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Optimal Sampling Times in Bioequivalence Studies Using

a Simulated Annealing Algorithm

Leena Choi, Brian Caffo, and Charles Rohde∗

September 17, 2004

Abstract

In pharmacokinetic (PK) studies, blood samples are taken over time on subjects after

the administration of a drug to measure the time-course of the plasma drug concentrations.

In bioequivalence studies, the trapezoidal rule on the sampled time points is often used

to estimate the area under the plasma concentration-time curve, a quantity of principle

interest. This manuscript investigates the choice of sampling time points to estimate

the area under the curve. In particular, we explore the relative merits of several objective

functions, those functions which are minimized with respect to the sampling times to obtain

an optimal study design. We propose an objective function which overcomes some of the

deficits of existing choices. We also present a simulated annealing algorithm to perform

the minimization. The main benefits of the simulated annealing algorithm are the ease in

which it can handle constraints on the sampling schedules and its ability to accommodate

a variety of models and objective functions. The manuscript presents optimal sampling

times for some key examples of true underlying models.

1 Introduction

In pharmacokinetic (PK) studies, blood samples are taken over time on subjects after the admin-

istration of a drug to measure the time-course of the plasma drug concentrations. A variety of

PK parameters are then estimated using the observed drug concentration profile for each subject.

The area under the (plasma/serum/blood) concentration time-curve (called AUC) is an important

parameter, since it is known to be a measure of the amount of drug absorbed, a quantity of special

interest in bioavailability (BA) and bioequivalence (BE) studies. The bioavailability of a drug is

quantified using AUC, the maximum drug concentration (called Cmax) and the associated time
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where maximum concentration is reached (called tmax). Bioequivalence studies are performed as

part of the process of getting approval for a new drug formulation or a generic drug. The goal

of BE studies is to ascertain whether or not the bioavailability of the new formulation and an

existing approved formulation are equivalent. Here, AUC is used as the primary metric with Cmax

and tmax as secondary metrics. Therefore, accurately estimating AUC is an important aspect of

the drug development and evaluation process. In this manuscript, we explore the choice of the

placement of sampling times to better estimate AUC in BE studies.

Westlake (1979) summarized the selction of sampling times in BE studies with:“no universal

rule is apparent and a pragmatic approach is usually taken”. After a single dose of administration,

a rule of thumb is that blood samples are drawn at several times during the absorption phase of

the drug, then several times near the peak and at relatively fewer times in the elimination phase.

Usually, 10-15 total sampling times are employed. For example, for a drug with a half-life of 4-5

hours, a typical sampling schedule might be: 0, .5, 1, 1.5, 2, 3, 4, 6, 8, 10, 12, 15 and 24 hours

following administration (Westlake, 1979). A diagramatic example of the estimated AUC using

11 sampling times for a PK model with two sets of PK parameter is shown in Figure 1.

Before continuing to the specific problem of sampling time selection in BE studies, we empha-

size the distinction between our focus and related areas of choosing pharmacokinetic sampling

time points. For example, consider the distinction between choosing sampling times for popu-

lation and individual PK studies on human subjects. Specifically, population PK studies focus

on investigating the population characteristics of PK parameters using a modelling approach. In

these studies, it is common to use sparse sampling times within each subject. Thus, it is critical

to reduce the bias and variance in estimating the PK model parameters. In contrast, as the name

would suggest, individual PK studies focus on individual PK characteristics. Some examples of

individual PK studies include preclinical PK studies, BA and BE studies. Unlike population PK

studies, individual PK studies employ many sampling times for moderate or small number of sub-

jects. In preclinical PK studies, pharmacologists are often interested in estimating individual PK

model parameters using the PK modelling approach. In BA and BE studies, however, nonpara-

metric estimation of AUC is the principal goal. It follows then, that methodologies for choosing

sampling time points are likely not the same in these areas. Furthermore, it should be noted that

the design of toxicokinetics/pharmacokinetics studies on animal subjects would also be different

still from any of the designs of PK studies on human subjects if “destructive sampling” is used.

That is, replicates of animals may be assigned at each time point, but sampled only once often

after sacrificing them. A review methodology for study design in toxicokinetics/pharmacokinetics

can be found in Beatty and Piegorsch (1997).

Here we review some of the related research on sampling time selection in PK studies. For the

design of population PK studies, the performance of several design strategies was evaluated using

simulation (Al-Banna et al., 1990). Wang and Endrenyi (1992) proposed a simulation approach
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which they claim is more efficient than standard simulation approaches. Recently, several authors

have explored analytic solutions (Mentré et al., 1997; Tod et al., 1998; Retout et al., 2001).

