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Summary: Propensity score adjustment of e�ect estimates in observational studies of treatment is a

common technique used to control for bias in treatment assignment. In situations where matching on

propensity score is not possible or desirable, regression adjustment and strati�cation are two options.

Regression adjustment is used most often and can be highly e�cient, but it can lead to biased results

when model assumptions are violated. Validity of the strati�cation approach depends on fewer model

assumptions, but is less e�cient than regression adjustment when the regression assumptions hold.

To investigate these issues, by simulation we compare strati�cation and regression adjustments. We

consider two strati�cation approaches; equal frequency classes and an approach the attempts to minimize

the mean squared error (MSE) of the treatment e�ect estimate. The regression approach we consider

is a Generalized Additive Model (GAM), that �exibly estimates the relations among propensity score,

treatment assignment, and outcome. We �nd that, under a wide range of plausible data generating

distributions, the GAM approach outperforms strati�cation in treatment e�ect estimation with respect

to bias, variance, and thereby MSE. We illustrate approaches via analysis of data on insurance plan choice

and its relation to satisfaction with asthma care.

Key words: Generalized Additive Model; Observational study; Optimal strati�cation; Propensity

score adjustment.
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1. Introduction

In observational studies where investigators seek to estimate the e�ect of a binary treatment

(�treatment� and control), treatment assignment is not randomized. As a result, treatment groups

may di�er substantially on potentially confounding covariates, biasing estimated treatment e�ects

(Rubin, 1991; Sommer and Zeger, 1991). Methods available to control for confounding include

regression, matching, and strati�cation on covariates (Cochran, 1968; Billewicz, 1965). Propensity

score methods, developed by Rosenbaum and Rubin (1983), may also be used to balance the

distribution of measured covariates across treatment groups.

The propensity score of an experimental unit is the conditional probability of assignment to the

treatment group, given observed covariates. Under complete randomization, this probability is

controlled by the investigator and is stochastically independent of covariates. When units are not

randomized, the propensity is induced by the assignment process. Speci�cally, units (individuals)

that are treated will tend to have higher propensity scores than those who go untreated. This

imbalance in propensity score represents an imbalance on covariates between treatment and

control groups. Methods of adjustment utilizing the propensity, including matching, strati�cation,

and regression adjustment on propensity scores, have been shown to yield unbiased estimates of

treatment e�ect when the estimand of interest is the expected di�erence in response between

treatment and control and treatment assignment is 'strongly ignorable' (Rosenbaum and Rubin,

1983, 1984, 1985; Dehejia and Wahba, 2002).

Matching can be highly e�ective in removing imbalance in covariates between treatment groups,

but there are often some study units that cannot be matched and must be left out of analysis

(D'Agostino Jr., 1998). The treatment e�ect estimate will then be based on a reduced, and

potentially non-representative, set of cases. Thus, if investigators wish to estimate average

treatment e�ect for the entire study population, regression adjustment and strati�cation are both

useful options, but no consensus exists as to which method is preferable under various conditions.
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The utility of each method of adjustment will depend on the mean squared error (MSE) of the

resulting treatment e�ect estimate with lower MSE preferred.

When using the strati�cation approach, the range of propensity scores is split into strata, and

treatment e�ect is estimated within each stratum. Then, overall treatment e�ect is computed

by a weighted mean of the stratum-speci�c estimates. Strati�cation on propensity score does

not require speci�cation of the propensity-outcome relation, and, therefore, may be preferable to

regression adjustment, especially when this relation is believed to be complex. However, choice of

the number and placement of strata does in�uence the variance and bias of the combined estimate.

Generally, there are opposing e�ects; wide strata produce low variance but high potential bias,

narrow strata the reverse.

The most common implementation of strati�cation on propensity score is �ve equal frequency

strata. A result from Cochran (1968), cited in Rosenbaum and Rubin (1983), indicates that

approximately 90% of the initial bias due to the propensity is eliminated by this strati�cation.

Importantly, Cochran's result is based on a linear relation between propensity and outcome.

