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ABSTRACT

Two of the major approaches for linkage analysis with quatie traits in humans include
variance components and Haseman-Elston regressionoBséyithese have been viewed as
quite separate methods. We describe a general model, fiebgfugeneralized estimating
equations (GEE), for which the variance components andrHaseElston methods (including
many of the extensions to the original Haseman-Elston nigthi@ special cases, corresponding
to different choices for a working covariance matrix. Weoadbow that the regression-based test
of Sham et al. (2002) is equivalent to a robust score statistiived from our GEE approach.
These results have several important implications. Ringt,work provides new insight regarding
the connection between these methods. Second, asymyiptim@mations for power and sample
size allow clear comparisons regarding the relative efiigyeof the different methods. Third, our
general framework suggests important extensions to therkias-Elston approach which make
more complete use of the data in extended pedigrees andal@tural incorporation of

environmental and other covariates.
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INTRODUCTION

Many important human disease-related phenotypes (eapdlgressure) are quantitative in
nature. There are a plethora of approaches for linkage sisaly quantitative traits in human
data, but, until recently, there has been a dearth of uratedstg of the advantages and
disadvantages of the different approaches; two recergwes\viFeingold 2001, 2002] have been
especially valuable in improving this understanding.

Two of the most commonly used approaches for quantitatarelinkage analysis are
Haseman-Elston regression [Haseman and Elston 1972] angs#hof variance components
models [Amos 1994, Almasy and Blangero 1998]. Previouklsé approaches have been
viewed as completely separate methods. In this paper, vwgibes general method for
guantitative trait linkage analysis that makes use of gdizexd estimating equations (GEE)
[Liang and Zeger 1986], for which the variance componentthotand Haseman-Elston
regression (including many of its extensions) are speeisgs. This work has several important
implications: it provides new insight about the relatioipdbetween these methods, it leads to
asymptotic sample size approximations that allow cleargamsons between the methods, and it
suggests important extensions to Haseman-Elston regressith for its application in general

pedigrees and for the incorporation of environmental ahérotovariates.
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SIBLING PAIRS

We first illustrate our general approach in the special casgnalomly ascertained sibling
pairs with known population mean phenotype (assumed, witloss of generality, to be 0), under
the assumption that there is a single putative quantita@ielocus (QTL) with no dominance
effect. Lety,, yr2 denote the phenotypes for theh sibling pair, withy,, = (yx1, yx2)’. Letmy
denote, for théth pair, the proportion of alleles shared identical by das¢dD) at a putative
QTL. Let M, denote the available multipoint marker data for the paid, l@t7r, = E(m| M), the
expected proportion of alleles shared IBD given the markéa.d_ets? denote the additive
variance due to the putative QTL, let denote the overall phenotypic variance, ancldenote
the correlation between the siblings’ phenotypes.

In the variance components approach to quantitative trddagie analysis [Amos 1994,
Almasy and Blangero 1998], the phenotypes for a sibling painditional on the marker data, are
assumed to follow a bivariate normal distribution with tlee@&riance matrix for théth pair being
the following.

Qi1 Qo o? po? + o2(p — 1)
O = = (1)

oy | po? + o2 (7, — 1) o?

The log likelihood function for this model i§0?2, 02, p) = —(1/2) 3=, {In || + ¥}, "y, }-
The maximum likelihood estimates (MLEs) of the parametefsp, ands?, are the values for

which this function achieves its maximum, and are obtairsettha solutions of the score
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equations:
ol . 1. (Yk1 + Yro)? (Yk1 — Yka)? Q2

0 = = — = - + 2
aag zk:( . ){4(Qk1 F 22 A — Q) Q2 — sz} @

+ Yr2)? (Yk1 — Yra)? Qo
0 _ 2 (ykl + 3
Z{ A(Q + Qp2)? 4(Qk1 — Wo)? Q- 922} ®)

