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Abstract

Images, often stored in multidimensional arrays are fast becoming ubiqui-

tous in medical and public health research. Analyzing populations of images is

a statistical problem that raises a host of daunting challenges. The most severe

challenge is that data sets incorporating images recorded for hundreds or thou-

sands of subjects at multiple visits are massive. We introduce the population

value decomposition (PVD), a general method for simultaneous dimensional-

ity reduction of large populations of massive images. We show how PVD can

seamlessly be incorporated into statistical modeling and lead to a new, trans-

parent and fast inferential framework. Our methodology was motivated by and

applied to the Sleep Heart Health Study, the largest community-based cohort

study of sleep containing more than 85 billion observations on thousands of

subjects at two visits.
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1 Introduction

We start by considering the following thought experiment using data displayed in

Figure 1. Inspect the plot for a minute and try to remember it as well as possible;

ignore the meaning of the data and try to answer the question: “How many features

(patterns) from this plot do you remember?” Now, consider the case when you are

flipping through thousands of similar images and try to answer the slightly modified
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question: “How many common features from all these plots do you remember?”

Regardless of who is answering either question, the answer for this data set seems to

be invariably between 3 and 25.

To mathematically represent this experiment we introduce the population value

decomposition (PVD) of a sample of matrices. Here we focus on providing the intu-

ition, while the formal definition is introduced in Section 3. Consider a sample Y i,

i = 1, . . . , n, of matrices of size F × T , where F or T or both are very large. Suppose

that the following approximate decomposition holds

Y i ' PV iD (1)

where P and D are population specific matrices of size F×A and B×T , respectively.

If A or B are much smaller than F and T then equation (1) provides a useful repre-

sentation of a sample of images. Indeed, the “subject-level features” of the image are

coded in the low dimensional matrix V i, while the “population frame of reference” is

coded in the matrices P and D. Important differences between PVD and the singular

value decomposition (SVD) are: 1) PVD applies to a sample of images not just one

image; 2) the matrices P and D are population-, not subject-, specific; 3) the matrix

V i is not necessarily diagonal.

With this new perspective we can revisit Figure 1 to provide a reasonable explana-

tion for how our vision and memory might work. First, the image can be decomposed

using a partition of frequencies and time in several subintervals. A checkerboard-like

partition of the image is then obtained by building the 2-D partitions from the 1-D

partitions. The size of the partitions is then mentally adjusted to match the observed

complexity in the image. When decomposing a sample of images the thought process

is similar, except that some adjustments will be made on the fly to ensure maxi-
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mum encoding of information with minimum amount of memory. Some smoothing

across subjects further improves efficiency by taking advantage of observed patterns

across subjects. A mathematical representation of this process would be to consider

subject-specific matrices, P and D, with columns and rows corresponding to the 1-D

partitions. The matrix V i is then constructed by taking the average of the image in

the induced 2-D subpartition. Our methods transfer this empirical reasoning into a

statistical framework. This process is crucial because

1. Reducing massive images to a manageable set of coefficients that are comparable

across subjects is of primary importance. Note that Figure 1 displays 57, 000

observations, only a fraction of the total of 228, 160 observations of the original,

uncut, image. The matrix V i typically contains less than 100 entries.

2. Statistical inference on samples of images is typically hard. For example, the

Sleep Heart Health Study (SHHS) described in Section 2 contains one image

for each of two visits for more than 3, 000 subjects. The total number of obser-

vations used in the analysis presented in Section 5 is more than 450, 000, 000.

In contrast, replacing Y i by V i reduces the data set to 600, 000 observations.

3. Obtaining the coefficient matrix V i is easy once P and D are known. Using

the entries of V i as predictors in a regression context is then straightforward;

this strategy was employed by [1] for predicting Alzheimer risk using functional

Magnetic Resonance Imaging (fMRI).

4. Modeling of the coefficients V i can replace modeling of the images Y i. In

Section 3 we show that the Karhunen-Loève (KL) decomposition [16, 18] of a

sample of images can be approximated by using a computationally tractable

algorithm based on the coefficients V i. This avoids the intractable problem of

calculating and diagonalizing very large covariance operators.
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Figure 1: Frequency by time percent power for the sleep-EEG data for one sub-
ject. The X-axis is time in hours since sleep onset, where each row corresponds to
a 30-second interval. The Y-axis is the frequency from 0.2Hz to 16Hz. The other
frequencies were not shown because they are “quiet”, that is the proportion of power
in those frequencies is very small.

The paper is organized as follows. In Section 2 we introduce the SHHS and the

associated methodological challenges. In Section 3 we introduce the PVD and its

application to the analysis of samples of images. Section 4 provides simulations while

Section 5 provides extensive results for the analysis of the SHHS data set. Some of

the unresolved methodological and applied problems are discussed in Section 6.
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2 The Case Study

The SHHS is a landmark study of sleep and its impacts on health outcomes. A

detailed description of the SHHS can be found in [10, 11, 20]. The SHHS is a multi-

center cohort study that utilized the resources of existing epidemiologic cohorts, and

conducted further data collection, including measurements of sleep and breathing.