In other situations, such as those where strati�cation on propensity score is most desirable,

strati�cation on the quintiles, for example, may not adequately remove bias, and other approaches

to forming strata may be preferable. Hullsiek and Louis (2002) propose choosing strata that

balance the variances of the stratum-speci�c estimates. This method generally produces an e�ect

estimate with lower variance than the equal frequency approach because equal frequency strata

with very high estimated variances will be widened to achieve variance balance. Of course, this

widening can increase bias.

Reviews of propensity score methods in published clinical research have found that regression

adjustment by propensity score is the most commonly used method, although investigators often

fail to check the adequacy of their model speci�cation (Shah et al., 2005; Weitzen et al., 2004).

When the relation between propensity and outcome is linear, direct adjustment may be achieved
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by including a linear term for propensity in the regression model. In this scenario, regression

adjustment is preferable to strati�cation because it estimates treatment e�ect with lower variance

than strati�cation and similarly removes nearly all the bias (Rosenbaum and Rubin, 1984, 1983;

D'Agostino Jr., 1998). When the relation between propensity and outcome is not linear, regression

adjustment by propensity score will require more care. Specifying the propensity-outcome relation

in a suitably �exible way, for example using Generalized Additive Models (GAMs) (Hastie and

Tibshirani, 1990), may control bias with a smaller variance than that for strati�cation.

We present a Monte Carlo study comparing the performance of regression adjustment and

strati�cation approaches with respect to variance, bias, and MSE for several data generating

models. The methods considered include equal frequency strati�cation on propensity score, an

'optimal' strati�cation on propensity score that minimizes the estimated MSE of the resulting

treatment e�ect estimate, and regression adjustment on propensity score using GAMs. We assume

throughout that the propensity score has been estimated well; however, deviations from this

assumption would certainly e�ect the performance for all of the methods investigated. Section 2

describes notation and the propensity score methods under consideration. Section 3 presents the

simulation study and results. Section 4 presents an analysis of an observational study of the e�ect

of health insurance type on satisfaction with asthma care. Section 5 summarizes our �ndings.

2. Model and Methods

Let Zi indicate treatment assignment, with Zi = 1 for treatment and Zi = 0 for control. De�ne

the response vectors accordingly, Y z = (Y1z, Y2z, . . . , Ynzz), where nz is the sample size for

treatment group z. Furthermore, let X i be a vector of potential confounders, associated with

both treatment and outcome. The propensity score is de�ned ei = e(X i) = Pr(Z = 1|X i). We
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assume linear confounding via the model

Y |z, e = β0 + β1z + g(e) + ε (1)

ε ∼ N(0, σ2)

where β0 and β1 are scalar parameters and g is some smooth function. Our target of estimation

is the true average treatment e�ect, given by ∆ = β1.

We are interested in comparing estimation approaches for ∆ with respect to MSE and its

components, variance and bias, which may be summarized:

MSE(∆̂) = V ar(∆̂) +Bias(∆̂)2 (2)

With no confounding, a simple di�erence of means, (Ȳ1−Ȳ0), is minimum variance, unbiased (and

therefore minimum MSE) for estimating the treatment e�ect. In the presence of confounding,

this estimate is biased. The initial bias for this unadjusted estimate is

Bias(Ȳ1 − Ȳ0) = E(Ȳ1)− E(Ȳ0)− β1

=

∫ 1

0

g(u)[f1(u)− f0(u)]du (3)

where f1 and f0 are the densities of propensity scores in the treatment and control groups,

respectively. We consider regression and strati�cation on propensity score for reducing bias in

estimation of ∆.

2.1 Regression adjustment

The assumed model in (1) suggests the use of GAMs for estimating treatment e�ect. Fitting the

GAM, E(Y |z, e) = β0 + β1z + g(e), treatment e�ect and variance are returned as the estimate

and variance of the coe�cient on treatment, β1. The smooth term for propensity score, g(e), is

approximated as a sum of spline terms. Any of the well-known basis functions may be used in

this sum; we use thin plate regression splines with cross-validated smoothing parameter selection,
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as described in Wood (2003, 2004). This regression model should closely mirror the true data

generating process under our assumed model. If data are generated from another model, for

example, a model with a non-additive e�ect of treatment, then the GAM will not represent the

data generating process, but may be used for estimation of average treatment e�ect.

