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ABSTRACT

Two of the major approaches for linkage analysis with quantitative traits in humans include

variance components and Haseman-Elston regression. Previously, these have been viewed as

quite separate methods. We describe a general model, fit by use of generalized estimating

equations (GEE), for which the variance components and Haseman-Elston methods (including

many of the extensions to the original Haseman-Elston method) are special cases, corresponding

to different choices for a working covariance matrix. We also show that the regression-based test

of Sham et al. (2002) is equivalent to a robust score statistic derived from our GEE approach.

These results have several important implications. First,this work provides new insight regarding

the connection between these methods. Second, asymptotic approximations for power and sample

size allow clear comparisons regarding the relative efficiency of the different methods. Third, our

general framework suggests important extensions to the Haseman-Elston approach which make

more complete use of the data in extended pedigrees and allowa natural incorporation of

environmental and other covariates.

Key Words: generalized estimating equations
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INTRODUCTION

Many important human disease-related phenotypes (e.g., blood pressure) are quantitative in

nature. There are a plethora of approaches for linkage analysis of quantitative traits in human

data, but, until recently, there has been a dearth of understanding of the advantages and

disadvantages of the different approaches; two recent reviews [Feingold 2001, 2002] have been

especially valuable in improving this understanding.

Two of the most commonly used approaches for quantitative trait linkage analysis are

Haseman-Elston regression [Haseman and Elston 1972] and the use of variance components

models [Amos 1994, Almasy and Blangero 1998]. Previously, these approaches have been

viewed as completely separate methods. In this paper, we describe a general method for

quantitative trait linkage analysis that makes use of generalized estimating equations (GEE)

[Liang and Zeger 1986], for which the variance components method and Haseman-Elston

regression (including many of its extensions) are special cases. This work has several important

implications: it provides new insight about the relationship between these methods, it leads to

asymptotic sample size approximations that allow clear comparisons between the methods, and it

suggests important extensions to Haseman-Elston regression, both for its application in general

pedigrees and for the incorporation of environmental and other covariates.
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SIBLING PAIRS

We first illustrate our general approach in the special case of randomly ascertained sibling

pairs with known population mean phenotype (assumed, without loss of generality, to be 0), under

the assumption that there is a single putative quantitativetrait locus (QTL) with no dominance

effect. Letyk1, yk2 denote the phenotypes for thekth sibling pair, withyk = (yk1, yk2)
′. Let πk

denote, for thekth pair, the proportion of alleles shared identical by descent (IBD) at a putative

QTL. Let Mk denote the available multipoint marker data for the pair, and let π̂k = E(πk|Mk), the

expected proportion of alleles shared IBD given the marker data. Letσ2
a denote the additive

variance due to the putative QTL, letσ2 denote the overall phenotypic variance, and letρ denote

the correlation between the siblings’ phenotypes.

In the variance components approach to quantitative trait linkage analysis [Amos 1994,

Almasy and Blangero 1998], the phenotypes for a sibling pair, conditional on the marker data, are

assumed to follow a bivariate normal distribution with the covariance matrix for thekth pair being

the following.

Ωk =









Ωk1 Ωk2

Ωk2 Ωk1









=









σ2 ρσ2 + σ2
a(π̂k −

1
2
)

ρσ2 + σ2
a(π̂k −

1
2
) σ2









(1)

The log likelihood function for this model isl(σ2
a, σ

2, ρ) = −(1/2)
∑

k

{

ln |Ωk| + y
′

kΩ
−1
k yk

}

.

