.28, 0.83). Darker areas of the plot indicate

regions in which the effect was statistically significant; that is, the upper bound of the

95% confidence interval did not cross 1. We see that glasses are protective at moderate

levels of MSYs under no glasses and moderate reductions in the proportion of UVB rays

reaching the eye.

In the M(0) direction, the point estimates of the relative risk range from 0.82 to

1.97 when there is no baseline exposure (M(0) = 0). No relative risk estimates were

statistically significant near M(0) = 0. The RR decreases as M(0) increases near 0;

this suggests that glasses are more protective as baseline UVB exposure increases. This

intuitively makes sense since glasses cannot have much of an impact on cataracts via

reduction in UVB exposure when people do not have much baseline exposure. The RR

starts to increase slightly at a baseline exposure of approximately 0.15 MSYs, although

the effect is still generally protective as M(0) increases. This might indicate that glasses

are not as effective for an individual with high baseline exposure if the individual is

still receiving substantial UVB exposure under glasses. The effect of UVB on cataract

development might be nonlinear and there could be a threshold effect in which exposure
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above a certain level does not significantly increase cataract risk.

Another reason that the hyperplane might increase at higher levels of M(0) might

be due to nonrandom missing data among those who had surgeries. Indeed, 221 (10.14%)

of those eligible for inclusion in the study had surgery. However, it is unlikely that this

significantly affected the results. While the rate of cortical cataracts was likely higher

in those who had surgery, the increased rate was probably not high enough to change

the inferences. Among subjects who had unilateral surgery in the SEE data, a group

probably comparable to those who had bilateral surgery, 17.9% of participants had

cortical cataracts noted in the good eye. This is slightly lower than the 21.5% pre-

surgery rate of cortical cataracts for those who underwent surgery reported by Lewis et

al. who also used SEE data (Lewis et al. 2004) This compares with a rate of 13.0%

in the SEE population without a history of unilateral or bilateral surgery. Hence, the

vast majority of those who had surgery probably did not have surgery due to cortical

cataracts and hence the addition of the unseen outcomes would be unlikely to change

the overall results.

Figure 4: Estimates of ν(P = p,M(0) = m) and P vs. M(0) among those who wore

glasses; jitter of points used for clarity. Those who wore corrective glasses but not

sunglasses are noted in black.
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In the P direction, the RR ranges from 0.84 to 1.36 when P=1, except for the

effect at very small values of M(0) when the RR reaches values up to 1.97. the relative
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risk decreases as P decreases near 1. Again, this intuitively makes sense in that glasses

are likely to be more effective at reducing the risk of cataracts as they block a larger

proportion of UVB rays. At approximately P = .50, the hyperplane begins to increase

in the P direction before decreasing again, although the increase is generally slight. The

shape of the hyperplane in the P direction may result from differences in protective

effects of corrective glasses versus sunglasses. Figure 4 highlights the values of P vs.

M(0) among those who wore corrective glasses but not sunglasses. We see many of

those who wore corrective glasses only have values of P around 0.2, near the peak of

the uptick in the hyperplane. It is possible those who wore corrective glasses only had

different strategic behavior in their wearing of eyeglasses such that eyeglasses were not

as protective of cataracts in this group. There did not seem to be any other striking

data patterns that could explain the non-monotonicity of the hyperplane.

7 Discussion

Our causal analysis provides evidence that the protective effect of eyeglasses on cataracts

is mediated by their effect on reducing exposure to sunlight UVB. The shape of the hy-

perplane is as we would expect it would be for complete mediation to occur. There is no

statistically significant effect of glasses on cataracts and the point estimates of the rela-

tive risk are generally around 1 when a person receives little baseline sunlight exposure

or glasses have little shielding effect. However, eyeglasses are protective at moderate

levels of baseline exposure or UVB shielding ability. The results are consistent with a

hypothesis that there is no causal direct effect of eyeglasses on cataract development;

the mechanism by which eyeglasses affect cataracts is through their impact on UVB

exposure.

Our method not only provides important epidemiological evidence about the

utility of wearing glasses outdoors, but also demonstrates the richness of analyses that

are possible by using the potential outcomes framework to investigate mediation. The

naive logistic analysis gave only weak support for a mediated effect; the magnitude of

the coefficients and statistical significance between the reduced and full models did not

change very much. In contrast, the causal analysis gave a rich depiction of the extent

to which the effect of glasses on cataracts is likely mediated by reducing UVB exposure.

We were able to observe not just a mediational effect, but also able to see how much
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data was available to support our findings.

The SEE data and nature of this problem afforded us some unique opportunities.

Because the ability of eyeglasses to reduce UVB exposure is scientifically well-defined,

the counterfactual exposure level was available for those in the dataset who wore glasses.

This gave us valuable information that helped us identify the joint distribution of the

potential outcomes. The fact that the counterfactuals could be considered observable

provides a case study of a situation when a potential outcomes analysis is not inherently

epistemological.

There were limitations to this study. One was that we did not have complete

outcome information on those who had a prior history of surgery. However, as discussed

above, it is unlikely that the inclusion of that information would dramatically change

the overall conclusions of this study. Another limitation comes from the retrospective

cohort nature of the SEE data. We did not follow participants prospectively from their

thirties into later life. Hence, our study is subject to recall biases and left truncation

due to death. However, since the development of late life cortical cataracts is not likely

to be associated with death, we do not think that losses due to death severely bias the

results.

This study provides evidence that wearing eyeglasses in midlife can protect against

the development of cataracts in later life. We also demonstrate how scientists can use the

potential outcomes framework in order to define causal effects that are more meaningful

than the direct and indirect effects of path analytic techniques. The potential outcomes

framework allows us to define meaningful causal estimands, and also to investigate me-

diation when outcomes are not continuous in ways not possible under traditional path

analysis.
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