(Y1 + yr2)? (Yk1 — Yra)? Qo

ol
0 = & _ _
902~ P 2{4(Qk1 002 Q- QR - %}

(Yk1 + Yn2)? (Y1 — Yr2)? 2
— 4
T Z{ 2(Q1 + U2)? 2(r — Q2)? Q2 — Q3 } (4)

A more general method, making use of generalized estimatingtions (GEE) [Liang and
Zeger 1986, Prentice and Zhao 1991] can lead to this saméagtiations. GEE was developed
for the analysis of longitudinal data, where there are mldtmeasurements with known
correlation structure, but for which the correlations mapehd on a set of parameters that are to
be estimated. Consider as the outcome forithesibling pairz;, = (v, y2,, yr1yr2)’- With our
simplifying assumption that the population phenotype nms&n) we have that, has expected
value, given the observed marker datézBM;) = (1, a1, Qo). (Recall, from equation (1),
thatQ,, = o2 andQs = po? + o2(7, — 1/2).)

GEE makes use of a working covariance matri%, which is a set of presumed variances and
covariances for the elements »f, and which may include unknown parameters that are to be
estimated. Having specifiddl,,, which can be any symmetric, positive definite matrix, theEGE

estimators of the parametetg, p, ando?, are obtained by solving the equations

> DLWS =0 (5)
k
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whereS, = z, — E(z| M) and Dy, is a matrix whose columns consist of the derivatives of the
vector H z, | M, ) with respect to each parameter, so that, in the case undsidesation, and with

the parameters ordered, p, o2,

i —1/2 % p

Different choices of working covariance matri¥,, lead to different parameter estimates. In

particular, if the working covariance matrix has the form

W= 202, 202, 2010

2Qk19k2 29k19k2 Qil_'_QiQ

then, through relatively straightforward algebra (e.g.ube of the computer program
MATHEMATICA), one may show that equations (5) corresponddatly to the score equations
for the variance components approach, (2)—(4). Thus than@e components method is a special
case of this more general GEE method.

Note that the usual estimated standard errors (SEs) forati@ce components method may
be obtained via the matri_, D}, (W) “)~'Dy)~'. Alternatively, we recommend the use of the

more robust “sandwich” estimates, commonly used for the Gekhod,

ZDk WItDy) 1{2 DWWt S, (D WLSE) ) Zpk WD), (6)
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In the original Haseman-Elston method [Haseman and EI9@2]1 one uses linear
regression of the squared difference between the sibljgtgEnotypesy., — yx2)?, on the
expected proportion of alleles shared IBD at the putativé Gf,. The slope obtained by
ordinary least squares (OLS) is an estimate-2&>. (Note that one cannot obtain separate
estimates op ando? by this approach, but only of the combinatigin— p)o2.) Consider the

following working covariance matrix

10 1/2
Wit =1 "9 1 1/2
1/2 1/2 3/2

The insertion of ¥ as the working covariance matrix in the equations (5) leadbé

following:

. 2

0 = Y- B g, g )
k

0 = Zﬂ—Mﬁzm — O} (8)
k

2 2

0 = Y {6B- T2 — o) — (1 - p)(payie - )} (9)

k

Equation (9) turns out to be redundant, and the solution o&ggns (7) and (8) fos> and

(1 — p)o? give estimates that are identical to those derived from thgnal Haseman-Elston
method. Thus, Haseman-Elston is a special case of our d€siEEaapproach, corresponding to
the use of the working covariance matfix” .

The usual estimated SE used with Haseman-Elston regrasdiuat from ordinary least
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squares (OLS), based on the assumption of constant variahgzh is correct under the null
hypothesis of no linkage, but is generally not correct urtderalternative hypothesis that the site
under test is linked to a QTL. The estimated SE from our GEEhotktbased on the sandwich
estimate of the variance matrix, does not rely on the cohstarance assumption and provides a
consistent estimate of the SE even in the case of linkage.

