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Estimation and projection of incidence and prevalence based
on doubly truncated data with application to

pharmacoepidemiological databases

Henrik Støvring and Mei-Cheng Wang

October 7, 2005

Abstract

Incidence of diseases are of primary interest in any epidemiological analysis of disease spread in
general populations. Ordinary estimates obtained from follow-up of an initially non-diseased cohort are
costly, and so such estimates are not routinely available. In contrast, routine registers exist for many
diseases with data on all detected cases within a given calendar time period, but lacking information on
non-diseased. In the present work we show how this type of data supplemented with data on the past
birth process can be analyzed to yield age specific incidence estimates as well as lifetime prevalence. A
non-parametric model is studied with emphasis on the required assumptions, and a brief outlook on the
analysis of the non-stationary case with calendar trends in age-specific incidence is given. The devel-
oped methods are applied to case cohort data on treatment with antidiabetic medications and projections
are provided for both diabetes incidence and prevalence. As projection of diabetes prevalence requires
estimation of the distribution of disease durations, two novel approaches for this estimation is studied, a
parametric and a non-parametric, respectively.

1 INTRODUCTION

Chronic diseases with long durations are at the center stage of public health interest in western, modern
societies, since they affect many and induce high costs for patients as well as society. The costs for patients
include higher comorbidity, loss of life-years as well as quality of life, and for society loss of productive
life years and expenses incurred by provision of health care services. A proper understanding of the disease
and its costs requires knowledge of the fundamental epidemiological measures incidence, prevalence, and
mortality. These are however typically difficult and costly to measure, and so alternatives based on either
inexpensive or existing data would be of high interest.

One such datatype is the so-called case cohort data, which consists of all occurences of new cases, be
it disease or treatment onset, within a fixed time window. Case cohort designs are generally considered to
be efficient, in particular for diseases with a low rate of occurrence; see (Mantel 1973), (Prentice 1978),
(Oakes 1981), (Thomas 1981), (Lubin and Gail 1984), and references therein. A case-control design
typically collects data from all the cases and selects one or more time-matched ’controls’ to match each
case to conduct relevant analysis. In this paper we consider a case cohort which consists of only the
cases—in our case identified by means of a pharmaco-epidemiological database—possibly supplemented
with additional information on the process of initiating events, for example the birth process of the general
population.

In case cohort studies it is common to collect case data within a calendar time period. In this paper
we assume that the sample includes all subjects who have advanced to a certain end-point (failure event)
within a given calendar time period, and that the time origin (initiating event, birth time) of each case
can be retrospectively identified. So far statistical methods for this type of data have not (to the extent
of the authors’ knowledge) been extensively studied, when the rate of initiating events is not assumed
constant over calendar time. In this paper we introduce such a methodology which yields a non-parametric
maximum likelihood estimate of the age-specific incidence distribution based solely on case cohort data,
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and allows supplementing with a known birth rate. The non-parametric method does not directly provide
measures of the uncertainty of the estimate, and so we propose a bootstrap method for obtaining measures
of this uncertainty.

Note that the case data considered in this paper provide information which is different from the in-
formation of the cases in the cohort case-control studies mentioned earlier (Mantel 1973; Prentice 1978;
Oakes 1981; Thomas 1981; Lubin and Gail 1984), although the two types of data do share common char-
acteristics. As pointed out in (Prentice 1986, p4), in cohort case-control studies the failure time is usually
defined as the time from the beginning of follow-up to a failure event, which is different from the failure
time considered in the current setting. The failure times from the cases in the former studies can be thought
of as right-truncated data, in contrast with the doubly-truncated data investigated in this paper.

Further, it is important to realize that we cannot supplement with retrospective information on age at
incidence among prevalents, see (Keiding, Holst, and Green 1989). This is due to the fact that onset ages
are not observable outside the observation window in pharmacoepidemiological databases. As another
consequence, the “usual” analysis of disease duration based on delayed entry is not possible here, as we
cannot condition on time since onset prior to the start of the observation window.

Before presenting the theory for estimation and projection in Section 3, we first introduce the data
in Section 2 which is used for the application. In Section 4 we present analyses of incidence of use of
anti-diabetic medications and present projections of both incidence and prevalence based upon these.