The maximum likelihood estimates (MLEs) of the parameters,σ2
a, ρ, andσ2, are the values for

which this function achieves its maximum, and are obtained as the solutions of the score
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equations:

0 =
∂l

∂σ2
a

=
∑

k

(π̂k −
1

2
){

(yk1 + yk2)
2

4(Ωk1 + Ωk2)2
−

(yk1 − yk2)
2

4(Ωk1 − Ωk2)2
+

Ωk2

Ω2
k1 − Ω2

k2

} (2)

0 =
∂l

∂ρ
= σ2

∑

k

{
(yk1 + yk2)

2

4(Ωk1 + Ωk2)2
−

(yk1 − yk2)
2

4(Ωk1 − Ωk2)2
+

Ωk2

Ω2
k1 − Ω2

k2

} (3)

0 =
∂l

∂σ2
= ρ

∑

k

{
(yk1 + yk2)

2

4(Ωk1 + Ωk2)2
−

(yk1 − yk2)
2

4(Ωk1 − Ωk2)2
+

Ωk2

Ω2
k1 − Ω2

k2

}

+
∑

k

{
(yk1 + yk2)

2

2(Ωk1 + Ωk2)2
−

(yk1 − yk2)
2

2(Ωk1 − Ωk2)2
−

2Ωk1

Ω2
k1 − Ω2

k2

} (4)

A more general method, making use of generalized estimatingequations (GEE) [Liang and

Zeger 1986, Prentice and Zhao 1991] can lead to this same set of equations. GEE was developed

for the analysis of longitudinal data, where there are multiple measurements with known

correlation structure, but for which the correlations may depend on a set of parameters that are to

be estimated. Consider as the outcome for thekth sibling pairzk = (y2
k1, y

2
k2, yk1yk2)

′. With our

simplifying assumption that the population phenotype meanis 0, we have thatzk has expected

value, given the observed marker data, E(zk|Mk) = (Ωk1, Ωk1, Ωk2)
′. (Recall, from equation (1),

thatΩk1 = σ2 andΩk2 = ρσ2 + σ2
a(π̂k − 1/2).)

GEE makes use of a working covariance matrix,Wk, which is a set of presumed variances and

covariances for the elements ofzk, and which may include unknown parameters that are to be

estimated. Having specifiedWk, which can be any symmetric, positive definite matrix, the GEE

estimators of the parameters,σ2
a, ρ, andσ2, are obtained by solving the equations

∑

k

D′

kW
−1
k Sk = 0 (5)
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whereSk = zk − E(zk|Mk) andDk is a matrix whose columns consist of the derivatives of the

vector E(zk|Mk) with respect to each parameter, so that, in the case under consideration, and with

the parameters orderedσ2
a, ρ, σ2,

Dk =

















0 0 1

0 0 1

π̂k − 1/2 σ2 ρ

















.

Different choices of working covariance matrix,Wk, lead to different parameter estimates. In

particular, if the working covariance matrix has the form

W V C
k =

















2Ω2
k1 2Ω2

k2 2Ωk1Ωk2

2Ω2
k2 2Ω2

k1 2Ωk1Ωk2

2Ωk1Ωk2 2Ωk1Ωk2 Ω2
k1 + Ω2

k2

















then, through relatively straightforward algebra (e.g., by use of the computer program

MATHEMATICA), one may show that equations (5) correspond exactly to the score equations

for the variance components approach, (2)–(4). Thus the variance components method is a special

case of this more general GEE method.

Note that the usual estimated standard errors (SEs) for the variance components method may

be obtained via the matrix(
∑

k D′

k(W
V C
k )−1Dk)

−1. Alternatively, we recommend the use of the

more robust “sandwich” estimates, commonly used for the GEEmethod,

(
∑

k

D′

kW
−1
k Dk)

−1{
∑

k

(D′

kW
−1
k Sk)(D

′

kW
−1
k Sk)

′}(
∑

k

D′

kW
−1
k Dk)

−1, (6)
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In the original Haseman-Elston method [Haseman and Elston 1972], one uses linear

regression of the squared difference between the siblings’phenotypes,(yk1 − yk2)
2, on the

expected proportion of alleles shared IBD at the putative QTL, π̂k. The slope obtained by

ordinary least squares (OLS) is an estimate of−2σ2
a. (Note that one cannot obtain separate

estimates ofρ andσ2 by this approach, but only of the combination(1 − ρ)σ2.) Consider the

following working covariance matrix

W HE =

















1 0 1/2

0 1 1/2

1/2 1/2 3/2

















.

