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NONPARAMETRIC ESTIMATION OF BIVARIATE FAILURE TIME ASSOCIATIONS

IN THE PRESENCE OF A COMPETING RISK

BY KAREN BANDEEN-ROCHE, JING NING

Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 

615 North Wolfe Street, Baltimore, Maryland 21205, U.S.A.

e-mail: kbandeen@jhsph.edu     jning@jhsph.edu

SUMMARY

There has been much research on the study of associations among paired failure

times.  Most has either assumed time invariance of association or been based on complex

measures or estimators.  Little has accommodated failures arising amid competing risks. 

This paper targets the conditional cause specific hazard ratio, a recent modification of the

conditional hazard ratio to accommodate competing risks data.   Estimation is

accomplished by an intuitive, nonparametric method that localizes Kendall’s tau.  Time

variance is accommodated through a partitioning of space into “bins” between which the

strength of association may differ.  Inferential procedures are researched, small sample

performance evaluated, and methods applied to investigate familial association in dementia

onset.  The proposed methodology augments existing methodology with an approach that

may be more readily applied and interpreted, thus facilitate dissemination of methodology

addressing failure time associations into the substantive literature.  

Some key words: Cause-specific; Kendall’s tau; Multivariate; Paired; Survival; U-statistic
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1. INTRODUCTION

Methodology to analyze correlated failure time data has potentially wide import for

biomedical research.  With the proliferation of genetics studies and outcomes research,

studies must account for time-to-event clustering within families or providers of care. 

Examples abound where health is quantified as multiple occurrences per individual, be it

recurrent events such as serial falls (Stel et al., 2003), or times to “comorbid” disease onset

(Camp et al., 2005), or repeated assessments of episode duration (e.g. wakefulness; Punjabi

et al., 1999).  When statistical analyses involve such data, there must be accounting of

failure time correlations to ensure correctness of inferences, at the least.  Further, strength

of dependence among related failure times may be of scientific interest.  This paper

concerns this latter case.  We both propose methodology to estimate strength of failure time

dependence and apply it to estimate familial association in ages of dementia onset. 

There has been considerable work on the assessment of failure time associations. 

Among the earliest-proposed measures was the cross-, or conditional hazard, ratio

(Clayton, 1978; Clayton & Cuzick, 1985; Oakes, 1982; 1986).  Clayton’s (1978) measure

provides a single, time-invariant summary of dependence.  The cross-ratio function has a

parametric representation with a direct link to two well discussed families for modeling

multivariate failure times, parametric copula (Genest & MacKay, 1986) and frailty (Oakes,

1989) models.  Two primary approaches have been proposed for the estimation of failure

time associations using these models:  full or approximate maximum likelihood (Nielsen et

al., 1992; Ripatti et al., 2002; Ripatti & Palmgren 2000), and two-stage, “pseudo”-

maximum likelihood (Genest et al, 1995; Shih & Louis, 1995; Glidden, 2000).  
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A number of nonparametric association measures have also been proposed,

including the general formulation of the conditional hazard ratio function.  There have also

been two primary approaches to estimation in this case.  A first plugs into the association

measure a nonparametric estimator of the multivariate survival  (i.e. Dabrowska, 1988;

Prentice et. al, 2004) or cumulative hazard function (Prentice & Cai, 1992; Hsu & Prentice,

1996; Fan et al., 2000; Wang & Wells, 2000).  A second employs one-dimensional

empirical processes whose expectations relate conveniently to the measure of interest,

affording method-of-moments estimation (Oakes, 1982; Oakes, 1989; Genest & Rivest,

1993; Barbe et al., 1996 Viswanathan & Manatunga, 2001; Chen & Bandeen-Roche,

2005).  Regression models relating such association measures to covariates have also been

proposed (e.g. Prentice & Hsu 1997; Fine & Jiang, 2000).

This considerable body of research notwithstanding, measures of failure time

associations have been slow to find utilization in biomedical studies.  A Web of Science

search carried out on June 6, 2005 identified the vast majority of citations to articles just

referenced to be by quantitative methodology articles, with scarcely any excepting in

review articles appearing in the biomedical literature.  Among potential explanations, two

are relevant to the present work.  First, the complexity of estimation involved for most

existing approaches, and in some cases, of interpretation, may be off-putting.  Second, little

of the existing work accounts explicitly for competing or semi-competing risks.  Yet, these

are unavoidable in applications involving conditions that may lead to death or affect only a

fraction of individuals within their lifetimes.  Bandeen-Roche and Liang (2002) studied the

estimation of failure time associations accounting for competing risks; at that paper’s
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(1)

completion, no other papers on the topic could be found.  We are aware of one subsequent

paper, whose measures of association are based on bivariate cause-specific hazard and

cumulative-incidence functions and are of a combined empirical process, survival function

estimator plug-in type (J. Fine, personal communication, December 16, 2004).  