Between 1995 and 1997, in-home polysomnogram (PSG) data were collected from a

sample of 6, 441 participants. A PSG is a quasi-continuous multi-channel recording of

physiological signals acquired during sleep that include two surface electroencephalo-

grams (EEG). After the baseline visit, a second SHHS follow-up visit was undertaken

between 1999 and 2003 and included a repeat PSG. A total of 4, 361 participants

completed a repeat in-home PSG. The main goals of the SHHS are to quantify the

natural variability of complex measurements of sleep in a large community cohort,

identify potential biomarkers of cardiovascular and respiratory disease, and study the

association between these biomarkers and various health outcomes including sleep

apnea, cardiovascular disease and mortality.

The focus on sleep EEG is due to the expectation that spectral analysis of electro-

neural data will provide a set of reliable, reproducible and easy to calculate biomark-

ers. Current quantification of sleep in most research settings is based on a visually-

based counting process that attempts to identify brief fluctuations in the EEG (i.e.,

arousals) and classify time-varying electrical phenomena into discrete sleep stages.

While metrics of sleep based on visual scoring have been shown to have clinically

meaningful associations, they are subject to several limitations. First, interpretation

of scoring criteria and lack of experience can increase error variance in the derived

measures of sleep. For example, even with the most rigorous training and certifi-

cation requirements, technicians in the large multi-center Sleep Heart Health Study
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were noted to have an intra-class correlation coefficient of 0.54 for scoring arousals

[26]. Second, there is a paucity of definitions for classifying EEG patterns in disease

states as the criteria were developed primarily for normal sleep. Third, many of the

criteria do not have a biological basis. For example, an amplitude criterion of 75 µV is

used for the identification of slow waves [22] and a shift in EEG frequency for at least

3-seconds is required for identifying an arousal. Neither of these criteria is evidence

based. Fourth, visually-scored data is described with summary statistics of different

sleep stages resulting in complete loss of temporal information. Finally, visual assess-

ment of overt changes in the EEG provides a limited view of sleep neurobiology. In

the setting of SDB, a disorder characterized by repetitive arousals, visual character-

ization of sleep structure cannot capture common EEG transients. Thus, it is not

surprising that previous studies have found weak correlations between conventional

sleep stage distributions, arousal frequency, and clinical symptoms [4, 12, 17, 19].

Power spectral analysis provides an alternate and automatic means for the studying

of the dynamics of the sleep EEG often revealing global trends of EEG power density

during the night. While methods for quantitative analysis of the EEG have been em-

ployed in sleep medicine, its use has focused on characterizing EEG activity during

sleep in disease states or in experimental conditions. There is a limited number of

studies that have undertaken analyses of the EEG for the entire night to delineate

the role of disturbed sleep structure in cognitive performance and daytime alertness.

Such studies are often based on samples of less than 50 subjects and are thus not

generalizable to the general population. Finally, there are only isolated reports using

quantitative techniques to characterize EEG during sleep as a function of age and

gender with the largest study consisting of only 100 subjects.

To address these problems we focus on the statistical modeling of the time-varying

spectral representation of the subject-specific raw EEG signal. The main components
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of this strategy are described below.

C1. RAW SIGNAL 7→ IMAGE (FFT)

C2. FREQUENCY × TIME IMAGE 7→ IMAGE CHARACTERISTICS (PVD)

C3. ANALYZE IMAGE CHARACTERISTICS (FPCA and MFPCA)

Component C1. is a well established data transformation and compression tech-

nique at the subject level. Even though we make no methodological contributions in

C1., its presentation is necessary to understand the application. The technical details

for C1. are provided in Sections 2.1 and 2.2. Component C2. is our main contribution

and is a second level of compression at the population level. This is an essential

component when images are massive, but could be avoided when images are small.

Methods for C2. are presented in Section 3. Component C3. is our second contribution

that generalizes Multilevel Functional Principal Component Analysis (MFPCA) [11]

to multilevel samples of images. Technical details for C3. are presented in Sections

3.2.1 and 3.2.2.

2.1 Fourier transformations and local spectra

In the SHHS EEG is sampled at frequency 125Hz (125 observations per second)

and an 8 hour sleep interval will contain U = 125Hz × 60′′ × 60′ × 8h = 3, 600, 000

observations. A standard data reduction step for EEG is to partition the entire

time series into adjacent five-second intervals. The five-second intervals are further

aggregated into adjacent groups of 6 intervals for a total time of 30 seconds. These

adjacent 30 second intervals are called epochs. Thus, for an 8 hour sleep interval

the number of five-second intervals is U/625 = 5, 760 and the number of epochs is

T = U/(625 × 6) = 960. In general, U and T are subject and visit-specific because

the length of sleep is.
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Consider now the partitioned data and denote by xth(n) the nth observation

of the raw EEG signal, n = 1, . . . , N = 625, in the hth five-second interval, h =