These solutions are usually based on some variant of D-optimality (introduced in Box and Lucas,

1959) where a design is said to be D-optimal if the resulting estimate minimizes the determinant

of the inverse of the Fisher information matrix.

With regard to individual PK studies, several approaches have been proposed to find optimal

sampling time points. Atkinson et al. (1993) proposed an optimization method using a D-

optimality criteria for BA parameters such as AUC, Cmax and tmax. Katz and D’Argenio (1983)

proposed an algorithm which used the mean squared error (MSE) of the AUC estimate as an

objective function for finding optimal sampling times. Here, an objective function is a summary

function of the underlying true concentration time-curve and sampling times which is minimized

with respect to the sampling times to select an optimal placement of time points. Katz and

D’Argenio (1983) used quasi-Newton methods implemented in FORTRAN to minimize their

objective function. Wang (2001) used MSE for estimating the concentration time-curve using

linear interpolation instead of MSE of the AUC estimate. Kong and Gonin (2000) also based their

objective function on the error in linear interpolation, however using the squared bias as a summary

rather than MSE. They also accounted for between-subject (population level) heterogeneity by

numerically integrating their objective function over an assumed random effect distribution. Their

solution was implemented using a sequential quadratic programming algorithm.

Simulated annealing (SA) has been used sparingly in this area with some notable exceptions.

For example, Jones and Wang (1999) applied a simulated annealing algorithm to find starting

values, which are then used within a more locally efficient algorithm under a D-optimality criterion.

Duffull et al. (2002) used a simulated annealing algorithm for finding sampling time points in

population PK setting, also using a D-optimality criterion. Furthermore, they critically compared

simulated annealing with several other optimization algorithms.

In this manuscript we suggest a new objective function as well as a simulated annealing

algorithm to perform the minimization for choosing sampling time points to estimate AUC in

BE studies. The proposed objective function is conceptually based on using the squared bias in

estimating AUC. We note that a correction is necessary since the use of the direct estimate of

bias in optimization algorithms often results in convergence to sampling time points with little

face validity. To avoid this defect, we propose a simple correction that divides up the time

space. As a result of this correction, our objective function finds optimal sampling time points

taking into account not only the error in AUC estimate, but also the error in linear interpolation.

As in Kong and Gonin (2000) we employ both single subject and population averaged versions

of this objective function. We use Monte Carlo integration within our optimization algorithm

to simplify calculations. Finally, we propose a simulated annealing algorithm to perform the

optimization. Our choice of using simulated annealing was largely dominated by SA’s ability to
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handle constraints on the sampling schedules and its ability to accommodate a variety of models

and objective functions.

The remainder of the paper is outlined as follows. In Section 2 we set up the problem and

notation while in Section 3 we review objective functions and propose a refinement of using the

squared bias of AUC estimate. Section 4 describes the proposed simulated annealing algorithm.

In Section 5, we compare the estimated sampling times using our proposed method with those

from other methods and also show potential problems depending on the models. A summary and

discussion follows in Section 6.

2 Estimating AUC

To better conceptualize estimating the AUC, we define a general PK model. Let f(t; β) denote

the underlying blood concentration for a subject at time t after the administration of a drug for

parameters β. Suppose that a given subject is sampled at time points tj for j = 0, . . . , m + 1.

We assume that the responses, yj, for this subject satisfy

yj = f(tj; β) + ej, e | β ∼ {0,R(β; λ, σ)} β ∼ {µ, D(ξ)},

where the e is a vector comprised of the ej and the notation “∼ {a, b}” is short-hand for

“distributed with mean a and covariance b”. Here β is a vector of subject-specific PK parameters,

R(β; λ, σ) represents the within-subject covariance matrix for e and D(ξ) is the between-subject

covariance matrix for β. We assume that R(β; λ, σ) is a diagonal matrix with entries σ2
j ≡

λ1 + σ2f(tj; β)λ2 where λi > 0.

The primary parameter of interest is the area under the concentration time-curve for a par-

ticular subject,

A∞
t0

=

∫ ∞

0

f(t; β)dt.

Note that we are ommiting the dependence of A∞
t0

on β and recall that this model refers to

a specific subject. Of course, in practice data is collected on several subjects where the above

model holds assuming conditional independence given the seperate β for each individual while

the parameters λ, σ, µ and ξ would be held fixed across subjects.