Here we aim to progress toward filling the gap we have just argued, by developing

inference procedures for a simple, nonparametric estimator of an easily interpreted measure

of bivariate failure time association, the conditional cause-specific hazard ratio (CCSHR,

Bandeen-Roche & Liang, 2002).  Ignoring censoring for the present, let X1,X2 be failure

times to be observed for two family members; K1,K2, the respective causes of failure, with

kj = 1 indicating dementia onset and kj = 2 indicating death before dementia; and 8k, the

hazard function for failure specific to cause k.  The CCSHR defines the multiplicative

increase in risk of dementia onset for family members whose relatives are diagnosed as

cases at, say, age x1 versus those whose relatives survive without disease beyond that age:  

Our 2002 paper was primarily focused on a parametric, copula-based formulation of this

quantity, whose estimation proved highly sensitive to modeling assumptions.  In contrast,

this paper studies estimation by a localized version of Kendall’s tau to which we have

made previous allusion (Bandeen-Roche & Liang 1996, 2002) and studied in a paper not

focused on competing risks (Chen & Bandeen-Roche, 2005).  Its idea dates to the seminal

papers on the cross-ratio function and has been prominent in the unidimensional empirical

process-type association measures identified above.  However, to our knowledge,
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asymptotic inference has only been developed for versions of the estimator that are global

and ignore competing risks, which simply involve the standard Kendall’s tau (e.g., Kendall,

1948, p. 67; Oakes 1982) or a weighted version thereof (Oakes, 1986).  Here, in contrast,

we localize to time as well as causes, using an easily applicable procedure.  We develop

inferences for the resulting estimator; evaluate small sample performance in a simulation

study; and apply our methodology to analyze familial data on dementia from the Cache

County Study (Breitner et al., 1999).  Inference does not follow from existing theory on

Kendall’s tau (e.g., Shieh, 1998), because our localization procedure weights concordances

according to observed failure times and causes, hence the weights and data defining

concordance may be stochastically dependent.  Rather, we obtain inference directly through

representation of our estimator as a U-statistic.  As a by-product, we gain insight into the

convergence behavior of time-invariant estimators of the cross-ratio when in fact the ratio

is time-varying, as well as distributional and operational features that affect precision.

 We now define our association measure, describe estimation and develop

associated inferences.  Section 3 reports on our simulation study.  Section 4 details

application of our methodology.  Section 5 briefly addresses bin choice and study design. 

We conclude with discussion.  

2. METHODS

2.1. Notation and Estimand

We first formally introduce the CCSHR.  Suppose there are competing events

1,...,C such that interest is in the time, X*, to the first of the events, and K* , {1,...,C}, a
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(2)

(3)

code identifying the first-occurring event.  We consider situations where the observable

data for an individual are:  X, the minimum of X* and the time at which there is censoring

of X* for non-competing reasons; and K, a code equaling 0 if failure is censored altogether

and K* if the earliest competing event occurs prior to censoring.  Then the individual’s

cause-specific hazard for the occurrence of each kth event is:

(Prentice et al., 1978; Benichou & Gail, 1990).  

With correlated failure processes, observable data are times  and

associated causes  jointly sampled in ‘clusters,’ i=1,...,n.  Specifically Xij is the

time of the earliest event (including censoring) occurring for member j of cluster i, and Kij

codes the event that occurs.  As the CCSHR is bivariate, we henceforth assume mi=2 and

 as independently and identically distributed so that cause-specific densities 

exist for each combination of failure causes k = (k1,k2).  Then, (X1,X2), has an absolutely 

continuous joint survival function .  Here, 

subscripted variables denote scalars, and unsubscripted, vectors, e.g. S(x1,x2) = S(x). 

Employing the quantities defined in (3) ff, Bandeen-Roche and Liang (2002)
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(4)

defined the CCSHR as in (1), that is:

2@2. Estimator

While (4) is a recently proposed measure, a transformed, localized Kendall’s tau

serves to estimate it nonparametrically.  In brief, it can be shown that 2CS(x;k) divides the

conditional probability of concordance between the pairs’ failure times by the conditional

probability of discordance, each  given  (X1
(ab),X2

(ab)) and (K1
(ab),K2

(ab)):

 pr{(X1
(a)-X1

(b))(X2
(a)-X2

(b))>0 | (X1
(ab),X2

(ab))=(x1,x2),(K1
(ab),K2

(ab))=(k1,k2)}           2CS(x1,x2;k1,k2) =                                                                                                                 ,

 pr{(X1
(a)-X1

(b))(X2
(a)-X2

(b))<0 | (X1
(ab),X2

(ab))=(x1,x2),(K1
(ab),K2

(ab))=(k1,k2)}

where (X1
(a),X2

(a)) and (X1
(b),X2

(b)) are two independently drawn failure time pairs,

(X1
(ab),X2

(ab)) are the componentwise minima (X1
(a)¸X1

(b),X2
(a)¸X2

(b)), and (K1
(ab),K2

(ab)) are the

causes corresponding to  (X1
(ab),X2

(ab)).  Thus, a simple estimator determines the

concordance status for every two pairs with (K1
(ab),K2

(ab)) =(k1,k2) and then divides the

number of concordances by the number of discordances.  Here we must be mindful that

2CS(x;k) is potentially a continuous function of (x1,x2) on {x: x>0} (henceforth, ú2+).  If so,

samples from a continuous-time failure time process will yield at most one pairing of pairs

with (X1
(ab),X2

(ab)) equal to any given (x1,x2).  To obtain stable ratios of concordance and

discordance counts, then, one must bin or smooth the counts and/or ratios.  