1, . . . , H = 6, of the tth 30 second epoch, t = 1, . . . , T . In each five-second window

data are first centered around their mean. We continue to denote the centered data

by xth(n). A Hann weighting window is then applied to the data, which replaces the

xth(n) with w(n)xth(n), where w(n) = 0.5 − 0.5 cos{2πn/(N − 1)}. To these data

we apply a Fourier transform and obtain Xth(k) =
∑N−1

n=0 w(n)xth(n)e−2πkn
√
−1/N for

k = 0, . . . , N − 1. Here Xth(k) are the Fourier coefficients corresponding to the hth

five-second interval of the tth epoch and frequency f = k/5. For each each frequency,

f = k/5, and 30 second epoch, t, we calculate P (f, t) = 1
H

∑H
h=1 |Xth(k)|2 the av-

erage over the H = 6 five-second intervals of the square of the Fourier coefficients.

More precisely, P (f, t) = 1
H

∑H
h=1 |

∑N−1
n=0 w(n)xth(n)e−2πkn

√
−1/N |2. Total power in a

spectral window could be calculated as PSb(t) =
∑

f∈Db
P (f, t), where Db denotes

the spectral window (collection of frequencies) indexed by b.

In this paper we focus on P (f, t) and treat it as a bivariate function of frequency

f (expressed in Hz) and time t (expressed in epochs). The power in a spectral

window, PSb(t), was analyzed in [9] and [11]. Here we concentrate on methods that

generalize the spirit of the methods in [11], while focusing on solutions to the much

more ambitious problem of population level analysis of images. Before describing

our methods we provide more insights into the interpretation of the frequency-time

analysis.

2.2 Insights into the Discrete Fourier Transform

First, note that the inverse Fourier transform is w(n)xth(n) = 1
N

∑N−1
k=0 Xth(k)e

2πkn
√
−1/N

and the Fourier coefficients are the projections of the data on the orthonormal basis

e2πkn
√
−1/N , k = 0, . . . , N−1. Thus, a larger, in absolute value, Xth(k) corresponds to
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a larger contribution of the frequency k/5 to explaining the raw signal. Parseval’s the-

orem provides the following equality
∑N−1

n=0 |w(n)xth(n)|2 = 1
N

∑N−1
k=0 |Xth(k)|2. The

left hand side of the equation is the total observed variance of the raw signal and the

right hand side provides an ANOVA-like decomposition of the variance as a sum of

|Xth(k)|2. This is the reason why |Xth(k)|2 is interpreted as the part of variability

explained by frequency f = k/5. In signal processing |Xth(k)|2 is called the power of

the signal in frequency f = k/5.

We finish our pre-processing of the data by normalizing the observed power as

Y (f, t) = P (f, t)/
∑

f P (f, t), which is the “proportion” of observed variability of the

EEG signal that is attributable to frequency f in epoch t. In practice, for surface

EEG frequencies above 32Hz have a negligible contribution to the total power and

we define Y (f, t) = P (f, t)/
∑

f≤32 P (f, t). We will call Y (f, t) the normalized power.

The true signal measured by Y (f, t) will be called the frequency by time image of the

EEG time series.

Figure 1 provides the frequency by time plot of Y (f, t) for one subject who slept

for more than 6 hours. The X-axis is the frequency from 0.2Hz to 16Hz. The other

frequencies were not shown because they are “quiet”, that is, the proportion of power

in those frequencies is very small. The Y-axis is time in hours since sleep onset,

where each row corresponds to a 30-second interval. Note that a large proportion of

the observed variability is in the low frequency range, say between [0.8−4.0Hz]. This

range is known as the δ-power band and is traditionally analyzed in sleep research by

averaging the frequency values across all frequencies in the range. Another interesting

range of frequencies is roughly between 5 and 10Hz with the proportion of power

quickly converging to zero beyond 12-14Hz. The [5.0− 10.0Hz] range is not standard

in EEG research. Instead, research tends to focus on the θ [4.1 − 8.0Hz] and α

[8.1− 13.0Hz] bands. A careful inspection of the plot will reveal that in the δ, θ and
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α frequency ranges the proportion of power tends to show cycles across time (note

the wavy pattern of the data as time progresses from sleep onset). While it may be

less clear from Figure 1, the δ-band behavior tends to be negatively correlated with

θ and α-bands. This happens because there is a natural trade-off between slow and

fast neuronal firing.

3 Population Value Decomposition

In this section we introduce a population level data compression that allows the

coefficients of each image to be comparable and interpretable across images. If Y i,

i = 1, . . . , n, is a sample of F × T dimensional images then a Population Value

Decomposition (PVD) is

Y i = PV iD + Ei, (2)

where P and D are population-specific matrices of size F×A and B×T , respectively,

V i is a A×B dimensional matrix of subject-specific coefficients, and Ei is an F × T

dimensional matrix of residuals. Many different decompositions of type (2) exist.

Consider, for example, any two full-rank matrices P and D, where A < F and B < T .