2 DATA

2.1 Case cohort data on antidiabetic treatment

For the period 1992–2003 the Odense Pharmaco-epidemiological Database (OPED) contains subject spe-
cific information on all prescriptions for subsidized medications redeemed at a pharmacy in the County
of Fyn, as well as information on births, deaths and migration into and out of the County of Fyn. For
each individual we identified all prescriptions of antidiabetic agents in OPED. The antidiabetic drugs are
characterized by the first three characters being A10 (The WHO Collaborating Centre for Drug Statistics
Methodology 2001). We will not distinguish between the various types of antidiabetic treatments, such
as for example insulin (A10A) and oral antidiabetics (A10B). Incident events are defined to be the first
treatment event observed in the time window for subjects who did not have any previous events during a
one year run-in period. The run-in period was either started at the start of the database or at the time of
first immigration into Fyn of the subject, if the subject immigrated into Fyn during the observation period.
Note, that this may well introduce a calendar-time-dependent misclassfication and hence bias, cf. (Støvring,
Andersen, Beck-Nielsen, Green, and Vach 2003), but this will be ignored in the following as we are not
studying secular trends in incidence. Also note, that by definition, these data will only allow us to study
incidence and prevalence of pharmacologically treated diabetes. We will thus use the words “treated” and
“diseased” interchangeably, and ask the reader to keep in mind that the present analysis only pertains to
pharmacologically treated diabetes.

2.2 Birth rates

For the period 1891-2003, available data from Statistics Denmark were used to determine annual, national
birth counts for each gender. To estimate the number of births within the county of Fyn, data was obtained
on population size for Denmark as a whole, as well as for Fyn with the objective of rescaling. Population
counts were available roughly at five year intervals (1901, 1906,. . . , 1921, 1925, 1930, . . . , 1970, 1976,
1981, 1986, 1990, 1995, 1998, 1999,. . . ,2003) for Fyn, whereas nationwide data was available annually
from 1970 and onward, and otherwise similar to those for Fyn given above.

To estimate the number of births in the county of Fyn, we scaled national birthrates by the relative pop-
ulation size in the county of Fyn compared to the total population of Denmark. The underlying assumption
is that the fertility rate on Fyn is similar to national rates, which seems plausible given the small size of
Denmark and the relatively homogeneous composition of the population. As population counts are not
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available annually we interpolated the population data based on simple piecewise linear regression, with
cut points at 1920, 1970, and 1996, cf. Figure 1.

[Figure 1 about here.]

Overall, Fyn hold 9%-10% of the Danish population during most of the twentieth century and the fit
seems very good. The sudden drop in 1920 is due to the reunion of North Slesvig with Denmark after
having been part of Germany from 1864.

In subsequent analyses the missing proportions were replaced with the predicted, while the observed
proportions were retained. When we combined this with the national birth rates, we could compute the
number of births in the county of Fyn as the product of the number of births in Denmark and the proportion
of the Danish population living in the County of Fyn. Since no observations were available for the ten year
period 1891-1900, we predicted the annual number of births in this period from a linear extrapolation of
the birth counts in the period 1901-1910. The resulting gender specific annual birth rates in the County of
Fyns are presented in Figure 2. The rates appear clearly non-stationary, highlighting the need for methods
that account for this.

[Figure 2 about here.]

Note, that all estimated number of births are treated as fixed in subsequent analyses.

3 THEORY AND SET-UP

Before proceeding, we want to point out that it is well understood that in the analysis of right-truncated
data the presence of truncation would result in biased inferences for the time to event outcome variable. As
an interesting contrast, under certain conditions, the bias caused by double truncation could be removed
because of the presence of both left and right truncation. This phenomenon will later be explained by an
expression of the marginal density for the observed events.

We now introduce the notation used in the paper. Let U be the calendar time of the initiating events
(births). Let Y be age at onset if the disease occurs before death, and ∞ in the absence of disease before
death. Let the population density function (pdf) of Y be f(y|u), and the associated cumulative distribution
function (cdf) F (y|u). Further, let Z0 be age at death if Z0 < Y , that is disease does not occur before
death. If Y > Z0, we let Y = ∞, and otherwise we let Z0 = ∞. Let R be duration of disease with
cdf K(r|y, u), where R is only defined if Y ≤ Z0. Define Z1 to be age at death if Y ≤ Z0, undefined
otherwise. For ease of reading we will at times denote F as FY , K as KR and so on.