Here we propose to bin in two dimensional space.  Let B={B1,...,BJ} be a partition

Hosted by The Berkeley Electronic Press



8

(5)

(6)

of ú2+, with B established a priori and J finite.  Our estimator is

Here, ø is the standard indicator function, ø{A} =1 if A is true and 0 otherwise, and j(x1,x2)

indexes the cell of the partition that includes (x1,x2).  This is the same estimator employed

by Bandeen-Roche & Liang (2002) and, ignoring causes, Chen & Bandeen-Roche (2005),

but with B defined on ú2+ rather than {S(x), x 0ú2+}.  

2.3. Distributional Properties

At each  (x1,x2,k1,k2) the numerator of (5) is a U-statistic with kernel 

h1(x1,x2,k1,k2){(x(a),k(a)),(x(b),k(b))} = , 

and similarly for the denominator with kernel we label h2(x1,x2,k1,k2){(x(a),k(a)),(x(b),k(b))}.  Thus,

inferences follow directly from U-statistic theory (e.g. Serfling, 1980).  Beginning with

point convergence:  replacing sums by averages, (5) converges almost surely to

under weak conditions, so long as the denominator exceeds 0.   More interesting is to

consider interpretation if, further,  is
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(7)

(8)

bounded above 0 almost everywhere y on .  Then, (6) equals

=  (Appendix 1), where we now suppress the (x1,x2,) notation indexing bins,

retaining only the subscript  j.  If the CCSHR is constant over , (7) equals that constant 

value; otherwise, it is the expectation over potential time realizations within Bj, weighted

with respect to probabilities of discordance in pairs (a) and (b).  Interestingly, then, the

average conservatively up-weights regions of less strongly positive association, thus

dampens the magnitude of association relative to a straight expectation over (x1,x2). 

We proceed to derive asymptotic distributions of the dividends that define our

estimator.  As a first step, it is useful to write the respective means in a different format

than given preceding (6).  We begin with the concordance (numerator) term.   Note that the

compound event  occurs if and only if

 c  occurs.  Then,

where E(b)|(a) denotes expectation with respect to (X(b),K(b)) conditioning on (X(a),K(a)), etc. 
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(9)

Henceforth we denote this expression as  .  

Proceeding, the concordance term variance depends on the quantities 

Term h1(X
(a),X(b),K(a),K(b)) is an indicator function with mean , thus has variance .2C =

.  Term .1C follows from line 2 of (8), replacing E(a) with Var(a).  If we define

:(b){Bj 1 (0,x(a));k1,k2} = , the probability that X(b) is

a (k1,k2)-type failure occurring in the intersection of Bj and the quadrant {0< x < X(a)},

Finally, the numerator variance is given by [4(n-2)/{n(n-1)}].1C +[2/{n(n-1)}].2C.

The asymptotic distribution of the numerator is normal provided .1C > 0.  Trivially,

then, bins and failure causes must be such that failures of type (k1,k2) may occur, excluding

 = 0.  A more interesting case arises when S(x) is restricted to one

dimension such that S(x) = 1-F(x).  If there is only one bin (the positive real quadrant) and

failure cause, then (9) evidently equals 0.  However .1C > 0 if there are multiple causes or

bins with well-defined measure > 0.

The denominator has variance = [4(n-2)/{n(n-1)}].1D +[2/{n(n-1)}].2D; .1D=

Var(a)[E(b)|(a){h2(X
(a),X(b),K(a),X(b))}]; .2D= Var{h2(X

(a),X(b),K(a),X(b))}.  Elucidation of .1D and

.2D is analogous as for the concordance terms, albeit more unwieldy.  We relegate details to

http://biostats.bepress.com/jhubiostat/paper92
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(10)

Appendix 2.  Finally, under conditions already noted, 

where 01= cov(a)[E(b)|(a){h1(X
(a),X(b),K(a),K(b))},E(b)|(a){h2(X

(a),X(b),K(a),K(b))}] and has expansion

similar to those for .1C and .1D.

Applying the delta method, it follows that the proposed estimator is asymptotically

normal with limiting mean (7) and variance equal to

2@4. Variance estimation

   We hoped that equations (8)-(9) and Appendix 2 would afford a time-saving

strategy for approximating our estimators’ variability.  Due to the complexity of the

discordance-associated terms, however, they seem not to.  Therefore, we merely estimate

quantities defining the limiting variance of our CCSHR estimator by their sample 

counterparts.  Estimates for  and  are given by numerator and denominator of the 

CCSHR calculation (5); those for .1C, .1D, and 01 are calculated similarly, for instance 

.

Computations involve nested sums thus are intensive at n2 complexity, but simple in form.
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(11)

3. SIMULATION STUDY

3@1. Design

We conducted studies of the small sample accuracy and precision of our estimator

and associated inferences.  Our design mimicked that of Bandeen-Roche and Liang

(henceforth “BRL”; 2002), to afford comparison with previous findings.  Each scenario we

studied envisioned two failure causes, “disease” (k=1) and “death” (k=2), without

censoring, and comprised 500 runs.   We considered two sample sizes:  n=500, 1000.   