Wright [1997] pointed out that further information may beaahed by considering the
squared sum of the siblings’ quantitative phenotypes, ditexh to the squared difference.
Several extensions to the original Haseman-Elston metdadadvantage of this observation. In
the Haseman-Elston Revisited method [Elston et al. 2086]ptoduct of the siblings’
phenotypesy.1yk2, IS regressed on the expected proportion of alleles sh&f@dt the putative
QTL, 7. This approach is also a special case of our general GEE ohetbresponding to use
of the identity matrix as the working covariance matrix.

A further extension of the original Haseman-Elston metlsoithé combined Haseman-Elston
regression method (denoted HE-COM) of Sham and Purcelll[R00 this methodp ando? are
assumed known, and one regresggs + yi2)*/(1+ p)* — (yx1 — yx2)?/(1 — p)* on 7, to obtain

an estimate of2. Consider the following working covariance matrix:

14p? o 14p? 0
(1—p2)201 (1—p2)251
WOEOM _ | 14p?  (4pA)(144(14p*)0t)  4p(14p%)
(1—p2)252 (1—p2)204 (1—p2)2
0 4p(1+p%) (1+p°)?

(1-p?)? (1—p%)?

Inserting the working covariance matfikx ““* into equation (5) (though here we take only the

first column of the matrixD,,, as only the parametef remains to be estimated), one can show

http://biostats.bepress.com/jhubiostat/paperl4



that this approach is also a special case of our general GHtoohe

Thus, for the case of randomly ascertained sibling paird véth the assumption that the
population phenotype mean is known (made in order to simtiié algebraic expressions), we
have shown that the variance components method for quiargiteait linkage analysis, as well as
the original Haseman-Elston, Haseman-Elston Revisited HE-COM methods, are all special

cases of a general GEE method.
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GENERAL PEDIGREES

While we have focused above on the case of sibling pairs gfidts may be seen to apply
more generally. Consider a set of general pedigrees, ang léénote the quantitative phenotype
for theith individual in thekth pedigree. Lef;;; andAy,; denote the kinship and fraternity
coefficients, respectively, for individualsind; in pedigreek, and letr;;; andk,,;; denote their
expected proportion of alleles shared IBD and the proligitiiat they share 2 alleles IBD,
respectively, at a putative QTL, given multipoint marketadd eto? ands? denote the additive
and dominance variance, respectively, due to the putafile @nd Ieto—ga, agd, anda? denote the

additive polygenic variance, dominance polygenic vamamnd residual environmental variance,

respectively. (Note that, for the sibling pairs case cogrgd above, we used a different but

2
e

equivalent parameterization: we assumed #fjat 0 and considered”® = o + 07, + 02, + 0
andp = (03/2+07,/2 + 024/4)/0°.)

Consider a set g covariates (including an intercept term), and assume
E(yri) = E(yri| Myi) = ;5. The covariance of the phenotypes for individuad&d; in
pedigreek, given the available marker data, is

¥ o2+ 03+ O‘ia + Ugd + o2 ifi=j (10)
ﬁkiﬂg + '%kijag + Qq)kijUfm + Akijazd if i j

For mathematical convenience, we consider as the outcontiegféth pedigreez, = [y,
(yri — 21,,0)%, (ki — T, 0) (yry — x4,;3)]', @ vector of lengthny, = 2ny, + ny(ny — 1)/2, wheren,,
is the number of phenotyped individuals in pedigke€There are a variety of other equivalent

formulations, but this leads to somewhat simpler algeleapressions.) Note that
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E(zi|Mk) = (@},;3, Qnii, i)'

With our GEE method, the + 5 parameterso?, o7, 0,, 04, 07, andp3), are estimated as the
solutions to the same equation$,(for some choice of working covariance mathi%,, and again
with Sy, = z, — E(zx|M}) (a vector of lengthn,) and D, a matrix (of dimensiomn, x (p + 5))
whose columns consist of the derivatives of the vectar,E\/;.) with respect to each parameter

(in the order referred to above), as follows:

(i) [Rrigl [2Pwis] [Dwig] 00

Again, different choices for the working covariance matlix,, lead to different estimates, and
robust SEs for the GEE estimates can again be obtained vaieqy6).