2.1 Approximation of AUC

There are two major approaches for estimating the AUC in PK studies: model based and non-

parametric. Model based estimation involves specifying a PK model for the observed data. A

common choice is to assume a compartmental model for f(t, β), Gaussian errors, a diagonal ma-

trix for R(β; λ, σ), and a Gaussian random effect distribution. In model based estimation, one
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first estimates subject-specific PK parameters (using empirical Bayes methods, for example), then

integrates a plug-in estimate of the concentration time-curve. We point the reader to Davidian

and Giltinan (1995) for more information on PK model based approaches.

To avoid the problems of model misspecification, nonparametric approaches are more com-

monly used to estimate AUC in individual PK studies than parametric PK modelling approaches,

and nonparametric approaches are also the recommended method by the FDA. In what follows, we

investigate the optimal selection of sampling time points using the “trapezoidal rule” to estimate

AUC.

The trapezoidal rule is a numerical quadrature rule that is the most common nonparametric

estimate of the area under the drug concentration-time curve. This choice is well founded because

the trapezoidal rule has been shown to yield a good approximation to AUC when f(t; β) is

decreasing exponentially (Piegorsch and Bailer, 1989; Schempp, 1981), which is the case when

the true concentration time-curve follows one of the basic compartmental PK models. Bailer and

Piegorsch (1990) compared several quadrature methods for approximating AUC using MSE as

an objective function. They found that the trapezoidal rule had a relatively smaller variance. It

is worth noting that Bailer and Piegorsch (1990) showed the variance dominates in MSE criteria

unless the measurement error is very small.

Given the total number of sampling time points, the accuracy of the trapezoidal approximation

of the AUC depends on the placement of the time points. We denote the AUC between time t0

to tm+1 for a subject as

A
tm+1

t0 ≡
∫ tm+1

t0

f(t; β)dt.

The trapezoidal approximation to A
tm+1

t0 is

Â
tm+1

t0 =
m+1∑
j=1

Â
tj
tj−1

=
1

2

m+1∑
j=1

(yj + yj−1) (tj − tj−1) .

The trapezoidal approximation defines the integral only between the first and last sampling

time points, t0 and tm+1. In most PK studies, these times are fixed prior to the study with t0

being at the before administration of the drug and tm+1 being late enough to ensure the accuracy

of the approximation; usually, tm+1 is taken to be greater than 3 terminal half-lifes. The AUC

after the last sampling time point is typically approximated by Â∞
tm+1

= ym+1/k where k is the

subject specific elimination rate constant. The elimination rate constant can be either estimated

using a PK modelling approach or estimated using the last three sampling points of the current

data. Then we define

Â∞
t0

= Â
tm+1

t0 + Â∞
tm+1

.

Conventional wisdom suggests that to otain an accurate estimates of AUC, Â∞
tm+1

/Â∞
t0

should

be less than 3% for all subjects. However, it should be noted that the last sampling time cannot
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always be chosen to satisfy this criteria as it is often fixed to 24 hours in BE studies, since it

is difficult to keep subjects beyond that time (Kong and Gonin, 2000). In our current study,

we focus only on accurately approximating the AUC up to the last sampling point under the

constraint that t0 and tm+1 are fixed.

2.2 Approximation of the underlying function

Another way to visualize the trapezoidal rule approximation of AUC comes from approximat-

ing the underlying function using linear interpolation (connecting adjacent points). That is, the

trapezoidal rule is the integral of the estimate of the concentration time-curve obtained by in-

terpolation. This interpretation is useful, as it suggests that objective functions for assessing the

error in AUC can be based on the error of the linear interpolation approximation.

The linear interpolated function f̂j(t) from tj−1 to tj can be expressed as:

f̂j(t) = aj + bjt, for tj−1 ≤ t ≤ tj, (1)

where

aj = −yjtj−1 − yj−1tj
tj − tj−1

, (2)

bj =
yj − yj−1

ti − tj−1

, (3)

and the integration of f̂j(t) over time interval results in:

Â
tm+1

t0 =
m+1∑
j=1

Â
tj
tj−1

=
m+1∑
j=1

∫ tj

tj−1

f̂j(t)dt.

3 The Objective Functions

Assuming that the true concentration-time curve f(t; β) is known and t0 and tm+1 are fixed, in

this section we explore objective functions which will be minimized with respect to the remaining

m time points, T = (t1, . . . , tm). We distinguish between selection of optimal sampling time

points for a single subject, with a fixed value of β, versus choosing sampling time points for a

population of β values. In the latter case, we average the single subject objective functions over

an assumed random effect distribution.