Equation (2) can be written in vector format as follows. Denote by yi = vec(Y T
i ),

vi = vec(V T
i ), εi = vec(eT ) the column vectors obtained by stacking the row vectors

of Y i, V i, and Ei, respectively. If X = P ⊗DT is the FT ×AB Kronecker product

of matrices P and D then equation (2) becomes the following standard regression

yi = Xvi + εi. Thus, a least squares estimator of vi is v̂i = (X ′X)−1X ′yi. This

provides a simple recipe for obtaining the subject-specific scores, vi or, equivalently,

V i, once the matrices P and D are fixed. The scores can be used in standard

statistical models either for prediction or associations studies. Note that X ′X is a

small dimensional matrix that is easy to invert. Moreover, all calculations can be done
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even on very large images by partitioning files into sub-files and using block-matrix

computations.

3.1 Default Population Value Decomposition

There are many types of PVDs and definitions can and will change in particular

applications. In this section we introduce our default procedure, which is inspired

by the subject-specific SVD and by the thought experiment described in Section 1.

Consider the case when for every subject-specific image one can obtain the SVD. This

can be done in all applications we are aware of including the SHHS and fMRI studies;

see [1] for an example.

For every subject let Y i = U iΣiV
T
i be the SVD of the image. If U i and V i were

the same across all subjects then the SVD would be the default PVD. However, in

practice U i and V i will tend to vary from person to person. Mimicking the thought

process described in Section 1 we try to find the common features across subjects

among the column vectors of the U i and V i matrices.

We start by considering the F×Li dimensional matrix ULi
consisting of the first Li

columns of the matrix U i and the T ×Ri dimensional matrix consisting of the first Ri

columns of the matrix V i. The choice of Li and Ri could be based on various criteria

including variance explained, signal-to-noise ratios, or practical considerations. This

is not a major concern in this paper.

We focus on ULi
as a similar procedure is applied to V Ri

. Consider the F × L

dimensional matrix U = [UL1| . . . |ULn ], where L = (
∑n

i=1 Li), obtained by horizon-

tally binding the ULi
matrices across subjects. The space spanned by the columns of

U is a subspace of RF and contains subject-specific left eigenvectors that explain most

of the observed variability. While these vectors are not identical, they will be similar

if images share common features. Thus, we propose to apply principal component
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analysis (PCA) to the matrix UUT to obtain the main directions of variation in the

column space of U . Let P be the F ×A dimensional matrix formed with the first A

eigenvectors of UUT as columns, where A is chosen to ensure that a certain percent-

age of variability is explained. Then the matrix U is approximated via the projection

equation U ≈ P (P T U ). At the subject level one obtains ULi
≈ P (P T ULi

). This

approximation becomes a tautological equality if A = F , that is, if we use the entire

eigenbasis. Similar approximations can be obtained using any orthonormal basis; we

prefer the eigenbasis for our default procedure because it is parsimonious. Similarly

we obtain DT a T×B dimensional matrix of the first eigenvectors of the matrix V V T

where V = [V R1| . . . |V Rn ]. We have the similar approximation V ≈ D(DT V ). At

the subject level one obtains V Ri
≈ DT (DV Ri

). We conclude that PVD is a two-step

approximation process for all images that can be summarized as follows

Y i = U iΣiV
T
i ≈ ULi

ΣLi,Ri
V T

Ri

≈ P {(P T ULi
)ΣLi,Ri

(V T
Ri

DT )}D,
(3)

where ULi
and V Ri

are obtained by retaining the first Li and Ri columns from the

matrices U i and V i, respectively, and ΣLi,Ri
is obtained by retaining the first Li rows

andRi columns from the matrix Σi. The first approximation of the image Y i, first row

in equation (3), is obtained by retaining the left and right eigenvectors that explain

most of the observed variability at the subject level. The second approximation,

second row in equation (3), is obtained by projecting the subject-specific left and

right eigenvectors on the corresponding population-specific eigenvectors.

If we denote by V i = (P T ULi
)ΣLi,Ri

(V T
Ri

DT ) then we obtain the PVD equation

(2). This formula reveals that V i will not, in general, be a diagonal matrix even

though ΣLi,Ri
is. This is one of the fundamental differences between SVD and PVD.

Note that all approximations can be trivially transformed into equalities. For exam-
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ple, choosing Li = F and Ri = T will ensure equality in the first approximation,

while choosing A = F and B = T will ensure equality in the second equation. From a

practical perspective these cases are not of scientific importance as no data compres-

sion would be achieved. However, our focus is on parsimony and not perfection of

the approximation. The choice of Li, Ri, A and B could be based on various criteria

including variance explained, signal-to-noise ratios, or practical considerations. In

this paper we use thresholds for the percent variance explained.

Calculations in this section are possible due to the following matrix algebra trick.

We summarize this trick that allows calculations of SVD for very large matrices as

long as one of the dimensions is not much larger than a few thousands.

Suppose that Y = UDV T is the SVD decomposition of an F × T dimensional

matrix where, say, F is very large and T is moderate. Then D and V can be obtained

from the spectral decomposition of the T × T dimensional matrix Y T Y = V D2V T .

The U matrix can then be obtained from U = Y V D−1.