The insertion ofW HE as the working covariance matrix in the equations (5) leads to the

following:

0 =
∑

k

(π̂k −
1

2
){−

(yk1 − yk2)
2

2
+ Ωk1 − Ωk2} (7)

0 =
∑

k

σ2{−
(yk1 − yk2)

2

2
+ Ωk1 − Ωk2} (8)

0 =
∑

k

{(3 − ρ)(
y2

k1 + y2
k2

2
− Ωk1) − (1 − ρ)(yk1yk2 − Ωk2)} (9)

Equation (9) turns out to be redundant, and the solution of equations (7) and (8) forσ2
a and

(1 − ρ)σ2 give estimates that are identical to those derived from the original Haseman-Elston

method. Thus, Haseman-Elston is a special case of our general GEE approach, corresponding to

the use of the working covariance matrixW HE.

The usual estimated SE used with Haseman-Elston regressionis that from ordinary least
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squares (OLS), based on the assumption of constant variance, which is correct under the null

hypothesis of no linkage, but is generally not correct underthe alternative hypothesis that the site

under test is linked to a QTL. The estimated SE from our GEE method, based on the sandwich

estimate of the variance matrix, does not rely on the constant variance assumption and provides a

consistent estimate of the SE even in the case of linkage.

Wright [1997] pointed out that further information may be obtained by considering the

squared sum of the siblings’ quantitative phenotypes, in addition to the squared difference.

Several extensions to the original Haseman-Elston method take advantage of this observation. In

the Haseman-Elston Revisited method [Elston et al. 2000], the product of the siblings’

phenotypes,yk1yk2, is regressed on the expected proportion of alleles shared IBD at the putative

QTL, π̂k. This approach is also a special case of our general GEE method, corresponding to use

of the identity matrix as the working covariance matrix.

A further extension of the original Haseman-Elston method is the combined Haseman-Elston

regression method (denoted HE-COM) of Sham and Purcell [2001]. In this method,ρ andσ2 are

assumed known, and one regresses(yk1 + yk2)
2/(1 + ρ)2 − (yk1 − yk2)

2/(1 − ρ)2 on π̂k to obtain

an estimate ofσ2
a. Consider the following working covariance matrix:

W COM =

















1+ρ2

(1−ρ2)2σ4 − 1+ρ2

(1−ρ2)2σ4 0

− 1+ρ2

(1−ρ2)2σ4

(1+ρ2)(1+4(1+ρ2)σ4)
(1−ρ2)2σ4

4ρ(1+ρ2)
(1−ρ2)2

0 4ρ(1+ρ2)
(1−ρ2)2

(1+ρ2)2

(1−ρ2)2

















Inserting the working covariance matrixW COM into equation (5) (though here we take only the

first column of the matrixDk, as only the parameterσ2
a remains to be estimated), one can show
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that this approach is also a special case of our general GEE method.

Thus, for the case of randomly ascertained sibling pairs, and with the assumption that the

population phenotype mean is known (made in order to simplify the algebraic expressions), we

have shown that the variance components method for quantitative trait linkage analysis, as well as

the original Haseman-Elston, Haseman-Elston Revisited, and HE-COM methods, are all special

cases of a general GEE method.