We generated bivariate data according to the frailty model for subject- and cause-

specific failure hazards given by equation (6) in BRL.  In brief, let 8(t) =  denote the 

overall failure hazard, and R(t) = 81(t)/8(t)=R, the proportional contribution of the disease-

specific hazard to the overall hazard.  Then, the model at issue is

where “A” is a scalar “size” frailty and “B” is a compositional vector “shape” frailty shared

by the members of a given “familial” pair.  The frailties allow heterogeneity both in overall

failure propensity and proportional allocation of the overall hazard to component causes. 

Per equation (13) of BRL, this formulation induces a CCSHR that multiplies the standard

conditional hazard ratio (CHR) for a scalar frailty model by a factor involving R.   As in

BRL we assumed B distributed as Beta with mean R and scale parameter=1 and set 8*(t)=1. 

Our design varied the size frailty distribution to be either gamma or positive stable. 

The former leads to a time invariant CCSHR; the latter, to one that decreases in each time

http://biostats.bepress.com/jhubiostat/paper92
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dimension.  We also varied the magnitude of the CCSHR.  For runs with gamma frailty, we

replicated the BRL design, yielding 2CS(x;1,1) =2CS(1,1) values of 6.0, 3.0, and 2.25. 

Positive stable distributions have Laplace transform exp{-u"}.  For  runs with such frailties,

we fixed R=.5 and varied " over values .4, .6, .8.  Both the global CCSHR and the rate of

CCSHR decline over time increase as " decreases.  Data were generated per Appendix 2 of

BRL except that in runs with positive stable frailty, we generated frailties per Lee (1979).  

For each run, we applied (5) to estimate the CCSHR as a bivariate function of time

over a four-cell grid that bisected each time dimension at the (marginal) distributional

median.  Standard errors and 95% confidence intervals (CIs) were constructed per section

3.2.  For each set of runs, we (i) evaluated bias vis à vis CCSHR values defined by the data-

generating distribution; (ii) compared average of estimated CCSHR variances to the

empirical variances of estimates over runs; and (iii) calculated coverage of Wald 95% CIs. 

Concerning (i):  with gamma size frailties, the CCSHR is an easily defined constant value. 

However with positive stable size frailties, the CCSHR varies continuously with time, and

the per-bin targets of estimation are given by equation (7).  To estimate these, we generated 

20,000 pairs from each distributional scenario and replaced the expectation in (7) by a

sample average over the pairings of pairs.  To assess adequacy of this sample 

size we generated estimates over a range of sample sizes; by n=20,000, the series of

estimates had leveled to an approximate asymptote. 

Finally, we conducted studies to compare the small sample accuracy and precision

of our estimator and its associated inferences to that of the cumulative hazard plug-in
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estimator proposed by Fan et al. (2000; henceforth, “Fan estimator”).  The Fan estimator is

not designed to accommodate competing risks; thus data for these studies were generated

from distributions assuming a single failure cause, without censoring (setting bk in equation

11 equal to 1).  Moreover it estimates the inverse CHR over lower (t1,t2) quadrants;

therefore we applied the inverse of our estimator and derived findings accordingly, over

quadrants with t1=t2=(a) lower quartile; (b) median; and (c) upper quartile of the marginal

survival function.  We studied models assuming independence within pairs; gamma frailty

with CHR=2; and positive stable frailty with Laplace transform parameter "=0.4, 0.8.  For

positive stable models, the per-quadrant targets of estimation were approximated as

described in the previous paragraph, employing n=20,000 pairs; for the Fan estimator, we

averaged the inverse CHR over the quadrant in question–that is, computed the empirical

cumulative distribution function version of Fan et al. (2000) equation (2).  There were 500

replicates per simulation run; sample sizes of n=100 and n=1000 pairs were compared.

3@2. Results

We first consider estimator performance on data generated with gamma size

frailties, thus having time-invariant CCSHR (Table 1).  In scenarios with n=1000 pairs,

both the estimator and its associated inferences were very accurate on all time quadrants,

with slight upward biases ranging from 1% to 7% for both point and standard error

estimation as the underlying CCSHR ranged from 2.25 to 6.00.  Simulations with the

n=500 exhibited similar, moderately exacerbated patterns, with percentage biases primarily

ranging between 3% and 20% as the underlying CCSHR increased.  In both cases, and
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particularly for n=500, estimator distributions were somewhat right-skewed.  They also

included outliers whose severity increased with the underlying CCSHR and were largely

responsible for the associated increase in percentage biases of estimators.  Coverage of

95% confidence intervals ranged within 93%-97% for all sample sizes and scenarios. 

Estimator performance was even better with positive stable size frailties than their

gamma counterparts (Table 2).  CCSHR distributions appeared considerably more

symmetric, and this was reflected advantageously both in accuracy of estimation and its

robustness to size of the underlying CCSHR. 