In the variance components approach for quantitativeltrkihge analysis in general
pedigrees [Almasy and Blangero 1998], the phenotypesre assumed to follow a multivariate
normal distribution with mearX 3 and covariance matrix as in equation (10), and the parameter
are estimated by maximum likelihood. Through relativehagthtforward but tedious algebra, it
can be shown that the MLEs under the normal model correspmti testimates from our

general GEE method, for the case that the working covariaratex is the following:

Q 0 0
W =1 0 A, B
0 B, C
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Here A, is a matrix of dimensiom;, x n;, with A,;; = 2Q§ij. By, is a matrix of dimension

ng X ng(n, — 1)/2 whose columns correspond to pairs of individuals(iett) denote the
column corresponding to the pair, t) with s < ¢. Then the value in théh row and(s : ¢)th
column of By, is 22,,.Qxi:, the covariance, given the marker datayhfandy;.yx: under the
assumption of multivariate normality. Finally/, is a square, symmetric matrix with

ny(n, — 1)/2 rows and columns; the value in thie : j), (s : t)] position iSQ;s Qe + Qpir Qiejs-

It should be noted that Amos [1994] and Amos et al. [1996] ippGEE for quantitative trait
linkage analysis, with the working covariance matfix, ©, though it was not recognized that
this approach is identical to maximum likelihood under anmalrmodel.

Olson and Wijsman [1993] extended the original Hasemaisk&lsiethod for use with
general pedigrees, considering the squared phenotygedtiffes for all relative pairs, and using a

GEE approach with a working covariance matrix denoted heté"d’. This can also be shown to

be a special case of our general GEE method, with workingra@wee matrix

w=10 1 1B,

0 LB, YVIE 4 ELE)

whereFE), is a matrix of dimensiom,, x ny(n, — 1)/2 whosej, (s : t) elementis 1 ifj = s or

j = tandis 0 otherwise.
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DISCUSSION

We have described a general method, making use of genefafitienating equations (GEE),
for quantitative trait linkage analysis in human pedigredsich unifies the variance components
and Haseman-Elston methods, as each is a special case armragmethod, corresponding to
different choices for the working covariance matrix. OurEsethod is similar to, but more
general than, the GEE method recently described by Shete[20@3]. They focused on
sibships, considered the squared differences and squamegiaf all sibling pairs’ phenotypes,
and used a particular working covariance matrix.

Our GEE method generalizes and unifies the variance compoaerd Haseman-Elston
methods in the sense that the parameter estimates obtaisetléions to the GEE are identical to
the MLEs for the variance components methotif © is used as the working covariance matrix,
or to the OLS estimates for Haseman-Elston regressidiif is used as the working covariance
matrix. However, the usual test statistics for linkage fa variance components and
Haseman-Elston methods do not follow immediately from tigE@nethod.

In variance components, one typically uses the likelihaibitest statistic, which requires
that one consider directly the normal likelihood. In Hasaridston regression, one typically uses
a Wald statistic based on the SE from ordinary least squAtesnatively, one may use a score
statistic derived from the normal likelihood, such as theusi score statistic of Wang and Huang
[2002], developed particularly for sibships. While the GiEEthod we have described does not
lead directly to any of these test statistics, it does pretk parameter estimates that are the
basis of any test statistic, and so any such statistic magloalated immediately using the

results of the GEE. We are currently investigating the nedgterformance, in terms of power and
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robustness, of a variety of such test statistics in the chsdships and larger pedigrees.