3.2 Functional statistical modeling

An immediate application of PVD is to use the entries subject-specific matrix V i

as predictors. For this purpose one can use a range of strategies from using one

entry at a time to using groups of entries or selection or averaging algorithms based

on prediction performance. The first example of such an approach is [1] who found

empirical evidence of alternative connectivity in clinically asymptomatic at-risk of

Alzheimer subjects when compared to controls. The authors used PVD with a 5× 5

dimensional V i and boosting to identify important predictors.

Here we focus on how PVD can be used to conduct nonparametric analysis of the

images themselves. Specifically, we are interested in approximating the Karhunen-

Loève (KL) decomposition [16, 18] of a sample of images. More precisely, if yi =
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vec(Y T
i ) is the vector obtained by stacking the rows of the matrix Y i we would

like to obtain a decomposition of the type yi =
∑K

k=1 ξikΦk + ei, where Φk are the

orthonormal eigenfunctions of the covariance operator, Ky, of the process y and

ξik are the random uncorrelated scores of subject i on eigenfunction k, and ei is

an error process that could be, but typically is not, zero. A direct, or brute-force,

functional approach to this problem would require the calculation, diagonalization,

and smoothing of K̂y, which is a FT × FT dimensional matrix. This can be done

relatively easily when FT is small, but becomes computationally prohibitive as FT

increases. For example, in the SHHS one could deal with data for all frequencies in

the δ-band (F = 17) and one hour of sleep (T = 120), as computational complexity

increases sharply both with respect to F and T . Indeed, computational complexity

is O(F 3T 3) and storage requirements are O(F 2T 2). Table 1 displays the computing

time required by the direct functional approach using a personal computer with dual

core processors 3GHz CPU and 8Gb RAM. Computing time increases steeply with

T and F making the approach impractical when both exceed about 100. Thus, it

is essential to develop methods that accelerate the analysis. The PVD offers one

solution.

Table 1: The comparison of computing time (in minutes) for functional data analysis
of samples of images for various number of grid points in the time and frequency
domains

Nfreq Ntime

20 40 60 80 100 120
8 0.1 0.3 0.7 1.3 2.1 3.1

16 0.3 1.4 3.0 5.7 8.7 13.2
32 1.3 5.5 12.9 19.4 32.9 49.8
64 4.7 20.5 51.8 97.3 176.0 496.5

128 21.5 100.7 467.0 681.0 1195.6 2097.1
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3.2.1 Functional principal component analysis of samples of images

To avoid the brute-force approach we propose to first obtain the spectral decomposi-

tion of the vectors vi, or, equivalently, of the corresponding matrix V i. As discussed,

we expect that in most applications the matrix V i will have far fewer than 500 entries;

thus, obtaining a decomposition for vi instead of yi is not only achievable, but very

fast. The KL expansion for the vi process can be obtained easily; see, for example

[21, 30]. The expansion can be written directly in matrix format as

V i =
K∑

k=1

ξikφk + ηi, (4)

where φk are the eigenvectors of the process v written as an A × B matrix, ηi is a

noise process, and ξik are mutually uncorrelated random coefficients. Here all vector

to matrix transformations follow the same rules of the transformations vi ↔ V i. By

left and right multiplying in equation (4) with the P and D matrices, respectively,

we obtain the following decomposition of the sample of images

Y i =
∑K

k=1 ξikPφkD + PηiD + Ei

=
∑K

k=1 ξikΦk + ei,
(5)

where Φk = PφkD is an F ×T dimensional image, and ei = PηiD +Ei is an F ×T

noise process. These results provide a constructive recipe for image decomposition

with the following simple steps: 1) obtain P , D and V i matrices as described in

Section 3.1; 2) obtain the eigenfunctions φk of the covariance operator of V i; 3)

obtain the scores ξik from the mixed effect model (4); and 4) obtain the basis for the

image expansion Φk = PφkD. The following results provide the theoretical insights

supporting this procedure.
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Theorem 1 Suppose that P is a matrix obtained by column binding A orthonormal

eigenvectors of size F × 1 and D is a matrix obtained by row binding B orthonormal

eigenvectors of size 1×T . Then the following results hold: i) the vector version of the

eigenimages Φk = PφkD are orthonormal in RFT ; and ii) the scores ξik are exactly

the same in equations (4) and (5).