Two major techniques for defining the objective functions have been discussed in the liter-

ature. The first uses MSE for estimating AUC while the second uses MSE for estimating the

concentration-time curve using linear interpolation. We summarize three realizations of these

techniques:
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1. Katz and D’Argenio (1983) proposed the following MSE based objective function for esti-

mating AUC:

Obj1(t; β,λ, σ) = E

{
m+1∑
j=1

∫ tj

tj−1

[
f̂j(t)− f(t; β)

]
dt

}2

= [Bias]21 + [Var]1

=
{

E
(
Â

tm+1

t0

)
− A

tm+1

t0

}2

+
1

4

{
σ2

0(t1 − t0)
2 +

m∑
j=1

σ2
j (tj+1 − tj−1)

2 + σ2
m+1(tm+1 − tm)2

}
, (4)

where E
(
Â

tm+1

t0

)
= 1

2

∑m+1
j=1 (f(tj; β) + f(tj−1; β)) (tj − tj−1).

2. Wang (2001) proposed the following MSE based objective function for estimating the

concentration-time curve using linear interpolation:

Obj2(t; β,λ, σ) =
m+1∑
j=1

∫ tj

tj−1

E
{

f̂j(t)− f(t; β)
}2

dt

= [Bias]22 + [Var]2

=
m+1∑
j=1

∫ tj

tj−1

{
E[f̂j(t)]− f(t; β)

}2

dt +
1

3

m+1∑
j=1

(tj − tj−1)(σ
2
j−1 + σ2

j ), (5)

where E[f̂j(t)] = E[aj]+E[bj]t so that E[aj] = −f(tj ;β)tj−1−f(tj−1;β)tj
tj−tj−1

, E[bj] =
f(tj ;β)−f(tj−1;β)

tj−tj−1
.

This objective function is the objective function for the fixed effects model in Kong and

Gonin (2000), assuming no random error.

3. Another way of defining an objective function is to approximate AUC piece-wise and to

base the objective function on the sum of the piece-wise MSEs:

Obj3(t; β,λ, σ) =
m+1∑
j=1

E

{∫ tj

tj−1

[
f̂j(t)− f(t; β)

]
dt

}2

= [Bias]23 + [Var]3

=
m+1∑
j=1

{
E

(
Â

tj
tj−1

)
− A

tj
tj−1

}2

+
1

4

m+1∑
j=1

(tj − tj−1)
2 (σ2

j−1 + σ2
j ), (6)

where E
(
Â

tj
tj−1

)
= 1

2
(f(tj; β) + f(tj−1; β)) (tj − tj−1).

Several authors (Katz and D’Argenio, 1983; Katz, 1984; Bailer and Piegorsch, 1990; Wang,

2001) have noticed that the variance term tends to dominate the MSE. As a result, these objective

Hosted by The Berkeley Electronic Press



8

functions often do not give intuitively reasonable solutions, even when the measurement error

is relatively small. Figures 2 and 3 demonstrate this by plotting the optimal sampling time

points associated with the various objective functions assuming true parameter values that will

be discussed in Section 5. Notice that the optimal sampling time points tend to be far more

spread out than conventional wisdom would suggest for graphs E and F while the points appear

almost randomly in graphs A-D. We use these results to motivate the practice of focussing on

bias rather than mean squared error to define the objective function.

A second argument to support this conclusion lies in the fact that uncertainty due to the

between-subject variability of PK parameters is usually much greater than the measurement error

(the within-subject variability), even when the suggested PK model reasonably well describes

the concentration profile. Thus, it seems to be more appropriate to use only the bias term as

an objective function, while still accounting for the between-subjects variability. Therefore, we

reexpress the previous objective functions using the bias terms only. We denote the new objective

functions by ObjB1(t; β) = [Bias]21, ObjB2(t; β) = [Bias]22 and ObjB3(t; β) = [Bias]23.

3.1 The grid-wise evaluated objective function

Unfortunately, using the bias only can produce problems where the optimal design requires placing

time points far apart where over and underestimates of the area under the concentration-time

curve cancel out. Figure 4 illustrates an instance of this by plotting the optimal sampling time

points under objective function ObjB1(t; β) (again the true parameter values will be discussed

in Section 5). In practice we have found the same flaw occurs with the objective function

ObjB3(t; β). Among three objective functions, ObjB2(t; β) appears to be resistant to this prob-

lem. However, ObjB2(t; β) requires an explicit integration to construct the function, which is

both difficult and error-prone if the assumed underlying model is complicated.