Sham et al. [2002] recently described a new method for guzive trait linkage analysis in
human pedigrees, in which the IBD status for all relativega regressed on the squared
differences and squared sums of the pairs’ phenotypes. Etfgogh has been implemented in the
software MERLIN [Abecasis et al. 2002] and was shown to hawegp similar to the variance
components approach but to be robust to departures fromatitynit is intriguing to note that
this method corresponds exactly to a robust score stdtistionay be derived from our GEE
method with the Gaussian working covariance matiiX,“. The details are deferred to the
Appendix. We implemented this score test in our own softveaue confirmed the mathematical
result: with simulated data, the test statistic was idahte the results of the software
MERLIN-REGRESS.

This work has several implications, the most important ofchlis the new insight that it
provides on the connection between the Haseman-Elstonarahee components methods:
choosing between these approaches is equivalent to clygomsworking covariance matrix for the
GEE method. In the case of multivariate normality, the vazeacomponents method will have
improved power over Haseman-Elston regression, as it sdbais the correct covariance matrix
with no additional parameters [Liang et al. 1992]. In theeailze of normality, the use of the
likelihood ratio statistic with the variance componentdimoel can give an inflated type | error
rate [e.g., Allison et al. 1999]. The use of GEE with robuss GEe., based on the sandwich
estimator) will control the type | error rate; as a speciagesdiaseman-Elston regression is
robust. As the working covariance matrix for the varianceaponents method) V¢, will still

likely be closer to the truth than that of Haseman-Elstomessjon W ¥, even when the normal
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model is not correct, one may use GEE with the working cowagamatrixi¥’ V¢ to obtain a
method that is as robust as Haseman-Elston regressiomms tdrtype | error, but has higher
power [Liang et al. 1992].

In addition, our general GEE method provides an approacextending the Haseman-Elston
method to general pedigrees that makes more full use of titable data than the method of
Olson and Wijsman [1993], and allows the incorporation ofi@mmental covariates. A careful
assessment of the advantages and disadvantages of diffaeces for a working covariance
matrix deserves further exploration.

Finally, the unification of a variety of quantitative traitkage analysis methods within a
single general framework enables a more simple comparisthe gelative performance of the
methods. As an example, we consider the casesibling pairs (though note that these results
may be easily extended for the case of general pedigreesas®ne that the siblings’
phenotypes approximately follow a bivariate normal digttion. In this case, the Wald test
statistics, with SEs from the sandwich estimator of thearaseé matrix, for the four methods
considered above each follow, approximately, a noncegtrdistribution with one degree of
freedom, with noncentrality parameter (NCP) accordindneofollowing formula:

04 (304 DWWy ' Dy)?

NCP =
> DWW WDy

wherelVV¢ is the working covariance matrix for the variance composemtthod, which is the
true covariance matrix under the assumption of bivariatenatity. For the case of sibling pairs,

algebraic expressions for the NCP may be obtained; theyisp&agied in Table 1. Note that in the
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case that the QTL under study explains a small proportiohetatal genetic effect (i.e.,

o2 /o? << 2p), these formulas reduce to the approximate formulas of SivadrPurcell [2001],
listed in the third column of Table I, in which case their mrethHE-COM, was seen to be
equivalent to the variance components method. With the mi@&se formulas in the middle
column of Table I, the HE-COM method can be seen to have $liggwer power than the
variance components method.

The sample size required to achieve power 3 with significance levelr is obtained by
solving the equation NCP &7, — Z;_3)? for the sample size;. Figure 1 displays the number of
sibling pairs required to achieve 80% power to detect a Qi IEijure 1A, the overall heritability
is taken to be 60%, and the effect of the QTL is varied. In FeglB, the effect of the QTL is
fixed at 20%, and the overall heritability is varied. As hasrbebserved previously [e.g., Allison
et al. 1999], the variance components approach is seen éthagreatest power in this situation;
the HE-COM method performs nearly as well.