3.2.2 Multilevel functional principal component analysis of samples of

images

There are many studies, including our own SHHS, where images have a natural mul-

tilevel structure. This happens, for example, when image data are clustered within

the subjects or data are observed at multiple visits within the same subject. PVD

provides a natural way of working with the data in this context. Suppose that Y ij

are images observed on subject i at time j and assume that Y ij = PV ijD + Eij is

the default PVD for the entire collection of images. Using the MFPCA methodology

introduced by [11] and further developed in [10] we can decompose the V process

into subject- and subject/visit-specific components. More precisely,

V ij =
K∑

k=1

ξikφ
(1)
k +

L∑
l=1

ζijlφ
(2)
l + ηi, (6)

where φ
(1)
k are mutually orthonormal subject-specific (or level 1) eigenvectors, where

φ
(2)
k are mutually orthonormal subject/visit-specific (or level 2) eigenvectors, and ηi is

a noise process. The level 1 and 2 eigenvectors are required to be orthonormal within

level not across levels. The subject-specific scores, ξik, and the subject/visit specific

scores, ζijl, are assumed to be mutually uncorrelated random coefficients. Just as in

the case of a cross-sectional sample of images we can multiply the equation (6) with

the matrix P at the left and D at the right. We obtain the following model for a
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sample of images with a multilevel structure

Y ij =
∑K

k=1 ξikPφ
(1)
k D +

∑L
l=1 ζijlPφ

(2)
l D + PηiD + Ei

=
∑K

k=1 ξikΦ
(1)
k +

∑L
l=1 ζijlΦ

(2)
l + ei,

(7)

where Φ
(1)
k = Pφ

(1)
k D is a subject-specific F ×T dimensional image, Φ

(2)
k = Pφ

(2)
k D

is a subject/visit-specific F ×T dimensional image, and ei = PηiD +Ei is an F ×T

noise process. The following theorem shows that it is enough to conduct MFPCA on

the simple model (6) instead of the intractable model (7).

Theorem 2 Suppose that P is a matrix obtained by column binding A orthonormal

eigenvectors of size F × 1 and D is a matrix obtained by row binding B orthonormal

eigenvectors of size 1×T . Then the following results hold: i) the vector version of the

subject-specific eigenimages Φ
(1)
k = Pφ

(1)
k D are orthonormal in RFT ; ii) the vector

version of the subject/visit-specific eigenimages Φ
(2)
l = Pφ

(2)
l D are orthonormal in

RFT ; iii) the vector version of Φ
(1)
k and Φ

(2)
l are not necessarily orthogonal; and iv)

the scores ξik and ζijl are exactly the same in equations (6) and (7).

We contend that Theorems 1 and 2 provide simple ways of obtaining ANOVA-like

decompositions of very large images based on computable algorithms even for massive

images, such as those obtained from brain fMRI. While other methods may appear in

the future, we consider that PVD provides one of the most exciting opportunities for

the longitudinal analysis of images while using all, or almost all, available information.

Proofs can be found in the web supplement.

17



4 Simulation Studies

In this section, we generate the frequency by time image Y ij for subject i and visit

j from the following model

Y ij(f, t) =
4∑

k=1

ξikφ
(1)
k (f, t) +

4∑
l=1

ζijlφ
(2)
l (f, t) + εij(f, t) for i = 1, . . . , I, j = 1, . . . , J (8)

where ξik ∼ N{0, λ(1)
k } for k = 1, . . . , 4, ζijl ∼ N{0, λ(2)

l } for l = 1, . . . , 4, εij(f, t) ∼

N(0, σ2), {f = 0.2f Hz : f = 1, . . . , F}, where F is the number of frequencies,

and {t = t
T

: m = 1, 2, . . . , T}, where T is the number of epochs. We consider

F = 128 and T = 120 in the simulation below. We simulate I = 200 subjects

(clusters) with J = 2 visits per subject (measurement per cluster). The true eigen-

values are λ
(1)
k = 0.5k−1, k = 1, 2, 3, 4, and λ

(2)
l = 0.5l−1, l = 1, 2, 3, 4. We consider

multiple scenarios corresponding to different noise magnitudes: σ = 0 (no noise),

σ = 2 (moderate), σ = 4 (large). We conduct 100 simulations for each scenario.

The frequency-time eigenfunctions φ
(1)
k (f, t) and φ

(2)
k (f, t) are generated from bases

in frequency and time domains as illustrated below. The bases in the frequency do-

main are derived from the Haar family of functions defined as ψpq(f) = 2p/2/
√
N

for (q − 1)/2p ≤ (f − fmin)/(fmax − fmin) < (q − 0.5)/2p, ψpq(f) = −2p/2/
√
N for

(q − 0.5)/2p ≤ (f − fmin/(fmax − fmin) < q/2p and ψpq(f) = 0 otherwise. Here

N is the number of frequencies and fmin and fmax are the minimum and maxi-

mum frequencies under consideration, respectively. In particular, we let the level

1 eigenfunctions be h
(1)
1 (f) = ψ11(f), h

(1)
2 (f) = ψ12(f) and level 2 eigenfunctions be

h
(2)
1 (f) = ψ21(f), h

(2)
2 (f) = ψ22(f). For example, if fmin = 0.2Hz, fmax = 1.6Hz,

and frequency increments by 0.2Hz, then N = 8. The eigenfunctions in this case are

h
(1)
1 (f) = (0.5, 0.5,−0.5,−0.5, 0, 0, 0, 0), h

(1)
2 (f) = (0, 0, 0, 0, 0.5, 0.5,−0.5,−0.5) and

h
(2)
1 (f) = (

√
2

2
,−

√
2

2
, 0, 0, 0, 0, 0, 0), h

(2)
2 (f) = (0, 0,

√
2

2
,−

√
2

2
, 0, 0, 0, 0). For the time
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domain we consider the following two choices.