2.2 Strati�cation

Let t = (0 = t0 < t1 < . . . < tK = 1) de�ne a partition of the range of propensity scores with

K subclasses. Within each stratum, k ∈ {1, . . . , K}, treatment e�ect is estimated with a simple

di�erence of means, ∆̂k. The variance of the di�erence of means is estimated

Vk = σ̂2
1k/n1k + σ̂2

0k/n0k (4)

where σ̂zk = V̂ ar(Y |Z = z, tk−1 < e ≤ tk) and nzk is the number of units in treatment

group z and subclass k. The overall treatment e�ect estimate and its estimated variance is the

inverse-variance-weighted mean of the subclass-speci�c estimates, given by

∆̂ =

(
K∑

k=1

∆̂kV
−1
k

)
/

(
K∑

k=1

V −1
k

)

ˆV ar(∆̂) = 1/

(
K∑

k=1

V −1
k

)
. (5)

Several authors have noted that the variance estimator given here generally underestimates

the variance of the strati�ed treatment e�ect estimate because it treats the partition as �xed,

rather than data dependent (Tu and Zhou, 2002; D'Agostino Jr., 1998). We use this estimator

nonetheless because we are not primarily interested in the performance of the variance estimator,

and we focus instead on the performance of the treatment e�ect estimators.

We consider two methods for choosing t. In equal frequency strati�cation, the partition is

de�ned by the quantiles. As an alternative, we seek to choose a partition that minimizes the MSE

of the combined treatment e�ect estimate. In order to �nd the optimal partition, we must be

able to estimate the MSE of the inverse variance-weighted estimator of treatment e�ect for a
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given partition. The estimator for variance is given above in (5). Under the assumed model (1),

a formula for bias in stratum k is given by:

Bias(∆̂k) = E(Y |Z = 1, e ∈ (tk−1, tk))− E(Y |Z = 0, e ∈ (tk−1, tk))− β1

= E(g(e)|Z = 1, e ∈ (tk−1, tk))− E(g(e)|Z = 0, e ∈ (tk−1, tk))

=

∫ tk

tk−1

g(x)[f1(x)/M1k − f0(x)/M0k]dx (6)

where Mzk =
∫ tk

tk−1
fz(x)dx. This formula can be estimated using the estimated functional form

of the relation between propensity score and outcome, ĝ, returned by the GAM described above.

In addition, we estimate the densities of propensity scores in each treatment group, f1 and f0,

using a simple kernel density estimator.

Overall estimated bias of the treatment e�ect estimator is the inverse-variance-weighted mean

of the subclass-speci�c biases. Using the estimates for bias and variance, we produce a function

that returns the estimated MSE for a given partition, t, and dataset, (y, z, e). The optimal

partition for K subclasses is then found by treating the K − 1 elements of t between 0 and 1 as

the variable parameters in an optimization algorithm for minimizing the estimated MSE function.

3. Simulation Study

As shown in (3) and (6), the amount of bias due to propensity relates to the amount of imbalance

in propensity between the two groups. We consider a class of conditional densities of the propensity

scores in the treatment and control groups, de�ned respectively by:

f1(e) =

 (2e)s e ≤ .5

2− (2(1− e))2 e > .5

f0(e) = f1(1− e)

These densities are by construction anti-symmetric (fz(e) = f1−z(1−e)) and produce a marginal

uniform density when there is equal sample size in the two groups. Varying s produces a wide
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range of plausible distributions; an s of zero indicates a uniform distribution in each treatment

group, and a large s indicates an extreme imbalance in propensity score by treatment assignment.

We set π = P (Z = 1) = 1/2 and generated N = n1 + n0 propensity scores from a uniform

distribution on (0,1). We then assigned treatment indicators according to

Zi ∼ Bernoulli(πf1(ei)). (7)

We consider outcomes generated by two di�erent models: the additive model, which is equiv-

alent to the assumed model presented in (1), and the non-additive model,

Yi = exp{β0 + β1zi + g(ei) + εi} (8)

εi ∼ N(0, σ2).

where, as before, β0 and β1 are scalar parameters and g is a smooth function. For both models, we

consider the treatment e�ect of interest to be the average di�erence in expected outcome between

treatment and control, conditional on propensity score. In the additive model, this quantity is given

by ∆ = ∆(e) = β1. In the non-additive model, this quantity is equal to

∆ =

∫ 1

0

∆(e)dF (e)