We propose an objective function which does not require integration yet does not suffer from

the cancelling out problem described above. The basic idea is that each time interval between

tj−1 and tj is divided equally with the number of divisions determined by the length of the interval.

The error between the true AUC and the approximated AUC is then evaluated within each division

and the results are summed up. An example of creating the grid and evaluating the error in a

time interval is shown in Figure 4. More formally, we define the objective function as:

Obj4(t; β) =
m+1∑
j=1

{[
E
(
Â

g(j−1)(1)

tj−1

)− A
g(j−1)(1)

tj−1

]2

+

nj∑

k=2

[
E
(
Â

g(j−1)(k)
g(j−1)(k−1)

)− A
g(j−1)(k)
g(j−1)(k−1)

]2

+
[
E
(
Âtj

g(j−1)(nj)

)− Atj
g(j−1)(nj)

]2
}

, (7)

where nj is the number of grids within the interval (tj−1, tj) and g(j−1)(l) = g(j−1)(l)(tj−1, tj)
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which is a function of tj−1 and tj, and

E
(
Â

g(j−1)(1)

tj−1

)
=

1

2

(
f(tj−1; β) + E[f̂j(g(j−1)(1))]

)(
g(j−1)(1) − tj−1

)

E
(
Â

g(j−1)(k)
g(j−1)(k−1)

)
=

1

2

(
E[f̂j(g(j−1)(k−1))] + E[f̂j(g(j−1)(k))]

)(
g(j−1)(k) − g(j−1)(k−1)

)

E
(
Âtj

g(j−1)(nj)

)
=

1

2

(
E[f̂j(g(j−1)(nj))] + f(tj; β)

)(
tj − g(j−1)(nj)

)
.

To illustrate Obj4(t; β), suppose that the underestimated area and the overestimated area in

Figure 4 are same. Then the evaluated overall error within the interval tj−1 and tj would be 0 if

the objective function ObjB1(t; β) or ObjB3(t; β) is used whereas the evaluated error would be

the underestimated area plus the overestimated area (whole shaded area) if Obj4(t; β) is used.

While conceivably, the same cancelling out error can occur within a grid of Obj4(t; β), the grid

length can always be decreased until stable estimates are obtained.

3.2 A population-averaged objective function

We define ObjPA
r (t; µ, ξ) as the population-averaged objective function corresponding to the

individual objective function ObjBr(t; β) where r = 1, . . . , 4. We define ObjPA
r (t; µ, ξ) as:

ObjPA
r (t; µ, ξ) =

∫

β

ObjBr(t; β) pβ(β) dβ, (8)

where pβ(β) is the joint density function of random effects.

Most of PK models and corresponding objective functions are nonlinear function of parameters;

hence there is no analytical form of ObjPA
r (t; µ, ξ) and numerical integration is employed. Usual

numerical integration methods are often technically difficult to be applied in this context. We

therefore use a Monte Carlo integration scheme within our simulated annealing algorithm when

using population averaged objective functions.

4 Optimization Using a Simulated Annealing Algorithm

The simulated annealing algorithm (SA) is a stochastic global optimization method. Simulated

annealing gets its name as it is a conceptual analogue of the cooling (annealing) of high energy

state molten metals in thermodynamics. The annealed metal reaches the global minimum energy

state if the annealing process is very slow, since random fluctuation of the energy of the metal

allows it to escape from local minima. If the metal is cooled quickly, it might not escape from a

local minimum of energy. Like the physical annealing process, the simulated annealing algorithm

allows the current state to move uphill out of a local minimum with some acceptance probability.

This idea was first described in a seminal paper by Metropolis et al. (1953). The acceptance
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probability in SA is controlled by a parameter called the “temperature” which gets its name from

the cooling temperature schedule in the physical annealing process. The readers can find excellent

reviews of SA in Bohachevsky et al. (1986) and Goffe et al. (1994).

Unlike most deterministic algorithms, since SA moves both downhill and uphill along the

surface of the objective function, it theoretically converges to the global minimum for complicated

functions for which derivatives do not exist, have many local minima or high dimensional discrete

or continuous functions. In many cases, if run in a sensible manner, the solution from SA is

insensitive to starting values, which is a major problem for many optimization algorithms. The

algorithm can easily employ a variety of constraints and the implementation is relatively simple

since SA does not require derivatives of the objective function. However, SA is not without its

disadvantages which can include long run times and quite a bit tinkering with the cooling schedule

to obtain a reasonable algorithm.