Hosted by The Berkeley Electronic Press
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GENERAL PEDIGREES

While we have focused above on the case of sibling pairs, the results may be seen to apply

more generally. Consider a set of general pedigrees, and letyki denote the quantitative phenotype

for theith individual in thekth pedigree. LetΦkij and∆kij denote the kinship and fraternity

coefficients, respectively, for individualsi andj in pedigreek, and letπ̂kij andκ̂kij denote their

expected proportion of alleles shared IBD and the probability that they share 2 alleles IBD,

respectively, at a putative QTL, given multipoint marker data. Letσ2
a andσ2

d denote the additive

and dominance variance, respectively, due to the putative QTL, and letσ2
pa, σ2

pd, andσ2
e denote the

additive polygenic variance, dominance polygenic variance, and residual environmental variance,

respectively. (Note that, for the sibling pairs case considered above, we used a different but

equivalent parameterization: we assumed thatσ2
d = 0 and consideredσ2 = σ2

a + σ2
pa + σ2

pd + σ2
e

andρ = (σ2
a/2 + σ2

pa/2 + σ2
pd/4)/σ2.)

Consider a set ofp covariates (including an intercept term), and assume

E(yki) = E(yki|Mki) = x
′

kiβ. The covariance of the phenotypes for individualsi andj in

pedigreek, given the available marker data, is

Ωkij =















σ2
a + σ2

d + σ2
pa + σ2

pd + σ2
e if i = j

π̂kijσ
2
a + κ̂kijσ

2
d + 2Φkijσ

2
pa + ∆kijσ

2
pd if i 6= j

(10)

For mathematical convenience, we consider as the outcome for thekth pedigreezk = [yki,

(yki −x
′

kiβ)2, (yki −x
′

kiβ)(ykj −x
′

kjβ)]′, a vector of lengthmk = 2nk + nk(nk − 1)/2, wherenk

is the number of phenotyped individuals in pedigreek. (There are a variety of other equivalent

formulations, but this leads to somewhat simpler algebraicexpressions.) Note that

http://biostats.bepress.com/jhubiostat/paper14
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E(zk|Mk) = (x′

kiβ, Ωkii, Ωkij)
′.

With our GEE method, thep + 5 parameters (σ2
a, σ2

d, σ2
pa, σ2

pd, σ2
e , andβ), are estimated as the

solutions to the same equations (5), for some choice of working covariance matrixWk, and again

with Sk = zk − E(zk|Mk) (a vector of lengthmk) andDk a matrix (of dimensionmk × (p + 5))

whose columns consist of the derivatives of the vector E(zk|Mk) with respect to each parameter

(in the order referred to above), as follows:

Dk =

















0 0 0 0 0 Xk

1 1 1 1 1 0

[π̂kij ] [κ̂kij] [2Φkij ] [∆kij] 0 0

















Again, different choices for the working covariance matrix, Wk, lead to different estimates, and

robust SEs for the GEE estimates can again be obtained via equation (6).

In the variance components approach for quantitative traitlinkage analysis in general

pedigrees [Almasy and Blangero 1998], the phenotypesyk are assumed to follow a multivariate

normal distribution with meanXkβ and covariance matrix as in equation (10), and the parameters

are estimated by maximum likelihood. Through relatively straightforward but tedious algebra, it

can be shown that the MLEs under the normal model correspond to the estimates from our

general GEE method, for the case that the working covariancematrix is the following:

W V C
k =

















Ωk 0 0

0 Ak Bk

0 B′

k Ck
















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HereAk is a matrix of dimensionnk × nk with Akij = 2Ω2
kij. Bk is a matrix of dimension

nk × nk(nk − 1)/2 whose columns correspond to pairs of individuals; let(s : t) denote the

column corresponding to the pair(s, t) with s < t. Then the value in theith row and(s : t)th

column ofBk is 2ΩkisΩkit, the covariance, given the marker data, ofy2
ki andyksykt under the

assumption of multivariate normality. Finally,Ck is a square, symmetric matrix with

nk(nk − 1)/2 rows and columns; the value in the[(i : j), (s : t)] position isΩkisΩkjt + ΩkitΩkjs.

It should be noted that Amos [1994] and Amos et al. [1996] applied GEE for quantitative trait

linkage analysis, with the working covariance matrix,W V C
k , though it was not recognized that

this approach is identical to maximum likelihood under a normal model.