Since not all subjects will experience disease prior to death, the pdf of Y , f(y|u), is a mixture distribu-
tion with two components:

f(y|u) = π∞(u)f∗(y|u) + (1 − π∞(u)) (1)

where π∞(u) is defined as P (Y < ∞|u), i.e. it is the probability of disease occuring before death, and
f∗(y|u) is the conditional pdf of Y given that Y < ∞, i.e. Y ≤ Z0. Note, that since π∞(u) is the
probability of disease occurring before death, it is the lifetime prevalence.

Assume that we observe all events of onset, Y , occurring within the calendar time observation window
[0; τ0). Assume that the occurrence of births follows a Poisson process with intensity φ(u) for u ≤ τ0, and
that y+ = sup{y : F ∗(y|u) < 1} exists and is finite for all u ≤ τ0, where y+ is the maximal observable
age at onset before death. We can then normalize the birth intensity φ(u) to a density g on [−y+; τ0):

g(u) =
φ(u)∫ τ0

−y+ φ(s) ds
(2)

with associated cumulative distribution function G. In principle φ could well depend on covariates, but
since we consider φ either known or constant, we will ignore this.

We will in the following assume (U1, Y1), . . . , (Un, Yn) to be independent and identically distributed
(iid).

A crucial assumption to consider is whether or not we have calendar time stationarity with respect to
age of onset, i.e., whether or not the following assumption is valid:
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(S1) The age of onset is independent of time of birth, i.e., F (y|u) = F (y).

Although we here have knowledge of the birth process, this will not be the case in many applications.
Hence we also consider the situation with calendar time stationarity of the birth process:

(S2) Assume that the occurence of initiating events started in the distant past and that the rate of occurence
has been stabilized. Or, quantitatively, assume that ux = inf{u : φ(u) > 0} is small enough so that
ux ≤ −yx, and that Gx is uniform on [−yx; τ0).

3.1 Stationary incidence, known birth process

When (S1) holds, the joint density of the observed (u, y) can be written as follows:

p(u, y| − U ≤ Y ≤ τ0 − U) =

[
g(u)I(−y ≤ u ≤ τ0 − y)

G(τ0 − y) − G(−y)

]
(3)

×

[
{G(τ0 − y) − G(−y)}f∗(y)I(y ≤ y+)

∫ y+

0 {G(τ0 − s) − G(−s)}f∗(s)ds

]

= pc(u|y)pm(y) (4)

where pc(u|y) can be interpreted as the density of birth times conditional on y being observed in [0; τ0),
and pm(y) is the marginal density for the observed y weighted with wi = G(τ0 − y) − G(−y), i.e., the
probability of birth occuring within the interval [−y; τ0 − y).

When g is known, then so is pc, as are the weights in pm. It is thus straightforward to compute the
maximum likelihood estimate of F ∗ based on the weighted observations:

F̂ ∗(y) =

∑
i:yi≤y w−1

i∑n
i=1 w−1

i

(5)

The estimate thus places mass w−1
j /

∑
w−1

j at each jump point j, where j corresponds to the observation
number in the ordered set of Yi. If all weights are equal, the above formula corresponds to the ordinary
formula for non-parametric estimation of a cdf in the uncensored case, putting mass n−1 at each jump
point.

With the estimate of the conditional cdf F ∗ it is possible to obtain an estimator of the unconditional
F utilizing their relationship given in Equation (1). What we need is an estimate of π∞, which may be
obtained from noting that the occurrence rate of incident events I tr at any calendar time point is given by

I tr(t) =

∫ t

−∞

φ(u)f(t − u)I(t − u ≤ y+)du (6)

= π∞

∫ t

−∞

φ(u)f∗(t − u)du (7)

where the indicator function I(t−u ≤ y+) is needed, since the occurrence rate obviously does not include
those for which onset never happens, that is when y = t − u > y+ or equivalently that y = t − u = ∞.
Integrating this over the observation window, we find

∫ τ0

0

I tr(t)dt = π∞

∫ τ0

0

∫ t

−∞

φ(u)f∗(t − u)du dt (8)

= π∞

∫ τ0

−∞

φ(u)

{∫ τ0

max(u,0)

f∗(t − u)dt

}
du (9)

= π∞

∫ τ0

−∞

φ(u)

{∫ τ0−u

max(0, −u)

f∗(t)dt

}
du (10)

= π∞

∫ τ0

−∞

φ(u) {F ∗(τ0 − u) − F ∗(max(0, −u))} du (11)
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from which it follows that

π∞ =

∫ τ0

0

I tr(t)dt

/[∫ τ0

−∞

φ(u) {F ∗(τ0 − u) − F ∗(max(0, −u))} du

]
(12)

Plugging in the MLE of F ∗, we obtain an estimate of π∞, since φ is known and
∫ τ0

0
I tr(t)dt is estimated by

the total number of observed incidences over the interval [0; τ0). Having obtained the MLE of F ∗ together
with an estimate of π∞, we can use Equation (1) to compute an estimate of F , the unconditional cdf of age
at onset.