We adopted SA for the following reasons. First, our objective function is complicated, non-

linear, multimodal and involves many parameters (sampling times). Secondly, SA can easily

incorporate constraints such as discretizing the sampling times or modifying the grid-lengths in

the objective function ObjPA
4 (t; µ, ξ). Finally, the use of Monte Carlo integration to estimate

the population-averaged optimal sampling time points using objective function, ObjPA
4 (t; µ, ξ),

fits well within the SA framework.

The description of our SA algorithm is as follows while a schematic of the algorithm is shown

in Figure 5. We assume the “true” PK parameters are fixed and known as well as the first and

last sampling times (to be used in the objective function). We initialize the temperature, T (1),

and starting sampling time points t(1) = (t
(1)
0 , . . . , t

(1)
m+1). Then each iteration l = 2, . . . , L is as

follows:

1. set T (l) = T (1)/log(l);

2. randomly choose k uniformly from 1, . . . , m;

3. simulate tnew uniformly in the interval (t
(l−1)
k−1 , t

(l−1)
k+1 );

4. set t(l) = (t
(l−1)
0 , . . . , t

(l−1)
k−1 , tnew, t

(l−1)
k+1 , . . . , t

(l−1)
m+1 );

5. simulate I random effects vectors, {βi}I
i=1, each from {µ,D(ξ)} for i = 1, . . . , I;

6. calculate φl =
∑

i Obj4(t
(l); βi)/I;

7. set p = min{exp(− ∆φ
T (l)

)
, 1} where ∆φ = φl − φl−1;

8. generate u ∼ U [0, 1];

9. accept the current sampling times t(l) if u ≤ p; otherwise t(l) = t(l−1).
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Model ka k V D µk ξk

Fixed effects model 1 (FM1) 0.2 0.1 40 400

Fixed effects model 2 (FM2) 0.8 0.2 40 400

Random effects model 1 (RM1) 0.2 40 400 0.1 0.05

Table 1: The parameters for the examples, where µk and ξk are mean and standard deviation of the

random effect k. These parameters were adopted from Kong and Gonin (2000) for comparison.

For a fixed effects model, we omit Step 5 and replace Step 6 with φl = Obj4(t
(l); β). A benefit

of the algorithm is that timing constraints, such as no two sampling points being too close, can

be easily incorporated into Step 3.

5 Examples

For illustration, consider a pharmacokinetic system of the one-compartment open model with

first-order absorption and first-order elimination kinetics (Gibaldi and Perrier, 1982). That is, the

concentration time curve is parametrized as:

f(t; β) =
kaFD

V (ka − k)
(e−kt − e−kat),

where
β : β= [β1, β2, β3] = [V, ka, k]

F : the fraction of the administered dose D that is absorbed

(assume F = 1 in the examples)

V : the volume of distribution (a proportionality constant relating

the amount of drug to the concentration of drug in the blood)

ka : the apparent first-order absorption rate constant

k : the apparent first-order elimination rate constant.

We focus our discussion on fixed effects models for two sets of PK parameters and a random

effects model where k is random; Table 1 gives the specific parameters values used. The two sets

of fixed effect parameters represent two extremes of the concentration-time curve. In FM1, the

curve is smoothly rising and decaying while in FM2 the curve changes very rapidly.

The optimal sampling times for fixed effects models are shown in Figures 6 and 7. The left

panel shows the (estimated) optimal sampling times obtained using Obj4(t; β) as the objective

function while the right panel shows the optimal sampling times obtained using ObjB2(t; β)

both estimated by SA. The resulting sampling schedules for the two objective functions are very

similar regardless of m. Furthermore, the optimal sampling times obtained using ObjB2(t; β)
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under SA are similar to those obtained by Kong and Gonin (2000) who used the same objective

function (using a different algorithm). Of course when the concentration-time curve is smooth,

such as under model FM1, the number of sampling time points can be reduced (see Figure 6).

However, we note that care must be taken because estimation of the subject specific k is not

represented in the objective function. With m = 8 an insufficient number of points (only two)

are represented in the tail of the concentration-time curve when the last 3 time points need to

be used to estimate the subject specific k.

For FM2, the optimal sampling time points obtained using Obj4(t; β) are very different from

those obtained using ObjB2(t; β) unless m is large. Since the rate of absorption is very large

compared to the rate of elimination and the rate of elimination is also large for the FM2, the profile

is rising very quickly, has a sharp peak, then decreases very rapidly. The optimization procedure in

this case is almost entirely determined by the objective function, which is unfortunate because the

two functions are conceptually similar. Furthermore, stable convergence was difficult to obtain

because of the many local minima of similar magnitude to the global minimum. Thus, it is

probably more feasible to transfer the problem to a scale that is less dependent on the objective

function.