=

∫ 1

0

E(Y |Z = 1, e)− E(Y |Z = 0, e)dF (e)

= exp{β0 + σ2/2}(exp{β1} − 1)

∫ 1

0

exp{g(e)}dF (e) (9)

3.1 Simulation Settings

We considered samples of size N = 200 and, as mentioned earlier, set π = 0.5 to achieve

approximately equal sample size in the two groups and a marginal uniform distribution for

propensity scores. We generated data with three di�erent values of s: .5, 1, and 2, corresponding

to low, moderate, and high imbalance, respectively, in propensity scores in the two groups.

Furthermore, for each value of s, four di�erent functional forms for g, the relation between
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propensity and outcome, are considered: (A) g(e) = e, (B) g(e) = e2, (C) g(e) = 2(e − .3)2,

and (D) g(e) = .5 + 4(e− .5)3. Each of these functions has an approximate range of [0,1] over

the same domain interval, and, therefore, each induces a similar amount of bias. Relation (A) is

linear, relation (B) is non-linear, but monotonic, relation (C) is non-linear and non-monotonic,

and relation (D) has a non-monotonic �rst derivative. The three values for s and four functions

for g yield 12 simulation scenarios for each of the two models.

In the additive model, we chose β0 = 0, β1 = .25, and σ = .5, so that the true treatment e�ect is

equal to one half of the error standard deviation. In the non-additive model, we chose β0 = −.125,

β1 = .2, and σ = .5. Because we speci�ed β0 = −σ2/2 and e ∼ Unif(0, 1), the expression for

the treatment e�ect in the non-additive model is reduced to (exp{β1}− 1)
∫ 1

0
exp{g(u)}du. We

simulated 1000 datasets under each scenario and each model.

With each simulated dataset, we applied each of the methods presented in Section 2, including:

(1) adjustment by propensity score via a smooth term for propensity score in a GAM; (2) equal

frequency (EF) strati�cation using K = 1 through 6 subclasses; and (3) optimal strati�cation,

using K = 1 through 6 subclasses, chosen such that the estimated MSE of the resulting estimate

is minimized. Additionally, in the simulations generated from the additive model, we use the true

g(e) in a generalized linear model (GLM) to compare with the GAM. In the GLM, the true values

of g(ei) enter the model as an o�set, so that only the intercept and treatment e�ect must be

estimated. Clearly, this model cannot be estimated in practice, since one generally won't know

the true propensity-outcome relation. In this study, we compare the estimates from this model to

that obtained using GAM to show the amount of bias and variance in the GAM estimates that is

due to estimation of the relation g(e).

3.2 Simulation Results

In all of the data-generating scenarios considered, signi�cant positive bias exists when treatment

e�ect is estimated directly, corresponding to strati�cation with K = 1. Initial bias is similar (but
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not constant) across the four propensity-outcome relations because the ranges of these functions

are similar. Varying the amount of imbalance in propensities, indexed by s, varies the amount of

initial bias. Data generated under higher s values produce estimates of treatment e�ect with higher

initial bias. Data simulated with high imbalance in propensity scores between treatment groups

also su�er from lack of su�cient overlap; when using the strati�cation approaches, particularly

with datasets simulated under s = 1 or s = 2, the outermost strata contain data from only one

treatment group. Therefore, no treatment e�ect estimate is possible for those strata, and their

corresponding variance estimates are in�nite. In those situations, we allowed the in�nite variance

to dictate a zero weight for the data in those strata, so that the number of strata actually used

in treatment e�ect estimation, denoted by K∗, is smaller than K, the number of strata intended.

In this section, we present a selection of the simulation results, but results for all simulations

discussed are available in Web Supplement A.

Figure 1 shows the average estimated treatment e�ect with one observed standard error bars

(left panel), observed standard errors and average estimated standard errors with 95% quantile

bars (center panel), and observed root MSE (right panel) for data simulated under the additive

model with linear relation between propensity and outcome (relation (A)). Data is displayed for

simulations using all three values of s and for all analysis approaches considered. The horizontal

axis is K, the number of strata used, where K = 0 refers to the use of non-strati�cation methods,

GLM and GAM. The use of K = 1 means no strati�cation (direct estimation through a simple

di�erence of means); these estimates show the amount of initial bias. For K > 2, the number of

simulations out of 1000 that have K∗ = K is printed above the corresponding plotting point for

EF strati�cations, and below the corresponding point for optimal strati�cations.