Table 3 compares performance of our estimator and the Fan estimator.  For

independence and gamma frailty runs, each achieved outstanding accuracy in all cases

except for a 20% upward bias in the small-sample independence case; the Fan estimator

exhibited modestly superior precision, to a degree increasing with the quadrant size,  with

empirical standard deviations 1%-20% lower than ours.  In contrast, for positive stable

scenarios, our estimator exhibited modestly superior accuracy and precision.  Our

estimator’s bias was negligible relative to its target of estimation; that of the Fan estimator

increased with the quadrant size, topping at 25% upward bias for "=.4 and the quadrant

bounded by the upper quartiles.  Empirical standard deviations for our estimator were as

much as 24% lower than those for the Fan estimator, with discrepancy increasing with

strength of association and quadrant size.  In all, the estimators performed quite similarly.    

  

4. APPLICATION:  AGGREGATION OF DEMENTIA IN FAMILIES

There is evidence that dementia aggregates in families (Hendrie, 1998) with greater 
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heritability for early-onset than later-onset dementia (Silverman et al., 2005).  If so, we

would anticipate dementia onset ages to be associated within families, with particularly

strong association in a lower left quadrant of ages.  Additionally, death is a competing risk

that very often predates a dementia diagnosis.  Thus, analysis of the aggregation of

dementia in families is well suited to illustrating the methodology we propose.  

We now analyze the same data, provided by the Cache County Study on Memory in

Aging (Breitner et al., 1999), as were analyzed in the BRL (2002) paper; there, readers may

find a comprehensive description.  In brief, the study sampling frame was the entire 65-

and-older permanent resident population of Cache County, Utah, U.S.A.  Study participants

were diagnosed for dementia; information about all the participant’s immediate family

members was collected by interview, and relatives were designated as dementia cases if

interview information met set criteria.  Pairs we analyzed comprise the participant’s mother

and oldest sibling inclusive of self.  We denote children’s event times by X1, and mothers’,

by X2.  Five-hundred and 70 pairs with missing data were excluded from analysis, as were

another 887 pairs for which either member died or became demented prior to age 55,

leaving 3635 pairs for analysis.  There were 40 pairs in which both members had a

dementia, 1132 in which both members died free of dementia, 259 in which members were

observed to fail of different causes, 145 in which the mother’s outcome was censored and

an additional 2059 in which the eldest child’s outcome was censored.  Analyses treated

censoring as a third “failure” cause, along with dementia onset and death.  

We began by estimating 2CS(dementia,dementia) = 2CS(1,1) on a four-bin time grid

created by dichotomizing children’s and mothers’ time scales approximately at the
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respective medians for time-to first event (dementia, death, or censoring; Table 3), yielding

bins:  (x1#75, x2#80), (x1#75, x2>80), (x1>75, x2#80), and (x1>75, x2>80).  To reference

analytic findings:  In BRL (2002), the estimated CCSHR was 8.86 for times with joint

(first-event) survival probability greater than .80; and, on the order of 2.5 for times with

joint survival probability no greater than .80.  In our current analysis, we also found early

maternal onset and early child onset to be strongly associated, with =3.81 for

(x1#75, x2#80); 95% CI= (1.48,6.14).  Somewhat surprisingly, however, the estimated

strength of association was not less for late maternal and child onset:  =5.89 on

(x1>75, x2>80); 95% CI= (1.67,10.1).  Only the association for early child onset in

combination with late maternal onset was notably weaker:  =0.80 on (x1#75,

x2>80); 95% CI= (-0.27,1.86).

Before exploring this finding further, let us consider the accuracy of asymptotic

inferences reported above.  In addition to inferences derived as described in §3.2, we also

computed bootstrap standard errors and confidence intervals, taking 1000 bootstrap

samples as in BRL (2002).  With the exception of the (late, late) onset quadrant, bootstrap

standard errors closely matched the respective asymptotic approximations; in that quadrant,

the approximation  was about 10% smaller than the bootstrap estimate.  Asymptotic

confidence intervals were shifted somewhat to the left of their (bias-corrected percentile-

based) bootstrap counterparts, with lower limits decreased by 10%-20%, and upper limits,

considerably more modestly. 

To further explore the unexpected strength of association found for late child, with
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late mother, dementia onsets, we conducted analyses trichotomizing to age ranges # 70, 70-

80, and >80 in each dimension (Table 4).  As expected, with an “early” onset cutoff that

more closely approximated the earliest-combined-onset category in the 2002 paper, the 

strength of estimated association for two early onsets was increased: =5.35.  

Associations were weakest in the bins representing maximally disparate children’s and

mothers’ dementia onset ages:  =1.09 for (x1#70, x2>80) and =0.81 for (x1>80,

x2#70).  However, there was little suggesting against a comparable strength of association

for two late onsets as for two early onsets, and one higher than estimated for later onsets in

the 2002 paper.  With small sample sizes in most cells, few of the estimated associations

differed significantly from the null of 2CS(1,1)=1.  

In summary, analysis of familial associations in time-to-dementia onset in the

bivariate time domain has clarified analysis that considered strength of association as a

function of joint survival probability.  The latter analysis may have understated the

heritability of late-onset dementia, likely because the region of lower joint survival

probability mixes regions of comparably late onset times with regions of very disparate

onset times.  Accordingly, this appears a good example where assumptions made by

copula-based association analysis may be inadequate.