Olson and Wijsman [1993] extended the original Haseman-Elston method for use with

general pedigrees, considering the squared phenotype differences for all relative pairs, and using a

GEE approach with a working covariance matrix denoted here asV HE
k . This can also be shown to

be a special case of our general GEE method, with working covariance matrix

W HE
k =

















I 0 0

0 I 1
2
Ek

0 1
2
E ′

k
1
4
(V HE

k + E ′

kEk)

















whereEk is a matrix of dimensionnk × nk(nk − 1)/2 whosej, (s : t) element is 1 ifj = s or

j = t and is 0 otherwise.

http://biostats.bepress.com/jhubiostat/paper14



13

DISCUSSION

We have described a general method, making use of generalized estimating equations (GEE),

for quantitative trait linkage analysis in human pedigrees, which unifies the variance components

and Haseman-Elston methods, as each is a special case of our general method, corresponding to

different choices for the working covariance matrix. Our GEE method is similar to, but more

general than, the GEE method recently described by Shete et al. [2003]. They focused on

sibships, considered the squared differences and squared sums of all sibling pairs’ phenotypes,

and used a particular working covariance matrix.

Our GEE method generalizes and unifies the variance components and Haseman-Elston

methods in the sense that the parameter estimates obtained as solutions to the GEE are identical to

the MLEs for the variance components method ifW V C is used as the working covariance matrix,

or to the OLS estimates for Haseman-Elston regression ifW HE is used as the working covariance

matrix. However, the usual test statistics for linkage for the variance components and

Haseman-Elston methods do not follow immediately from the GEE method.

In variance components, one typically uses the likelihood ratio test statistic, which requires

that one consider directly the normal likelihood. In Haseman-Elston regression, one typically uses

a Wald statistic based on the SE from ordinary least squares.Alternatively, one may use a score

statistic derived from the normal likelihood, such as the robust score statistic of Wang and Huang

[2002], developed particularly for sibships. While the GEEmethod we have described does not

lead directly to any of these test statistics, it does provide the parameter estimates that are the

basis of any test statistic, and so any such statistic may be calculated immediately using the

results of the GEE. We are currently investigating the relative performance, in terms of power and

Hosted by The Berkeley Electronic Press
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robustness, of a variety of such test statistics in the case of sibships and larger pedigrees.

Sham et al. [2002] recently described a new method for quantitative trait linkage analysis in

human pedigrees, in which the IBD status for all relative pairs is regressed on the squared

differences and squared sums of the pairs’ phenotypes. The method has been implemented in the

software MERLIN [Abecasis et al. 2002] and was shown to have power similar to the variance

components approach but to be robust to departures from normality. It is intriguing to note that

this method corresponds exactly to a robust score statisticthat may be derived from our GEE

method with the Gaussian working covariance matrix,W V C . The details are deferred to the

Appendix. We implemented this score test in our own softwareand confirmed the mathematical

result: with simulated data, the test statistic was identical to the results of the software

MERLIN-REGRESS.

This work has several implications, the most important of which is the new insight that it

provides on the connection between the Haseman-Elston and variance components methods:

choosing between these approaches is equivalent to choosing a working covariance matrix for the

GEE method. In the case of multivariate normality, the variance components method will have

improved power over Haseman-Elston regression, as it is based on the correct covariance matrix

with no additional parameters [Liang et al. 1992]. In the absence of normality, the use of the

likelihood ratio statistic with the variance components method can give an inflated type I error

rate [e.g., Allison et al. 1999]. The use of GEE with robust SEs (i.e., based on the sandwich

estimator) will control the type I error rate; as a special case, Haseman-Elston regression is

robust. As the working covariance matrix for the variance components method,W V C , will still

likely be closer to the truth than that of Haseman-Elston regression,W HE, even when the normal

http://biostats.bepress.com/jhubiostat/paper14
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model is not correct, one may use GEE with the working covariance matrixW V C to obtain a

method that is as robust as Haseman-Elston regression in terms of type I error, but has higher

power [Liang et al. 1992].