The treatment e�ect estimate plots show that the GAM and both strati�cation approaches

are e�ective at reducing or eliminating bias due to propensity score. In particular, for each value

of s, the GAM produces estimates of treatment e�ect that are on average unbiased and nearly
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identical to that of the GLM. Estimating the propensity-outcome relation in the GAM increases the

standard error of the treatment e�ect estimator only slightly compared to the GLM. Bias reduction

through strati�cation is achieved better at larger values of K. The optimal strati�cation method

does slightly outperform equal frequency strati�cation with respect to bias reduction at moderate

values of K, but at large values of K, the bias is equivalent for both strati�cations (or even

slightly favoring EF strati�cation) and the observed standard error is smaller for EF strati�cation.

The standard error plots in Figure 1 con�rm that our variance estimator for the strati�ed

treatment e�ects does on average produce estimates of standard error lower than what is observed

across simulations. Observed standard errors generally increase asK increases, although for s = 2,

this is not the case because so many of these datasets had K∗ < K. The standard error estimates

resulting from the GAMs is on average close to the observed standard error and generally lower

than the observed standard errors resulting from strati�cation.

The plots of root MSE (RMSE) in Figure 1 show that in these data the GAM results in lower

RMSE than the strati�cation approaches, regardless of the value of s. The di�erences in RMSE

between the GLM, GAM, and strati�cation approaches become larger as s increases. In addition,

RMSE is approximately constant for strati�cation approaches with K ≥ 3. Although we continue

to reduce bias as we increase K, this bias reduction is paid for with increasing variance, thus

leaving RMSE essentially constant.

[Figure 1 about here.]

In Figure 2, we display the same information as that plotted in Figure 1, except for s = .5

only and for propensity-outcome relation (B). The patterns are primarily the same as they were

when the propensity-outcome relation was linear. GAM again provides an unbiased estimate with

equivalent or smaller observed standard error than either strati�cation method. The di�erences

in RMSE among estimation methods are again larger at larger values of s. The simulation results
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for relations (C) and (D) are available in the Web Supplement and are similar to the results

presented here.

[Figure 2 about here.]

Figure 3 displays simulation results for data simulated under the non-additive model with s = .5

and propensity-outcome relation (A). There are several di�erences in these results compared to

the results plotted in Figure 1 for the additive model. First, the true treatment e�ect is no longer

equal to β1 = 0.25, but is given by (9). Although the GAM estimates the true treatment e�ect

well, the strati�ed estimates appear to be converging to some negatively biased quantity as K

increases. These strati�ed estimates do pass through the truth at K = 3, but of course, a priori

the analyst has no way of knowing which K to choose to achieve these results.

The insu�cient overlap in the optimal strata seems to be ampli�ed in the non-additive data

compared to the additive data. In Figure 3, nearly all of the simulated datasets have K∗ = K

when using EF strati�cation, but many datasets have K∗ < K when using optimal strati�cation.

Also, the GAM is now generally overestimating the standard error of the estimates of treatment

e�ect compared to that which is observed. In general, the GAM again has lower RMSE than

either strati�cation method, regardless of the number of strata used.

[Figure 3 about here.]

In Figure 4, results are shown, as in Figure 3, for the simulations with propensity-outcome

relation (B). Results are similar to those with propensity-outcome relation (A) and again show

that the GAM outperforms strati�cation. The results for other values of s and the other propensity-

outcome relations (C) and (D) are similar.

[Figure 4 about here.]
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3.3 Generality of Distributional Assumptions

Above, we simulated propensity scores with a Uniform(0,1) marginal density and conditional

distributions that are anti-symmetric. The former assumption is made without loss of generality

because propensity scores not satisfying this condition may be transformed. If the conditional

densities are anti-symmetric and we have equal sample size in each group, the uniform transform

does not corrupt this property; however, if anti-symmetry is not present, it cannot be forced

through a monotone transform.