We focus our attention on estimating the bulk of the area under the concentration-time

curve, say for a time interval [0, tmax + w] for some w. Then, we suggest that users employ

the logarithmic trapezoidal method (Yeh and Kwan, 1978; Chiou, 1978) for estimating AUC.

Technically, this focus is justified because when using this method, only the (fixed) final time

point after tmax + w is required if the PK model is correct and the observations are measured

without error. Of course, several points should be used in practice because the PK model is never

exactly correct and measurement error is always present.

Focussing on this interval, we find that the results are more robust to specification of the

objective function and converged more quickly. Since tmax varies across subjects, it is necessary

to take w to be large enough in order for the time interval [0, tmax + w] to be able to cover the

peak. Figure 8 shows the sampling time points using this approach for w = 3.7. The left panel

shows the log of the concentration time profile while the right shows the curve on the raw scale.

To obtain population-averaged optimal sampling time points, we need to assume a distribution

for the PK parameters. For model RM1, we assume that k follows a lognormal distribution

with mean µk = 0.1 and standard deviation ξk = 0.05 (similar to Kong and Gonin, 2000).

Further, we assume that ka > k (also as in Kong and Gonin, 2000), which is reasonable for most

oral conventional/immediate release drug products. We emphasize that our objective function,

ObjPA
4 (t; µ, ξ), does not require this assumption.

The obtained optimal sampling time points are shown in Figure 9. It is interesting to note

that the optimal sampling time points for the random effects model are quite different from those

for the fixed effects model. It is also interesting to note that the sampling time points for the
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random effects model have been shifted, resulting in one less point in the absorption phase and

one more point in the elimination phase of the concentration-time curve. The additional point in

the elimination phase seems to be needed to account for variability due to the random elimination

rate constant, k. The optimal sampling time points for the random effects model of Kong and

Gonin (2000) are slightly different from our result, which might be due to the different method

of numerical integration.

Before concluding this section we note that a strength of the SA approach is that a model with

multidimensional random effects could be implemented using our approach with little additional

effort.

6 Summary and Discussion

In this manuscript, we emphasized that the within-subject variance term of objective functions

based on MSE over-dominated the selection of sampling time points. In addition, since the

between-subject variability in PK parameters is usually much greater than the within-subject

variability, it is more important to take into account the between-subject variability. Thus, we

recommend to use an objective function based on the squared bias as an exploratory procedure

to get a general idea about the shape of profile. Then we suggest using a population-averaged

objective function to design the sampling schedule.

We proposed a grid-wise evaluated objective function which can overcome some of the disad-

vantages of other objective functions in the literature. The proposed objective function is simple

to implement and produced reasonable sampling time points consistent with those produced by

the objective function of Kong and Gonin (2000). Because the newly developed objective function

is not amenable to most non-linear optimization methods, we implemented a simulated annealing

algorithm. Furthermore, for obtaining population-averaged results, we embedded Monte Carlo

numerical integration within the algorithm. An appealing aspect of SA is the ease of handling

the Monte Carlo integration and stochastic optimization within a unified framework. Also, the

simulated annealing algorithm easily handles constraints on the sampling times.

As shown in the examples, when the profile is smooth, both the grid-wise evaluated objective

function and ObjB2(t; β) gave similar results. However, when the profile is sharp, special attention

is needed and one should not use any optimization method blindly. We suggested a strategy to

select time points to estimate the bulk of the area under the concentration-time curve. However,

it would seem that prior knowledge regarding subjects is important to select time points in these

scenarios.

It should be noted in BE studies, Cmax and tmax are also important in addition to AUC. A

concern when estimating these parameters is that sampling times may straddle the functional

maximum. We note that the error in the AUC approximation is directly related to the curvature
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of the concentration-time curve. (This is seen most clearly with Wang (2001)’s approximated

objective function which formally depends on the second derivative.) As a result, in many case

both the grid-wise objective function, ObjB2(t; β) and their population-averaged counterparts

used for estimating AUC concentrated points around tmax (see Figure 6-9). Encouragingly, these

objective functions produced reasonable sampling time points for estimating Cmax and tmax.