In addition, our general GEE method provides an approach forextending the Haseman-Elston

method to general pedigrees that makes more full use of the available data than the method of

Olson and Wijsman [1993], and allows the incorporation of environmental covariates. A careful

assessment of the advantages and disadvantages of different choices for a working covariance

matrix deserves further exploration.

Finally, the unification of a variety of quantitative trait linkage analysis methods within a

single general framework enables a more simple comparison of the relative performance of the

methods. As an example, we consider the case ofn sibling pairs (though note that these results

may be easily extended for the case of general pedigrees). Weassume that the siblings’

phenotypes approximately follow a bivariate normal distribution. In this case, the Wald test

statistics, with SEs from the sandwich estimator of the variance matrix, for the four methods

considered above each follow, approximately, a noncentralχ2 distribution with one degree of

freedom, with noncentrality parameter (NCP) according to the following formula:

NCP=
σ4

a(
∑

k D′

kW
−1
k Dk)

2

∑

k D′

kW
−1
k W V C

k W−1
k Dk

whereW V C
k is the working covariance matrix for the variance components method, which is the

true covariance matrix under the assumption of bivariate normality. For the case of sibling pairs,

algebraic expressions for the NCP may be obtained; they are displayed in Table I. Note that in the
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case that the QTL under study explains a small proportion of the total genetic effect (i.e.,

σ2
a/σ

2 << 2ρ), these formulas reduce to the approximate formulas of Shamand Purcell [2001],

listed in the third column of Table I, in which case their method, HE-COM, was seen to be

equivalent to the variance components method. With the moreprecise formulas in the middle

column of Table I, the HE-COM method can be seen to have slightly lower power than the

variance components method.

The sample size required to achieve power1 − β with significance levelα is obtained by

solving the equation NCP =(Zα − Z1−β)2 for the sample size,n. Figure 1 displays the number of

sibling pairs required to achieve 80% power to detect a QTL. In Figure 1A, the overall heritability

is taken to be 60%, and the effect of the QTL is varied. In Figure 1B, the effect of the QTL is

fixed at 20%, and the overall heritability is varied. As has been observed previously [e.g., Allison

et al. 1999], the variance components approach is seen to have the greatest power in this situation;

the HE-COM method performs nearly as well.

There is a great deal of flexibility in the general GEE method that we describe in this paper. It

will be valuable to explore the power and robustness properties of this method with different

choices for the working covariance matrix, in order to identify a quantitative trait linkage analysis

procedure that is as robust as Haseman-Elston regression but maintains the power of the variance

components approach.
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APPENDIX

Sham et al. [2002] proposed a method for quantitative trait linkage analysis in which IBD

status is regressed upon the squared differences and squared sums of relatives pairs’ phenotypes.

Here we show that this method is equivalent to a score test that may be derived from our GEE

approach.

For a family withn individuals, letY denote a vector containing then(n− 1)/2 squared sums

andn of the squared differences of the phenotypes for all relative pairs and let̂Π denote a matrix

of IBD probabilities for all pairs. LetYc = Y − E(Y ), Π̂c = Π̂ − 2Φ, whereΦ is a matrix of

kinship coefficients, and letΣY denote the covariance matrix forY , assuming that the trait values

follow a multivariate normal distribution. Further define amatrixΣΠ̂c

with elements

Cov[π̂ij , π̂lm] = Cov(E[πij |M ], E[πlm|M ])

≈ Cov(πij , πlm) − Cov(πij , πlm|M)