Case 1. Mutually orthogonal bases. Level 1: g
(1)
1 (t) =

√
2 sin(2πt), g

(1)
2 (t) =

√
2 cos(2πt). Level 2: g

(2)
1 (t) =

√
2 sin(6πt), g

(2)
2 (t) =

√
2 cos(6πt).

Case 2. Mutually non-orthogonal bases. Level 1: same as in Case 1. Level 2:

g
(2)
1 (t) = 1, g

(2)
2 (t) =

√
3(2t− 1).

In the following, we present only results for Case 2, as similar results were obtained

for Case 1. The frequency-time eigenfunctions are generated by multiplying each

component of the bases in frequency and time domains, i.e., φ
(1)
k (f, t) = h

(1)
kf

(f)Tg
(1)
kt

(t)

where k = kf + 2(kt − 1) for kf , kt = 1, 2 and φ
(2)
k (f, t) = h

(2)
lf

(f)Tg
(2)
lt

(t) where

l = lf + 2(lt − 1) for lf , lt = 1, 2. The first figure in the web supplement displays

simulated data from model (8) for one subject at two visits with different magnitudes

of noise. It shows that as the magnitude of noise increases, the patterns become

harder to delineate. For clarity, in this plot we used F = 16 and T = 20.

4.1 Eigenvalues and eigenfunctions

Figure 2 shows estimated level 1 and 2 eigenvalues for the different magnitudes of noise

using the PVD method described in Section 3. Note that the potential measurement

error is not accounted for in this figure. In the case of no noise (σ = 0), the eigenvalues

can be generally recovered without bias, although some small bias is present in the

estimation of the first eigenvalue at level 2. The bias does not seem to increase

substantially with the noise level. Overall, the quality of the estimation procedure is

quite remarkable.

Figure 3 shows estimated eigenfunctions at four randomly selected frequencies

from 20 simulated datasets. The simulated data have no measurement error, i.e.,

σ = 0. We conclude that PVD successfully separates level 1 and 2 variation and

correctly captures the shape of each individual eigenfunction.
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Figure 2: Boxplots of estimated eigenvalues using unsmooth MFPCA-3; the true
functions are without and with noise. The solid gray lines are the true eigenvalues.
The x-axis labels indicate the standard deviation of the noise.

4.2 Principal component scores

To estimate the scores we used Bayesian inference via posterior simulations using

Markov Chain Monte Carlo (MCMC) methods. We used the software developed by

[11] applied to the mixed effect model (8). Because this uses the full model the

method will be referred to as PC-F. Because Bayesian calculations can be slow when

the dimension of V ij is very large, [11] introduced a projection model, which reduces

computation time by orders of magnitude. Because this uses a projection in the

original mixed effect model the method will be referred to as PC-P. In simulations
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Figure 3: Estimated eigenfunctions at four randomly-selected frequencies from 20
simulated datasets when the frequency-time images are observed without noise, i.e.,
σ = 0. Thick black lines: true eigenfunctions at those randomly-selected frequencies.
Gray lines: estimated eigenfunctions.

PC-P proved to be slightly less efficient, but much faster than PC-F. For a thorough

introduction to Bayesian functional data analysis using WinBUGS [24] see [8].

We use the full model (PC-F) and the projection model (PC-P) proposed in [11] to

estimate PC scores after obtaining the estimated eigenvalues and eigenfunctions using

PVD. To compare the performance of these two models, we compute the root mean

square errors (RMSE). In each scenario, we randomly select 10 simulated datasets and

estimate the PC scores using posterior means from the Markov Chain Monte Carlo

(MCMC) runs. The MCMC convergence and mixing properties are assessed by visual
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inspection of the chain histories of many parameters of interest. The history plots

(not shown) indicate very good convergence and mixing properties. Table 2 reports

the means of the RMSE, indicating that when the amount of noise increases, the

RMSE also increases. A direct comparison of the RMSE with the standard deviation

of the scores at the four levels (1, 0.71, 0.50, 0.35) indicates that scores are well

estimated, especially at level 1. Moreover, PC-F performs slightly better than PC-P

in terms of RMSE; however, PC-P might still be preferred in applications where PC-F

in computationally expensive.