3.2 Stationary incidence and stationary birth process

When both (S1) and (S2) holds, the marginal density of the observed y’s can be further simplified

p(y) =

[
{τ0/(τ0 + yx)}f∗(y)I(y ≤ y+)

τ0/(τ0 + yx)

]
= f∗(y)I(y ≤ y+) (13)

Here the density function of the observed y’s coincides with the population density function f ∗ of the
observable onset times, Y . In the case when only age at onset distribution is of interest, and not lifetime
prevalence, the ’usual methods’ are thus applicable to the case data to estimate f ∗ by putting equal weights
on all observations as noted above.

If, however, we are also interested in the unconditional density, i.e. f(y), we need an estimate of
π∞ to be able to proceed. Above, this was obtained from our knowledge of the birth process, and in
principle we could exploit this again. However, in situations where a stationary birth process is assumed,
this is typically because we lack information on the birth process. Thus it may in such situations be
necessary with alternative approaches. One obvious way to proceed is the following: In the time window
where information is collected on incident cases, we also collect information on deaths—either for all or a
random sample—and classify them according to whether or not they had experienced disease. The relative
frequency of diseased deaths will then be an estimate of π∞ under stationarity assumptions with respect to
the birth process, the incidence process, and the mortality. With this estimate of π∞ we may then estimate
the unconditional F .

3.3 Non-stationary incidence

When (S1) does not hold—or rather when we are not willing to make this assumption—the likelihood
becomes substantially more complicated. In principle this can be handled by introducing a parameter
vector θ relating the incidence density to the time of birth.

We can in principle still undertake the rewriting presented in Equation (4), with the modification that
the density term pm(y) now depends on parameters θ, i.e.

pm(y|θ) =
{G(τ0 − y|θ) − G(−y|θ)}f∗(y|θ)

∫ y+

0 {G(τ0 − s|θ) − G(−s|θ)}f∗(s|θ)ds
(14)

This density does unfortunately not directly permit use of the approach presented above for finding a non-
parametric estimate of f∗(y|θ), nor for finding the corresponding estimate of π∞(θ).

One alternative is to set up a full likelihood by considering a full parametric model of both age of onset
and age of death, but we will not go into further details here and instead commend this as a topic for future
research.

3.4 Projection of incidence and prevalence

Projection of incidence is possible both inside and outside the observation window by application of the
formula in Equation (6), when the birth process is known and incidence is assumed stationary. In the
application studied here, the birth process is known for u ≤ τ0. For u > τ0 it must be projected. As a
simple starting point, we will carry the last observed value of the birth process forward, i.e. let φ(u) = φ(τ0)
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for u > τ0. As the incidence density f(y|θ) is estimated, we can plug in this estimate to obtain a projection
of incidence.

Projection of prevalence at time t is in general possible using one of two approaches. The first is based
on the incidence rate and distribution of durations:

P tr(t) =

∫ t

−∞

I tr(w)(1 − K(t − w|w))dw (15)

where K(t−w|w) = P (R ≤ t−w|U +Y = w). We propose two strategies for estimating K, a parametric
and a non-parametric.

The second approach is based on the birth rate and the probability of being prevalent and alive at time t

P tr(t) =

∫ t

−∞

φ(u)P (Y ≤ t − u, Z1 > t − u)du (16)

Note that P (Y ≤ t − u, Z1 > t − u) is age-specific prevalence. We will not further discuss this approach
since age-specific prevalence is not readily estimable for all birth cohorts in the present setting, in particular
not when allowed to depend on birth time.

As above, when estimating and projecting incidence, there are two natural assumptions to consider with
respect to the stationarity of mortality among diseased. The first is:

(M1) Age at death among diseased is independent of birth, i.e., H(z|u, Y = y) = H(z|Y = y) ≡ Hy(z).

Note, that Hy is explicitly allowed to depend on age at onset.
The second assumption states that the occurrence rate of incident cases is constant with respect to

calendar time, and is thus identical to jointly assuming (S1) and (S2). For convenience we will label the
joint assumption of (S1) and (S2) as (M2).