= Cov(πij , πlm) − (E[πijπlm|M ] − π̂ij π̂lm)

where Cov(πij , πlm) can be calculated given only the pedigree structure andE[πijπlm|M ] can be

calculated based on the posterior distribution conditional on marker informationM . Finally,

define

H =









2In 0 −2In

0 2In(n−3)/2 0








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Then the test statistic of Sham et al. [2002] is the following:

T =
(
∑

Π̂′

cHΣ−1
Y Yc)

2

∑

[Y ′

cΣ
−1
Y H ′ΣΠ̂HΣ−1

Y Yc]
(11)

We seek to show that the statistic (11) is identical to the following score test statistic:

S =

(

∑

(

0 Π̂′

c

)

G−1
0 (z − E[z])

)2

∑









(z − E[z])′G−1
0









0 0

0 ΣΠ̂









G−1
0 (z − E[z])









(12)

wherez is a vector consisting of all squares and cross products of trait values, andG0 is the

covariance matrix ofz assuming that the trait values follow a multivariate normaldistribution.

There exists a non-singular matrixA such thatY = Az. ThusYc = A(z − E[z]) and

ΣY = AG0A
′. By straightforward algebra, we can show the following:

∂E[Y |M ]

∂σ2
a

= H ′Π̂c

∂E[z|M ]

∂σ2
a

=









0

Π̂c








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It follows that

H ′Π̂c = A









0

Π̂c









H ′ΣΠ̂H = A









0 0

0 ΣΠ̂









A′.

Thus, the square root of the numerator of statistic (11) is

∑

Π̂′

cHΣ−1
Y Yc =

∑

(

0 Π̂′

c

)

A′(AG0A
′)−1A(z − E[z])

=
∑

(

0 Π̂′

c

)

G−1
0 (z − E[z])

which can be shown to correspond to the generalized estimating equations with a Gaussian

working covariance matrix (equivalently, to the score function) evaluated atσ2
a = 0.

The denominator of (11) is

∑

(Y ′

cΣ
−1
Y H ′ΣΠ̂HΣ−1

Y Yc) =
∑

(

(z − E[z])′G−1
0 A−1H ′ΣΠ̂HA′−1

G−1
0 (z − E[z])

)

=
∑









(z − E[z])′G−1
0









0 0

0 ΣΠ̂









G−1
0 (z − E[z])









which is a robust variance estimator for the score under the null hypothesis of no linkage. It

follows that the test statistic (11) is identical to the score test statistic (12).
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Table I: Noncentrality parameters for the case ofn sibling pairs, under a normality assumption.

Method Noncentrality parameter Approximationa

H-E n(σ2
a
/σ2)2

16(1−ρ)2+4(σ2
a
/σ2)2

n
16(1−ρ)2

(σ2
a

σ2 )2

H-E Revisited n(σ2
a
/σ2)2

8(1+ρ2)+2(σ2
a
/σ2)2

n
8(1+ρ2)

(σ2
a

σ2 )2

HE-COM n(1+ρ2)2(σ2
a
/σ2)2

8(1−ρ2)2(1+ρ2)+2(1+6ρ2+ρ4)(σ2
a
/σ2)2

n(1+ρ2)
8(1−ρ2)2

(σ2
a

σ2 )2

VC n
16

(σ2
a

σ2 )2
{

1+(ρ+σ2
a
/2σ2)2

[1−(ρ+σ2
a
/2σ2)2]2

+ 1+(ρ−σ2
a
/2σ2)2

[1−(ρ−σ2
a
/2σ2)2]2

}

n(1+ρ2)
8(1−ρ2)2

(σ2
a

σ2 )2

a Approximation for the caseσ2
a/σ

2 << 2ρ.
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FIGURE LEGEND

Figure 1: Number of sibling pairs required to achieve 80% power to detect a QTL, for four

different linkage analysis methods.A. Sample size as a function of the proportion of the

phenotypic variance due to the QTL, with an overall heritability of 60%. B. Sample size as a

function of the overall heritability, with 20% of the phenotypic variance due to the QTL.
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