Broadly speaking, the optimal sampling time points change drastically depending on the

underlying model. Thus, if the number of sampling times is limited for either clinical or economic

reasons, it is important to understand the optimal placement of the sampling times given various

underlying models. The objective function and stochastic optimization method presented in this

manuscript would be useful tools to aid in the discussion of PK study design.
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Figure 1: The estimated AUC, Cmax and tmax using conventional sampling time points. The

dotted line and solid line present the true underlying concentration-time curve and the linear

interpolation of sampling time points assuming no random errors, respectively. The estimated

AUC via the trapezoidal approximation is the shaded area under the solid line.
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(A) Obj1(t; β,λ, σ), σ = 0.1 (B) Obj1(t; β,λ, σ), σ = 0.3
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(C) Obj2(t; β,λ, σ), σ = 0.1 (D) Obj2(t; β, λ, σ), σ = 0.3
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(E) Obj3(t; β, λ, σ), σ = 0.1 (F ) Obj3(t; β, λ, σ), σ = 0.3
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Figure 2: The estimated sampling time points using the mean squared error objective functions

for fixed effects model with parameters ka = 0.2, k = 0.1, V = 40, Dose = 400, λ1 = 0, λ2 = 2

(the model is discussed in Section 5). The dotted line and solid line present the true underlying

concentration-time curve and the linear interpolation of optimal sampling time points, respectively.
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(A) Obj1(t; β,λ, σ), σ = 0.1 (B) Obj1(t; β,λ, σ), σ = 0.3

0 5 10 15 20

0
1

2
3

4
5

6

Time (hr)

C
on

ce
nt

ra
tio

n

0 5 10 15 20

0
1

2
3

4
5

6

Time (hr)

C
on

ce
nt

ra
tio

n

(C) Obj2(t; β,λ, σ), σ = 0.1 (D) Obj2(t; β, λ, σ), σ = 0.3
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(E) Obj3(t; β, λ, σ), σ = 0.1 (F ) Obj3(t; β, λ, σ), σ = 0.3
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Figure 3: The estimated sampling time points using the mean squared error based objective

functions for fixed effects model with parameters ka = 0.8, k = 0.2, V = 40, Dose = 400, λ1 =

0, λ2 = 2 (the model is discussed in Section 5). The dotted line and solid line present the true

underlying concentration-time curve and the linear interpolation of optimal sampling time points,

respectively.
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Figure 4: The demonstration of the grid-wise evaluated objective function to prevent overesti-

mated and underestimated errors from being cancelled out. The dotted line and solid line present

the true underlying concentration-time curve with parameters ka = 0.2, k = 0.1, V = 40, Dose =

400, λ1 = 0, λ2 = 2 (the model is discussed in Section 5) and the linear interpolation of optimal

sampling time points under objective function ObjB1(t; β), respectively.
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Figure 5: A demonstration of the simulated annealing algorithm from Section 4.
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Figure 6: The optimal sampling time points for fixed effects model (FM1) with parameters

ka = 0.2, k = 0.1, V = 40, Dose = 400. The plots on the left are obtained using the grid-wise

evaluated objective function Obj4(t; β) while the plots on the right are obtained using ObjB2(t; β)

implemented by SA. The dotted line and solid line present the true underlying concentration-time

curve and the linear interpolation of optimal sampling time points, respectively.
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Figure 7: The optimal sampling time points for fixed effects model (FM2) with parameters

ka = 0.8, k = 0.2, V = 40, Dose = 400. The plots on the left are the optimal sampling time

points using the grid-wise evaluated objective function Obj4(t; β) while the plots on the right are

the optimal sampling time points using ObjB2(t; β) implemented by SA. The dotted line and solid

line present the true underlying concentration-time curve and the linear interpolation of optimal

sampling times, respectively.
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Figure 8: The optimal sampling time points for fixed effects model (FM2) with parameters

ka = 0.8, k = 0.2, V = 40, Dose = 400 using our proposed strategy. The left panel shows the

log of the concentration vs. time and the right panel shows the concentration vs. time.
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(A) FM1, Obj4(t; β) (B) FM1, ObjB2(t; β)
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(C) RM1, ObjPA
4 (t; µ, ξ) (D) RM1, ObjPA

B2 (t; µ, ξ)
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Figure 9: The comparison of the optimal sampling time points for fixed effects model (FM1) (top

panel) and for random effects model (RM1) (bottom panel) where FM1 has parameters ka =

0.2, k = 0.1, V = 40, Dose = 400 and RM1 has fixed parameters ka = 0.2, V = 40, Dose = 400

and random effect k with the mean µk = 0.1 and standard deviation ξk = 0.05 where ka > k.

The plots on the left are the optimal sampling time points using the grid-wise evaluated function

implemented by SA while the plots on the right are the optimal sampling time points from Kong

and Gonin (2000).
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