We first focus on projection of prevalence at t, based on a parametric estimate of disease duration.
Assume that both (S1) and (M1) are satisfied. This implies that the distribution of disease duration is

stationary with respect to calendar time, i.e. R is independent of calendar time of onset and so KR(r|w) =
KR(r). A parametric estimate of disease duration may then be based on a likelihood composed of two
types of contributions:

1. For the sub-cohort of incidence cases (i.e., diabetic incidences occurring within the window [0; τ0)),
their likelihood contribution is formed by the usual right-censored data, i.e.

∏

i

kR(ri)
δi(1 − KR(r+

i ))1−δi (17)

where ri is observed duration, r+
i is a right censored duration, δi is an indicator of censoring (1 if

uncensored, 0 if censored), and kR is the pdf associated with KR, the distribution of durations.

2. For the sub-cohort of subjects who are prevalent at time 0 and dying within the time window [0; τ0),
the likelihood contribution is

∏

i

∫ −z+

0
I tr(w)kR(w + si)dw

C0
(18)

where C0 is a standardizing constant =
∫ τ0

0

∫ −z+

0
I tr(w)kR(w + v)dw dv. Essentially the idea

is to use the weighted pdf similar to (14) but replace the birth intensity by the diabetic incidence
intensity, and integrate out the unobserved truncation time (time from incidence to calendar time 0,
w), with respect to the distribution of W . We do not include contributions which are both left and
right censored as they are subject to length biased sampling, which would substantially complicate
estimation while only contributing little additional information.

As the observation window is relatively short in comparison to most durations, only a parametric kR can
be estimated, as the likelihood does not otherwise control the tail probability of kR.

The non-parametric approach is best described by setting up an Illness-Death model as depicted in
Figure 3. Again we assume (S1) and (M1).
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[Figure 3 about here.]

First, let both λ and αH depend on current age, y, and let αI depend on both age at onset, y, and current
age, y + r. The pdf of durations, k, is given by:

k(r) = P (Z1 − Y ∈ [r; r + δr)|Y ≤ Z0) (19)

=
P (Z1 − Y ∈ [r; r + δr), Y ≤ Z0)

π∞
(20)

= (π∞)−1

∫ y+

0

P (Z1 − y ∈ [r; r + δr), Y ∈ [y; y + δy), Y ≤ Z0)dy (21)

= (π∞)−1

∫ y+

0

λ(y) exp

[
−

∫ y

0

λ(s) + αH(s)ds

]

×αI(y, y + r) exp

[
−

∫ y+r

y

αI(y, s)ds

]
dy (22)

Let us now assume that αI(y, y + r) = αI(y + r) for all y, i.e. the mortality rate among diseased does not
depend on age at onset. We then get the following rewriting:

k(r) = (π∞)−1

∫ y+

0

fY (y)
h∗

Z1
(y + r)

S∗
Z1

(y)
dy (23)

=

∫ y+

0

f∗
Y (y)

h∗
Z1

(y + r)

S∗
Z1

(y)
dy (24)

where S∗
Z1

(a) = exp[−
∫ a

0
αI(s)ds] and h∗

Z1
(a) = αI(a) exp[−

∫ a

0
αI(s)ds]. Note, that this pdf and

survivor function correspond to the distribution that may be estimated, i.e. P (Z1 ∈ [a; a + δa)|Y ≤ a),
which is the same as P (Z1 ∈ [a; a + δa)|Y ≤ a, Y ≤ Z0).

In the paper we have so far developed methodology for estimation of F ∗
Y . It is now interesting that

the very same methodology may be used to obtain an estimate of HZ1|Y <a(a). All that is needed is to
identify all diseased subjects who die within the observation window and record their age at death (or a
sample thereof), and then use these and the weights based on the birth process to construct a non-parametric
estimate of HZ1|Y ≤a(a).

If, finally, complete stationarity is assumed, i.e. (M1) and (M2), we suggest taking advantage of the
following well-known epidemiologic formula (see for example (Keiding 1991))

P tr = I trµR (25)

where µR = E(R) is the mean duration of disease. This mean can readily be estimated, since E(R) =
E(Z1|Y ≤ Z0)−E(Y |Y ≤ Z0), and estimates of the latter two means can be obtained from the estimates
of F ∗

Y and HZ1|Y ≤Z0
, respectively.