Let F (e), F1(e), and F0(e) be the cumulative distribution functions of propensity scores,

marginally, in the treated group, and in the control group, respectively. Using F as the uniform

transform, the transformed scores and their conditional distributions are given by

U = F (e)

F ∗
z (u) = Fz(F−1(u))

The conditional distribution of the transformed data is closely related to the conditional distribu-

tion of the untransformed data. Because of this relation, anti-symmetry is preserved under this

transformation, as shown in the Appendix

The preservation of anti-symmetry under the uniformity transform follows from the more general

fact that any monotone transform will preserve anti-symmetry. This property also implies that

no monotone transform will produce anti-symmetry in data where it does not already exist.

Therefore, the results presented above are at least partially generalizable to cases which do not

meet the assumptions held thus far. It is possible that data without anti-symmetric conditional

densities of propensity scores will produce di�erent results. In some preliminary investigations of

this possibility, results were very similar when propensity scores were simulated from densities that

were not anti-symmetric.
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4. Analysis of Insurance Plan Choice Data

The following analysis considers data collected on 2515 asthma patients as part of the 1998

Asthma Outcomes Survey (Masland et al., 2000). This study was initiated by the Paci�c Business

Group on Health and HealthNet health plan for the purpose of assessing the quality of asthma care

from 20 physician groups. Huang et al. (2005) developed propensity score methods to address

physician group as a multiple treatment analysis. Because we prefer a binary treatment, our

analysis evaluates the e�ect of health insurance type on satisfaction with asthma care across the

20 providers. Insurance type is classi�ed as public, purchased through an employer, purchased

personally, or other. A large majority, 2360 individuals, held either employer or personally pur-

chased health insurance, and we consider the subset of data with these two insurance types so

that the treatment of interest is dichotomous. Our indicator of treatment, Z, indicates having

personally purchased health insurance.

The outcome is also dichotomous; Y = 1 indicates very good or excellent satisfaction with care,

and Y = 0 indicates less than very good satisfaction. We are interested in estimating the average

di�erence in the probability of high satisfaction with care between individuals with personally

purchased and employer purchased insurance plans, controlling for confounders of treatment

assignment and outcome. Clearly, this example is di�erent from the data simulated in the Monte

Carlo studies because those data all had continuous outcomes. However, our goal of estimation

here is the same as in the simulations, and we may expect that the estimation problems faced in

data simulated from the non-additive model will be similar to the problems faced in these data.

Therefore, we follow the suggestion of Hellevik (2008) and use a Gaussian family GAM, exactly

as implemented in the simulations, to estimate treatment e�ect.

We began by considering the measured covariates available for use in the propensity score, which

include information about demographics, medical care, and health status. Demographic covariates

are age (18-56), race (Black, White, Asian/Paci�c Islander, American Indian, Other), Hispanic
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identi�cation, gender, educational attainment (high school or less, college, post-graduate work),

and employment status (none, part-time, full-time). Covariates that describe subjects' medical

care are primary physician specialty (pulmonary/allergy specialist, other), consistent care by the

same provider, physician group (1-20), and drug insurance coverage. Health status covariates

include smoking (none, moderate, high), physical activity in the last four weeks (1-7), severity

of asthma (1-4), comorbidity count (0-8), number of years with asthma (1-54), and the SF36

Health Survey composite scores for physical and mental health (0-100).

We must choose, of the measured covariates listed above, which to include in the propensity

score model. Studies of propensity score methods have found that best results are achieved by

only including covariates that are associated with outcome (Austin et al., 2007; Brookhart et al.,

2006). This selection should include all of the potential confounders, those covariates associated

with both treatment assignment and outcome. Therefore, before we estimate any propensity score

models, we check each covariate by �tting a logistic regression model of outcome on treatment

and the covariate. These models allow us to determine if there is an association between covariate

and outcome when controlling for treatment assignment and to order the covariates with respect

to their e�ect on outcome, as recommended by Hill (2008). For nominal categorical covariates,

we �t simple GLMs, and for continuous or ordinal categorical covariates, we �t GAMs. Checks

of association for the 11 categorical covariates and the 6 continuous covariates, respectively,

are displayed in Web Supplement B. From these �gures, we determined that when adjusting for

treatment only smoking, employment status, and physical activity seem to share no association

with the outcome, satisfaction with asthma care.