5. BIN CHOICE AND STUDY DESIGN

As a practical matter, our methodology requires choices on the number and cut

points defining “bins” of failure time space.  For the dementia analysis and simulation runs

http://biostats.bepress.com/jhubiostat/paper92



19

with n=1000 we originally attempted to estimate associations by a 5x5 grid of failure times. 

This proved too sparse a partitioning, with several 0-count cells:  When failure-time

association is strong, the number of (a), (b) pairings  with componentwise minima falling in

(early failure, late failure) regions of space decreases with the degree of discrepancy

between  “early” and “late.”  Moreover the number of at-risk pairs, hence (a), (b) pairings

with componentwise minima falling in later-time regions of space, declines with time. 

Ultimately a partitioning by equally spaced marginal quantiles is not an optimal approach.

Beyond such ad hoc considerations, it will sometimes be necessary to design studies

assuring that strength of association is estimated with suitable precision in given regions of

space.  While full elaboration is beyond the scope of this paper, a tractable formula

emerges if we multiply and divide the asymptotic variance expression (10) for our 

estimator by .  Noting that , one obtains equality of (10) to

 { }2[.1C-201{ }+ .1D{ }2]/ .       (12)

Candidates for  determine candidates for .  Then, to complete (12), one must

obtain candidates for .1C, .1D, and 01.  While these will be both complicated and unknown,

equations (9) and Appendix 2 provide a template for their approximation with pilot data on

bivariate failure location and cause frequencies, and marginal failure time distributions. 

6. DISCUSSION

Our methodology estimates failure-time associations accurately and, to within the

evaluation we provided, comparably precisely to estimation as proposed by Fan et al.
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(2000).  A strength is the ready interpretation of the measure we estimate.  Another is the

simplicity of our estimator relative to survival function and cumulative hazard plug-in

counterparts.  We do not intend our estimator as a replacement for such methods, but as a

potentially more easily interpreted and readily implemented complement to them.  

Among limitations of our approach, the CCSHR will not always capture association

features of clinical interest.  However, our methods could easily be elaborated to estimate

other ratios involving the concordance probabilities we studied, i.e. comparing offspring

with mothers diagnosed with dementia versus dying free of dementia at a given age:  

/ .  Moreover, clinical interest may require 

comparing strength of association by familial or individual characteristics.  Our findings

easily elaborate to comparisons across strata; extension to accommodate regression of

CCSHRs on covariates would be valuable.  Finally, while our strategy easily handles

censoring as a distinct failure cause, it is desirable to accommodate such more efficiently

relative to estimation absent censoring.  Doing so is an advantage of methods like that

proposed by Fan et al. (2000).  Accommodation is complex for our method, because

censoring introduces uncertainty into not only the determination of concordance but also

the value of (x1,x2) to which a given determination should be assigned. 

As equation (7) reveals, our estimator up-weights regions of less strongly positive

association when strength of association varies within a bin.  The reason for this is

unrelated to the presence of competing causes; therefore, the effect prevails for CHR

estimators grounded in Kendall’s tau construction, as well.  This suggests the worthiness of

delineating estimation targets for maximum likelihood and pseudo-maximum likelihood
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approaches assuming constant CHR when the assumption is mistaken.     

As an alternative to binning, one might kernel-smooth counts defining our

estimator’s numerator and denominator, to obtain pointwise CCSHR estimates.  So long as

one chooses bandwidth a priori, inferences go through as in the current paper.  However

for time-varying CCSHR, we found kernel-smoothed estimators to be quite biased.  Given

this, as well as the inferential complexity of procedures with automated bandwidth choice,

we prefer binning in conjunction with clarity on the target of estimation, per (7).

Our failure to find strongly for greater familial aggregation of early-onset, than late-

onset, dementia contrasts with the findings of Silverman et al. (2005).  To the credit of the

Silverman et al. (2005) study, there was enrichment to include a substantially larger

number and proportion of persons with dementia as index cases than did the data we

analyzed.  To our credit, data were population-based hence did not entail selection of

probands or controls indexing relatives to be compared.  Differences in methodologies

employed were substantial and further complicate comparison.  One must be mindful that

our analyses’ “youngest” bin included 70-year olds, and a stricter early-event definition

would have resulted in a larger CCSHR (per BRL, 2002).  However our analysis cautions

against too strongly downplaying familial aggregation in later-onset dementia.  
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APPENDIX 1

Equality of (6) and (7)

Let Aj
(ab) stand for the event {X(ab) 0 Bj, K

(ab) = (k1,k2)}.  Then, equation (6) =

which in turn equals

The second expression is well defined because P{X(ab)#x, K(ab)=k} = P{(X(a)#x, K(a)=k) ²