4 ANALYSIS OF ANTIDIABETIC TREATMENT

Tables 1 and 2 gives basic descriptive statististics of the studied population. Table 1 shows the number
of incidence events tabulated by gender, birth period and calendar year, which is used for estimating age-
specific incidence. As above, all analyses are based on using a one-year run-in period. Table 2 shows
number of observed durations (onset and death observed), right censored durations (onset observed, no
death observed), and number of doubly truncated durations (prevalent at 0, death in [0; τ0)).

[Table 1 about here.]

[Table 2 about here.]
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4.1 Complete stationarity

Although the birth process is known in our setting, we for comparison present an analysis based on assum-
ing stationarity for the birth process, the incidence process, as well as the mortality process among diseased.
We first classified all deaths according to whether or not a previous redemption of antidiabetics had been
observed, considering all with such a redemption to be diabetics. The lifetime prevalence, π∞, was for
females estimated at 9.68% (95% Confidence Interval: 9.35%; 10.02%) and for males at 10.86% (10.51%;
11.22%), where both confidence intervals are binomial exact. The estimated incidence distribution, F ,
stratified on gender is shown in Figure 4.

[Figure 4 about here.]

4.2 Stationarity of incidence, known birth process

If we assume stationarity of the incidence distribution only, we make a non-parametric analysis based on
the weighted likelihood given in Equation (4) and the estimator of π∞ in Equation (12). With the gender
specific birth rates, we estimated gender specific estimates of F∗, π∞, and hence F , from the observed
events and associated ages at the events. The resulting estimates of the incidence distribution F is displayed
in Figure 5.

[Figure 5 about here.]

We see that the incidence distribution for both genders are made up of two components: The first compo-
nent is a more or less constant density for ages below 40 years (the linear part in F ), whereas the second
is a much higher, unimodal density for ages above 40 years which vanishes for ages above 80 (the sigmoid
shaped part of F ). For males the estimated lifetime prevalence, π̂∞, is 15.61% (15.58%; 15.65%), whereas
for females it is 13.77% (13.74%; 13.81%). Both confidence intervals are computed using bootstrap with
a thousand replications. The confidence intervals are very narrow which reflects the high statistical effi-
ciency of the weighted likelihood approach—which in turn partly comes from the strong assumption of
stationarity.

The shape of F is quite similar to the unweighted estimate, whereas the estimated lifetime prevalences
are substantially higher than those estimated above. The major explanation is of course lack of stationarity
of the true lifetime risk and/or the disease duration: The estimate of π∞ based on disease status among
observed deaths takes most of its information from the older cohorts as they are the ones with high mor-
tality. If the older cohorts had lower lifetime prevalences and/or previously had relatively higher mortality
among diseased compared to non-diseased, this will result in a decreased estimate of π∞. This would
also be attenuated if older cohorts are larger than younger cohorts, as is indeed the case here, cf. Figure 2.
Contrastingly, when indirectly estimating π∞ based on weighting with the birth process, the estimate can
be viewed as a weighted average of π∞ over the entire interval for the birth process [−yx; τ0 − y).

4.3 Projection of diabetes incidence and prevalence

In the completely stationary situation, where (S1) and (S2) are both assumed to hold, the projected annual
incidence is a constant number equaling the lifetime prevalence times the annual number of births. As the
annual number of births are usually not observable in such settings, an alternative is needed. In the spirit of
estimating π∞ from the treatment status among deaths, one could take the total annual number of deaths
as an estimate of the number of births. If the population is in a completely stationary state, the annual
number of deaths must on average equal the average annual number of births. In our setting the observed
numbers of deaths over the 11 year period are 29,871 for females and 29,816 for males yielding projected,
annual incidences of 262.8 for females and 294.3 for males. Prevalence projection based on estimated
mean disease duration yields 4111.9 for females and 3888.5 for males.

In Figure 6 the incidence is projected based on the weighted, non-parametric estimate of F obtained
above in Section 4.2, i.e. with known birth intensity and stationary incidence. All annual birth counts after
2003 are set to the number of births observed in 2003. A projection twenty years into the future is likely to
be very inaccurate, and so only short term predictions (five to ten years) should be considered trustworthy.

8

http://biostats.bepress.com/jhubiostat/paper88



Also note that the observed incidence strongly suggests a departure from non-stationarity, and so actual
incidences are likely to be higher than those projected from a stationarity assumption.

[Figure 6 about here.]

The projected incidences show a small but persistent decline for 2004-2025. The general level is much
higher than above, reflecting the higher estimate of π∞ obtained from using the known birth distribution,
but correspond well with observed incidences.