There is a great deal of flexibility in the general GEE methuat tve describe in this paper. It
will be valuable to explore the power and robustness pragseof this method with different
choices for the working covariance matrix, in order to idigrd quantitative trait linkage analysis
procedure that is as robust as Haseman-Elston regresdiomimtains the power of the variance

components approach.
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APPENDIX

Sham et al. [2002] proposed a method for quantitative traialge analysis in which IBD
status is regressed upon the squared differences and dcusmns of relatives pairs’ phenotypes.
Here we show that this method is equivalent to a score testtag be derived from our GEE
approach.

For a family withn individuals, letY” denote a vector containing thén — 1) /2 squared sums
andn of the squared differences of the phenotypes for all redgiiirs and lefl denote a matrix
of IBD probabilities for all pairs. Let, = Y — E(Y), II, = II — 2®, whered is a matrix of
kinship coefficients, and lét,- denote the covariance matrix fir, assuming that the trait values

follow a multivariate normal distribution. Further definenatrix ¥, with elements

CoviTj, Tim] = COV(E[m;;|M], Emym|M])
~ CoV(mj, mpm) — COM(y5, Ty | M)

= COV(Wij,ﬂ'lm) — (E[ﬂ'ijﬂ'lm|M] — ﬁ'ijﬁ'lm)

where CoVr;;, m.,) Can be calculated given only the pedigree structurefgjag;m;,,,| M| can be
calculated based on the posterior distribution conditionamarker information\/. Finally,

define
21, 0 —21,

0 2L,pn-3y2 O
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Then the test statistic of Sham et al. [2002] is the following

S0 91 1 7:0>0 s 1)
SIS H S HE Y]

We seek to show that the statistic (11) is identical to thiovahg score test statistic:

o (= (o ﬁ;)Ggl(z—E[z]>)2 "
sle-mayer | " " et em
0 ¥y

wherez is a vector consisting of all squares and cross productaibialues, andx, is the
covariance matrix of assuming that the trait values follow a multivariate norufiatribution.
There exists a non-singular matuixsuch that” = Az. ThusY,. = A(z — E[z]) and

Yy = AGyA’. By straightforward algebra, we can show the following:

OElY|M] -
o2 — H'TI,
OE[z|M] 0
Oo? N .
11,
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It follows that

. 0
HT, = A
1.
0 0
HSH = A Al
0 %y

Thus, the square root of the numerator of statistic (11) is

Gy'(z — El2])

Siwasv = 3 (0 iy ) AAGA) A - Bl
= X (o )

0 I,

which can be shown to correspond to the generalized estighatjuations with a Gaussian
working covariance matrix (equivalently, to the score fimm) evaluated at? = 0.

The denominator of (11) is

SIS HSGHSY.) = Y (2 - B G AT HS g HAT Gy (= - El2))
0 O

= 3 | (2 - BL)Gy! Go'(z — Elz])
0 g

which is a robust variance estimator for the score under tiidngpothesis of no linkage. It

follows that the test statistic (11) is identical to the sctast statistic (12).
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Table I: Noncentrality parameters for the casexddibling pairs, under a normality assumption.

T=(p+a2/2°)7

[1=(p—03/20°)*]?

Method Noncentrality parameter Approximatfon
H-E 16(1—2()02(?2(?;/02)2 16(1n—p)2 (Z_E)Q
H-E Revisited T ST (%)?
HE-COM ST a0 BTG i (5h)?
VC %(Z—‘E )2 {[1+<p+oz/202>2 1+(p—02/20%)? } n(14p?) (a_:;; )2

2 Approximation for the case?/o? << 2p.
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FIGURE LEGEND

Figure 1. Number of sibling pairs required to achieve 80% power t@ded QTL, for four
different linkage analysis method&. Sample size as a function of the proportion of the
phenotypic variance due to the QTL, with an overall herltgbof 60%. B. Sample size as a

function of the overall heritability, with 20% of the phegptc variance due to the QTL.
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