In the spirit of �exible model estimation, we used a logistic GAM of the personal health

insurance indicator on the remaining 14 covariates that are associated with outcome to estimate

the propensity score for each individual (Woo et al., 2008). The propensity score obtained is the

predicted probability of holding personally purchased insurance, rather than employer purchased
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insurance, given model covariates. We ran an all subset regression with the eight most important

covariates (always present in the model) and some subset of the other six predictors. We compared

the unbiased risk estimator (UBRE) of these 64 models to identify a smaller set of useful

candidate models. For each candidate model, we then checked the balance of all 14 covariates

associated with outcome to identify our �nal model for propensity score estimation. Balance was

checked through side-by-side boxplots of covariates, strati�ed on both treatment and propensity

score quintile, or through two-by-two tables of treatment and covariates within propensity score

quintiles. Figures in Web Supplement B show the balance checks for the �nal model chosen,

which included: (1) random intercepts for physician groups; (2) main e�ects for race, education,

consistent provider care, drug coverage, years with asthma, physical composite score, and mental

composite score; and (3) a smooth term for age, which we note has a nonlinear relation with the

log odds of treatment. Older and younger adults are more likely to have personally purchased

health insurance than adults in middle-age.

[Figure 5 about here.]

Figure 5 shows the densities of the propensity scores in both treatment groups. The two groups

overlap well with respect to propensity score, and we can estimate average treatment e�ect for

the entire propensity score range. We next apply each of the three methods considered in the

Monte Carlo study: GAM estimation, EF strati�cation, and optimal strati�cation. In addition,

we compare these propensity score-based methods with the usual regression of outcome on the

covariates used in the propensity score model and the treatment indicator.

Figure 6 displays the treatment e�ect estimation results of all analysis approaches considered.

All analyses estimate a statistically signi�cant or nearly statistically signi�cant positive e�ect of

holding personally purchased health insurance on satisfaction with asthma care. In particular,

the GAM with propensity score approach, estimates that, on average, the probability of being

highly satis�ed with asthma care is 0.047 (-0.004, 0.097) larger for individuals with personally
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purchased health insurance than individuals with employer purchased health insurance, controlling

for propensity to treatment. This estimate is reduced slightly from the unadjusted treatment e�ect

estimate, 0.061 (0.015, 0.107). In Web Appendix B, we show the estimated smooth term for

propensity score as estimated by the GAM. There is a small positive relation between propensity

score and outcome, and this association re�ects the confounded relation between treatment and

outcome.

[Figure 6 about here.]

5. Discussion

The objective of this study was to compare the relative merits of strati�cation and regression

approaches utilizing the propensity score for estimating treatment e�ects in observational studies

and to explore the potential of an 'optimal' strati�cation procedure. Strati�cation on propensity

score and regression adjustment with a smooth term for propensity score in a GAM both estimate

treatment e�ect �exibly, allowing for nonlinear association between propensity score and outcome,

and both are e�ective at reducing bias due to propensity to treatment. Based on the results from

the Monte Carlo simulations, we recommend the GAM approach for three reasons: the GAM

generally produces estimates with lower average bias and variance; the GAM requires less user

choice to achieve bias reduction compared to strati�cation where the analyst must, at minimum,

choose an appropriate K; and, thanks to �exible and automated GAM packages, such as mgcv in

R, the GAM is simpler to implement than even EF strati�cation. In addition, the lack of necessary

user choice in GAMs allows the outcomes to stay �hidden� until the �nal step of analysis, as

advocated by Rubin (2001, 2007).

The bene�ts of GAMs in this case do not, however, overcome the need for great care in

propensity score analysis. For example, analysts must still check for covariate balance on esti-

mated propensity score. In the analysis presented in Section 4, we checked approximate balance



Regression Adjustment and Strati�cation by Propensity Score in Treatment E�ect Estimation 17

of covariates within propensity score quintile, which ensures unconfounding of treatment and

outcome within quintile. How best to check for balance when the propensity score will be used

in a covariate regression has not been studied. In the Monte Carlo studies, we assumed that we

have a well-estimated propensity score, and that there exists a �true� smooth relation between

the estimated propensity score and the expectation of outcome. In data where covariates are not

well-balanced by the estimated propensity score, we may expect that these assumptions fail and

the results for all methods considered will be worse than what is presented here.