For projection of prevalence, we apply both the parametric and non-parametric estimation of K devel-
oped above. For the parametric estimation we used a Weibull distribution with log-transformed parameters,
i.e.

kR(r) = exp
[
−(eαr)eγ

+ γ + α + (eγ − 1)(α + log r)
]

(26)

The numerical integration was conducted using stratified, antithetic sampling with strata defined by cal-
endar year. Based on 100 repeated estimations, the standard deviation of the estimates was less than 7
percent of the average, estimated standard error. For all estimates, the first two decimals were stable. The
maximum likelihood estimates obtained are presented below:

[Table 3 about here.]

The resulting gender specific estimates of the survivor function are shown in Figure 7, and the compa-
rable non-parametric estimate is shown in Figure 8. The estimates show a rather skewed distribution with
high probability mass for short durations and only little chance of durations of more than eighty years. The
median duration is around 15 years and with males having shorter durations.

[Figure 7 about here.]

[Figure 8 about here.]

Combining this with the estimated incidence rate yields the projections of prevalence displayed in
Figure 9 and 10. As always, prediction should only be done for the short term future, but as durations of
diabetes are long it is reasonable to project prevalence twenty years into the future.

[Figure 9 about here.]

[Figure 10 about here.]

Regardless of estimation method, the projection is markedly larger than the observed prevalences on Jan-
uary 1 for the years 1993-2003 based on using a one year run-in period (Støvring, Andersen, Beck-Nielsen,
Green, and Vach 2003). The prevalence is projected to decrease as a result of decreasing birth rates, cf.
Figure 2, which is contrary to the markedly lower, but rapidly increasing prevalence observed throughout
1993-2003. The discrepancy between observed and projected prevalence reflects that past mortality among
diabetics is severely underestimated and/or past incidence is severely overestimated, and so it clearly high-
lights the inadequacy of assuming stationarity. Yet the projection is still interesting from a public health
perspective, since it is based on an assumption of stationary incidence and mortality. It thus describes
the equilibrium size of the prevalent population if the current birth rate, incidence, and mortality among
diseased are carried forward. In other words, if incidence and mortality remains at their current levels,
then the number of prevalents will become more than doubled before a steady state is reached. This is
in good agreement with other predictions of a doubling in prevalence over the next twenty years, both in
the US (Mokdad, Bowman, Ford, Vinicor, Marks, and Koplan 2001) and worldwide (Wild, Roglic, Green,
Sicree, and King 2004). If incidence further increases and/or mortality among diseased decreases, then
even higher numbers of prevalent diabetics are to be expected. And it will take more than twenty years
before equilibrium is reached.
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5 DISCUSSION

In this paper we have developed and implemented methods for estimating and projecting incidence, preva-
lence and lifetime prevalence of a disease based on observation of incident events in an observation window,
i.e. case cohort data. The developed methodology yields non-parametric estimates, and can likewise easily
be applied if parametric estimates are desired.

In its simplest form, when assuming a stationary birth process and a stationary incidence, a simple
non-parametric estimate of F is obtained. When alternatively the birth process is considered known, this
is taken into account by a weighted, non-parametric estimate with weights based on the relative sizes of
the relevant birth cohorts. Both approaches directly provide estimates of age-specific incidence as well as
of lifetime risk, which are of considerable public health interest. Due to the relatively fast computational
procedures developed, confidence intervals for the estimates could be obtained from direct application of
bootstrap methodology.

The obtained projections demonstrate the lack of stationarity in the present situation of the diabetes
epidemic, at least with respect to pharmacologically treated diabetes. With current incidence and mortality
rates held constant, nearly a doubling in prevalence should be expected before a state of equilibrium is
reached, which is predicted to not happen earlier than twenty years from now. If alternatively, the incidence
rises and/or mortality among diseased goes down, then even higher prevalences are to be expected as well
as a further postponement of equilibrium. Absence of stationarity in mortality is not surprising since insulin
was introduced in the 1920’s with virtually no prior treatment. Also, lack of stationarity of incidence would
hardly come as a surprise with current focus on the impact of the changing lifestyle.