(X(b)#x, K(b)=k) ² (X1
(a)#x1, K1

(a)=k1 ,X2
(b)#x2,K2

(b)=k2 ) ²

(X1
(b)#x1,K1

(b)=k1,X2
(a)#x2,K2

(a)=k2)} and thus the cause-specific distribution of the

componentwise minimum decomposes as sums and products of cause-specific marginal

and the joint failure time distributions and, per (3), has a valid density f(a,b)(x,k).    Denote

the probability integrand in the denominator as d(ab)(y,k).  Provided this probability is

bounded above 0 almost everywhere (y)  with respect to f(a,b), the expression may further be

rewritten as 
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If the ratio integrand is a constant, 2j(k), almost everywhere (y) on Bj, then the expression

equals 2j(k); otherwise it equals the weighted average

APPENDIX 2

Elucidation of Discordance Variance Terms

To accomplish this concisely, it is useful to define one-dimensional analogs of a

few already-defined quantities.  First, it is convenient to denote “slices” of Bj:   let Bj1(y) be

the set of x-axis value  s such that (x,y) 0 Bj, and conversely for Bj2(x).  Let the version

without an argument, Bj1 (Bj2),  be the set of x-axis (y-axis) values such that (x,y) 0 Bj for at

least one y (x).  Second, denote one-dimensional regions where bin slices intersect (0,z)

line segments by  and .  Then, assuming that

all regions in question are measurable, the discordance analogs of the concordance-related

quantities (8) and (9) follow:
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(A1)

where  “.” denotes the usual sum over all possibilities with respect to the argument at issue. 

If bins are defined on a rectangular grid,  simplifies to , and similarly for

.  To summarize, the denominator of (5) has normal asymptotic distribution 

provided .1D > 0.  This condition is satisfied for reasonable bin choices and distributions,

analogously as for .1C.
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Table 1 - Simulation Study Findings
Association estimator distributions, Gamma/Beta frailty data

Quadrant n R1=.2  —  2CS(1,1) = 6 R1=.5 — 2CS(1,1) = 3 R1=.8 — 2CS(1,1) = 2.25

Mean SDE SDM Cov Mean SDE SDM Cov Mean SDE SDM Cov

1: (t1,t2) #
medians

1000 6.11 1.06 1.00 0.96 3.03 0.30 0.28 0.96 2.24 0.16 0.16 0.95

  500 6.30 2.16 1.93 0.96 3.05 0.56 0.53 0.97 2.31 0.31 0.32 0.95

2: t1 # median,
    t2 > median 

1000 6.12 1.64 1.60 0.93 3.04 0.44 0.44 0.96 2.27 0.24 0.24 0.94

  500 7.18 4.39 4.16 0.94 3.15 0.91 0.92 0.94 2.34 0.47 0.47 0.96

3: t1 >median,
    t2 # median 

1000 6.36 1.70 1.65 0.94 3.04 0.44 0.43 0.95 2.25 0.24 0.24 0.94

  500 7.06 6.59 4.96 0.93 3.12 0.89 0.88 0.93 2.29 0.46 0.46 0.93

4: (t1,t2)
>medians

1000 6.15 1.38 1.28 0.96 3.03 0.38 0.37 0.95 2.26 0.20 0.20 0.96

  500 7.16 4.27 3.85 0.93 3.12 0.79 072 0.95 2.31 0.40 0.39 0.95

    Data generated as described in Section 3.1 , equation (11): Gamma size copula (A), 2(t)=2; Beta shape frailty (B) with mean R1 and scale=1; conditional 

    baseline distributions exponential(1); bivariate data with sample size n per each of 500 runs; no non-competing censoring.

    SDE = square root of the average of variance estimates over 500 runs.

    SDM = the empirical standard deviation of estimates over 500 runs.
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Table 2 - Simulation Study Findings
Association estimator distributions, Positive stable/Beta frailty data

Quadrant n "=0.4; {2CS(1,1;Q1),...,2CS(1,1;Q4)}
 = {9.24, 3.68, 3.66,2.89}

"=0.6; {2CS(1,1;Q1),...,2CS(1,1;Q4)

 = {4.72,2.36,2.37,2.05}
"=0.8; {2CS(1,1;Q1),...,2CS(1,1;Q4)

 = {2.66,1.80,1.80,1.69}

Mean SDE SDM Cov Mean SDE SDM Cov Mean SDE SDM Cov

1: (t1,t2) #
medians

1000 9.24 1.00 1.04 0.93 4.77 0.51 0.53 0.95 2.67 0.29 0.27 0.96

  500 9.41 1.92 1.99 0.94 4.91 0.98 0.94 0.95 2.79 0.56 0.59 0.94

2: t1#median,
    t2 >median

1000 3.76 0.73 0.75 0.94 2.39 0.38 0.38 0.95 1.81 0.25 0.25 0.95

  500 3.93 1.52 1.49 0.94 2.55 0.78 0.73 0.97 1.89 0.51 0.52 0.94

3: t1>median,
    t2# median 

1000 3.77 0.74 0.76 0.94 2.38 0.38 0.38 0.95 1.82 0.25 0.23 0.96

  500 4.02 1.61 1.60 0.95 2.52 0.79 0.76 0.96 1.85 0.49 0.50 0.93

4: (t1,t2) >
medians

1000 2.89 0.33 0.35 0.93 2.07 0.26 0.25 0.95 1.72 0.23 0.23 0.95

  500 2.98 0.66 0.64 0.96 2.15 0.53 0.51 0.95 1.75 0.47 0.46 0.95

    Data generated as described in Section 3.1, equation (11): Positive stable size copula (A); Beta shape frailty (B) with mean R=.5 and scale=1;

    conditional baseline distributions exponential(1); bivariate data with sample size n per each of 500 runs; no non-competing censoring.