Estimated propensity scores must also be checked for su�cient overlap of treatment groups.

Insu�cient overlap may result in a modi�ed estimand or inappropriate extrapolation, regardless

of the propensity score analysis method used. In particular, in each of the simulations presented

in this paper, we additionally implemented a GAM that estimated a separate smooth term for

propensity score among treated and untreated subjects. We then estimated average treatment

e�ect using this model to predict the unobserved potential outcomes. We did not present the

results from this method in Section 3.2 because the imbalance in the tails of the propensity score

distributions led to inappropriate extrapolation and extremely poor estimates of average treatment

e�ect. The GAM with a single smooth term for propensity score is partially protected from this

kind of extrapolation because the estimated e�ect of treatment is forced to be constant across

the range of propensity scores. Therefore, treatment e�ect is estimated primarily from data units

that lie in overlapping regions of the propensity score distributions; however, this case may result

in an estimand that is di�erent than what the investigator intended.

Finally, we note that regression adjustment may be more problematic when variances di�er

between treatment groups. We investigated this possibility in the non-additive simulation studies,

where data was simulated with heteroscedastic errors. The strati�cation approaches allow for

di�ering variance estimates between treatment groups and across strata. The GAM approach

does not model the heteroscedasticity, but still outperformed strati�cation in these simulations.
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In cases of more extreme imbalance in variances between treatment groups, we may �nd that the

GAM no longer performs well.

Supplementary Materials

Web Appendices and Figures referenced in Sections 3.2 and 4 are available under the Paper

Information link at the Biometrics website http://www.biometrics.tibs.org.
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Appendix Proof of Anti-symmetry Preservation

In this section we prove that when π = 1/2, anti-symmetry of conditional densities is preserved

under the uniform transform. Recall, anti-symmetry is de�ned, fz(e) = f1−z(1− e). Equivalently,

we may state, Fz(e) = 1− F1−z(1− e). We must show that F ∗
1 (1− u) = 1− F ∗

0 (u).

First, note that

F (1− e) =
1

2
F1(1− e) +

1

2
F0(1− e)

=
1

2
[1− F0(e)] +

1

2
[1− F1(e)]

= 1− 1

2
F1(e)−

1

2
F0(e)

= 1− F (e)

⇒ F (1− F−1(e)) = 1− e

⇒ 1− F−1(e) = F−1(1− e).

Then consider

F ∗
1 (1− u) = F1(F

−1(1− u))

= F1(1− F−1(u))

= 1− F0(F
−1(u))

= 1− F ∗
0 (u).
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Figure 1. Average estimated treatment effect with one observed standard error bars (left
panel), observed standard errors and average estimated standard errors with 95% quantile
bars (center panel), and observed root MSE (right panel) for data simulated under the
additive model with linear relation between propensity and outcome (relation (A)). Data is
displayed for simulations using all three values of s and for all analysis approaches considered.
The horizontal axis is K, the number of strata used, where K = 0 refers to the use of non-
stratification methods, GLM and GAM, and K = 1 means no stratification (direct estimation
through a simple difference of means).
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Figure 2. Simulation results for data simulated under the additive model with s = .5 and
propensity-outcome relation (B), corresponding to g(e) = e2.
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Figure 3. Simulation results for data simulated under the non-additive model with s = .5
and propensity-outcome relation (A), corresponding to g(e) = e.
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Figure 4. Simulation results for data simulated under the non-additive model with s = .5
and propensity-outcome relation (B), corresponding to g(e) = e2.
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Figure 5. Relative frequencies of the estimated propensity scores conditional on treatment.
Only 26.4% of units had personally purchased health insurance (“Treated”), and 73.6% of
units had employer purchased health insurance (“Untreated”).
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Figure 6. Treatment effect estimates with confidence intervals, using a regular regression
approach (Reg), the GAM with propensity scores approach (GAM), and the optimal (Opt)
and equal frequency (EF) stratification on propensity score approaches.
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