Although we in principle showed how the stationarity assumption could be relaxed by formulating a
full, parametric likelihood, we did not give a detailed analysis of this situation due to its complexity. The
data considered in this paper are rather limited since, first, the observation window is short compared to
typical disase duration, and second, no information is available on age of onset outside the observation
window. As a result, we have been unable to allow for trends in incidence and mortality, the absence
of which must be considered most unrealistic—as also indicated by projections based on assumptions of
stationarity. Still, we consider the results to be of interest, as they elicit the lack of equilibrium in current
diabetes epidemiology, and outline how diabetes prevalence will continue to rise in the foreseeable future,
even in the absence of rising incidence or declining mortality.

In many epidemiological settings it will, however, be possible to obtain data on age of onset for subjects
prevalent at start of the time window or for diseased subjects dying in the observation window, cf. (Keiding,
Holst, and Green 1989). Such information is obviously valuable and needs to be incorporated in the
analysis to allow relaxing unrealistic assumptions. In such situations the data richness will, however, begin
to resemble follow-up data, the lack of which motivated the present work.
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Figure 1: Observed and predicted fractions of the Danish population living in the county of Fyn during
1900-2003.
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Figure 2: Annual number of births in the county of Fyn during 1891-2003.
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φ Y : λ

Z0 : αH Z1(= Y + R) : αI

Figure 3: Illness-death model, where Y , Z0 and Z1 are random variables with associated hazards λ, αH ,
and αI , respectively.
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Figure 4: Estimated incidence distribution F for pharmacological treatment with any antidiabetic drug with
respect to age and stratified on gender under the assumption of calendar time stationarity both with respect
to incidence and birth process.
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Figure 5: Estimated incidence distribution F for pharmacological treatment with any antidiabetic drug with
respect to age and stratified on gender under the assumption of calendar time stationarity.
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Figure 6: Projected and observed numbers of incident events based on an assumption of a stationary inci-
dence and using a weighted, non-parametric estimate of F .
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Figure 7: Parametric estimate of survivor function for duration of diabetes, Weibull.
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Figure 8: Non-parametric estimate of survivor function for duration of diabetes.
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Figure 9: Projected and observed numbers of prevalent cases of diabetes, parametric estimate of K
(Weibull).
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Figure 10: Projected and observed numbers of prevalent cases of diabetes, non-parametric estimate of K.
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Event year
Gender Birth 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
Females -1909 60 24 30 22 7 19 9 7 6 4 4

1910-9 103 79 74 101 81 69 66 58 65 51 47
1920-9 110 123 99 122 98 112 118 109 106 119 118
1930-9 65 86 78 86 96 82 96 108 111 132 140
1940-9 51 51 55 70 65 64 88 100 115 117 137
1950-9 41 31 32 26 32 30 38 48 51 64 70
1960-9 18 18 13 20 8 18 28 29 30 34 48
1970-9 17 10 9 6 13 5 9 9 18 19 34
1980-9 4 3 24 5 6 8 7 9 5 11

1990- 4 6 3 3 5 7 10 10
Males -1909 29 19 18 8 7 7 4 2 2 2

1910-9 94 80 68 71 65 58 42 45 37 21 28
1920-9 126 145 106 118 96 116 99 93 82 123 123
1930-9 107 95 114 132 126 119 131 156 143 126 174
1940-9 104 102 83 102 111 129 140 166 183 191 214
1950-9 49 52 38 52 42 77 65 70 77 106 113
1960-9 16 19 19 21 27 23 28 29 41 55 53
1970-9 12 11 17 8 5 7 10 9 15 14 12
1980-9 8 2 3 28 6 2 7 12 12 12 10

1990- 5 3 2 6 7 8 9 5

Table 1: Number of incidence events by gender, calendar year of event and calendar year of birth.
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Females Males
Birth r r+ s r r+ s

-1909 163 29 378 91 7 188
1910-9 442 352 674 440 169 555
1920-9 351 883 433 493 734 514
1930-9 156 924 138 311 1,112 272
1940-9 61 852 39 147 1,378 120
1950-9 23 440 17 47 694 30
1960-9 5 259 7 7 324 15
1970-9 2 147 2 2 118 4
1980-9 82 102 1

1990- 48 45

Table 2: Number of durations of diabetes treatment by gender, birth year, and observation type: observed
(r), right censored (r+), and doubly truncated (s).
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Gender Parameter Estimate s.e. 95%-CI
Females α -3.054 0.048 (-3.148; -2.959)

γ -0.137 0.025 (-0.186; -0.087)
Males α -2.913 0.039 (-2.990; -2.837)

γ -0.101 0.022 (-0.144; -0.058)

Table 3: Gender specific parameter estimates for durations of diabetes, Weibull distribution.
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