    SDE = square root of the average of variance estimates over 500 runs.

    SDM = the empirical standard deviation of estimates over 500 runs.
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Table 3 - Simulation Study Findings
Association estimator distributions, frailty data without competing risks1

Association
Model

n (t1,t2) # lower quartiles 2: (t1,t2) # medians 3: (t1,t2) # upper quartiles

Our
estimator

Fan estimator Our estimator Fan estimator Our estimator Fan estimator

Mean SDE Mean SDE Mean SDE Mean SDE Mean SDE Mean SDE

Independent
CHR-1=1

1000 1.02 0.14 1.02 0.14 1.01 0.07 1.00 0.07 1.01 0.05 1.00 0.04

  100 1.21 0.90 1.20   0.89 1.02 0.23 1.01 0.21 1.00 0.16 1.00 0.13

Gamma
CHR-1=0.5

1000 0.50 0.06 0.50 0.06 0.49 0.03 0.50 0.03 0.50 0.02 0.50 0.02

  100 0.53 0.19 0.54 0.18 0.51 0.10 0.52 0.10 0.51 0.08 0.52 0.08

Pos. stable 
"=.4

1000 0.09 0.01 0.09 0.01 0.16 0.01 0.18 0.01 0.22 0.01 0.28 0.03

  100 0.09 0.03 0.10 0.03 0.16 0.04 0.20 0.04 0.22 0.04 0.30 0.05

limit 0.09 NA 0.09 NA 0.16 NA 0.17 NA 0.22 NA 0.24 NA

Pos. stable 
"=.8

1000 0.40 0.05 0.42 0.05 0.56 0.04 0.60 0.04 0.64 0.04 0.72 0.04

  100 0.43 0.22 0.45 0.23 0.57 0.13 0.62 0.13 0.65 0.11 0.73 0.11  

limit 0.40 NA 0.42 NA 0.56 NA 0.59 NA 0.64 NA 0.67 NA

   Conditional baseline distributions exponential(1); bivariate data with sample size n per each of 500 runs; no non-competing censoring.

   SDE = square root of the average of variance estimates over 500 runs.
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Table 4 - Cache County Data (n=3635)
Association estimator distributions, 2CS(1,1) (dementia, dementia); 2x2 time grid

Quadrant Mean SDE SDM SDB 95% CI -
asymptotic

95% CI - bootstrap

1: t1 # 75, t2 # 80 3.81 1.19 1.23 1.23 ( 1.48,  6.14) ( 1.68,  6.22)

2: t1 # 75, t2 > 80 0.80 0.54 0.53 0.57 (-0.27,  1.86) ( 0.00, 1.87)

3: t1 >75, t2 # 80 2.41 0.73 0.76 0.77 ( 0.97,  3.84) ( 1.10, 3.92)

4: t1 >75, t2 > 80 5.89 2.15 2.41 2.38 ( 1.67,10.11) ( 2.08,10.39)

    SDe = Asymptotic standard deviation approximation

    SDm = Square-root of the average of asymptotic variance approximation estimates over 1000 bootstrap replicates

    SDb Bootstrap standard deviation estimate, 1000 replicates

    Bootstrap CI is bias-corrected and percentile-based
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Table 5 - Cache County Data (n=3635)
Association estimator distributions, 2CS(1,1) (dementia, dementia); 3x3 time grid

Cell Mean SDE SDM SDB 95% CI -
asymptotic

95% CI - bootstrap

1: (t1,t2) # 70 5.35 3.15 3.32 3.35 (-0.82,11.53) ( 0.00,12.18)

2: t1 # 70,
    70 < t2 # 80

1.72 1.21 1.27 1.25 (-0.65,  4.10) ( 0.00,  4.10)

3: t1 # 70, t2 > 80 1.09 0.99 0.89 1.05 (-0.84,  3.03) ( 0.00,  3.21)

4: 70 < t1 # 80, t2 # 70 4.03 1.94 2.12 2.11 ( 0.23,  7.84) ( 0.65,  8.36)

5: 70 < t1 # 80,
    70 < t2 # 80

3.39 1.14 1.18 1.16 ( 1.16,  5.61) ( 1.25,  5.62)

6: 70 < t1 # 80, t2 > 80 2.99 1.13 1.21 1.15 ( 0.77,  5.20) ( 0.88,  5.21)

7: t1 >80, t2 # 70 0.81 0.80 0.89 0.88 (-0.77,  2.39) ( 0.00,  2.54)

8: t1 >80, 70 < t2 # 80 2.50 1.28 1.43 1.40 (-0.02,  5.01) ( 0.03,  5.28)

9: (t1,t2) > 80 3.62 1.91 2.36 2.33 (-0.13,  7.36) ( 0.00, 7.65)

    SDe = Asymptotic standard deviation approximation

    SDm = Square-root of the average of asymptotic variance approximation estimates over 1000 bootstrap replicates

    SDb Bootstrap standard deviation estimate, 1000 replicates

    Bootstrap CI is bias-corrected and percentile-based
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