Table 2: Root mean square errors for estimating scores using PC-F and PC-P

Level 1 Component Level 2 Component
Method σ 1 2 3 4 1 2 3 4

Case 2: PC-F
0 0.056 0.036 0.053 0.044 0.122 0.111 0.153 0.122
2 0.065 0.051 0.065 0.060 0.132 0.121 0.178 0.131
4 0.120 0.089 0.095 0.100 0.145 0.125 0.167 0.145

Case 2: PC-P
0 0.068 0.063 0.074 0.052 0.135 0.196 0.212 0.130
2 0.079 0.087 0.087 0.060 0.138 0.227 0.258 0.150
4 0.139 0.160 0.103 0.104 0.161 0.138 0.223 0.175

5 Application to the SHHS

In section 2 we introduced the SHHS, which collected two PSG for thousands of

subjects roughly 5 years apart. Here we focus on analyzing the frequency by time

spectrograms for N = 3, 201 subjects at J = 2 visits. We analyze all frequencies from

0.2Hz to 32Hz in increments of 0.2Hz for a total number of F = 160 grid points in

frequency and the first 4 hours of sleep in increments of 30 seconds for a total number

of T = 480 grid points in time. The total number of observations per subject per visit

is FT = 76, 800 and the total number of observations across all subjects and visits is
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FTNJ = 491, 673, 600. The same methods could easily be applied to fMRI studies,

where one image would contain more than V = 2, 000, 000 voxels and T = 500 time

points for a total of V T = 1, 000, 000, 000 observations per image. Methods described

in this paper are designed to scale up well to these larger imaging studies.

For each subject i, i = 1, . . . , I = 3, 201 and visit j, j = 1, J = 2, we obtained

Y ij, the F × T = 160 × 480 dimensional frequency by time spectrogram. We de-

mean the row and column vectors of each matrix using the transformation Y ij 7→

{IF −EF/F}Y ij{IT −ET/T}, where IF , IT denote the identity matrices of size F

and T , and EF and ET are square matrices with each entry equal to 1 of size F and

T , respectively. Note that any image Y ij can be written as

Y ij = {IF −EF/F}Y ij{IT −ET/T}+ EF Y ij/F + Y ijET/T −EF Y ijET/(FT ).

The last term of the equality, EF Y ijET/(FT ), is an F × T dimensional matrix with

all entries equal to the average of all entries in Y ij. The third term of the equality,

Y ijET/T is a matrix with T identical columns equal to the row means of the matrix

Y ij. Similarly, EF Y ij/F is a matrix with F identical rows equal to the column means

of the matrix Y ij. We conclude that the inherently bi-variate information in the image

Y ij is encapsulated in {IF − EF/F}Y ij{IT − ET/T}. Methods for analyzing the

average of the entire image are standard. Methods for analyzing the column and row

means of the image are either classical or have been recently developed [10, 11, 25].

Thus, we focus on analyzing {IF − EF/F}Y ij{IT − ET/T} and we continue to

denote this F ×T dimensional matrix by Y ij. With this definition of Y ij we proceed

with the main steps of our analysis. First, we obtain the subject/visit specific SVD

decomposition Y ij = U ijΣijV
T
ij. We then store the first Li = 10 columns of the

matrix U ij in the matrix ULi,j and construct the two matrices U j = [UL1,j| . . . |ULI ,j]
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for j = 1, 2. Both matrices U j are 160 × 32, 010 dimensional and we obtain the

160 × 64, 020 dimensional matrix U = [U 1|U 2] by column binding U 1 and U 2. To

obtain the main directions of variation in the space spanned by the column space of the

matrix U , we diagonalize the 160×160 dimensional matrix UUT . The eigenvectors of

the matrix UUT will be called population eigenfrequencies. In fMRI these are called

eigenimages [1]. A similar construction and decomposition is applied to the matrix

V V T whose eigenvectors are called eigenvariates. Because V V T is much noisier

than UUT we first apply row-by-row smoothing of V V T . Bivariate smoothing is

prohibitively slow, but this approach proved to be fast.

Table 3 displays some important eigenvalues of UUT and V V T , respectively. Re-

sults are reassuring and indicate that our intuition that samples of images have many

common features is warranted. Indeed, the first 13 population level eigenfrequen-

cies explain more than 90% of the variability of collection of first 10 subject-specific

eigenfrequencies over more than 3, 000 subjects. Another interesting property of the

population eigenfrequencies is that the most important 5-7 of them explain a simi-

lar amount of variability; please note the very slow decay in the associated variance

components. The variance explained decays exponentially starting with component 8

and becomes practically negligible for components 15 and beyond. Returning to our

thought experiment this means that if we look at the frequency (X) dimension across

subjects there will be a lot of consistency in terms of the shape and location of the

observed signal. This is consistent with the population data, which, across subjects,

shows higher proportion power and variability in the δ and α power bands. Our

results provide a quantification for this general observation while remaining agnostic

to the classical partition of the frequency domain.

A similar story can be told about the eigenvariates, but some of the specifics

are different. More precisely, the variance explained by individual eigenvariates de-
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creases more linearly and does not exhibit any sudden drop. Moreover, the first 13

eigenvariates explain roughly 80% of the observed variability of the subject-specific

eigenvariates and 20 eigenvariates are necessary to explain 90% of the variability.

The shape of the first 10 population level eigenfrequencies and eigenvariates are

displayed in Figures 4 and 5. The most remarkable aspect of these plots is that they

make sense. Indeed, Figure 4 indicates that most of the variability is in a range of fre-

quencies that roughly overlaps with the δ power band range [0.8, 4Hz]. This should

not be surprising as most of the observed variability is obviously in this frequency

range. However, the level and type of variability we identified in the δ power band

is novel. For example, subjects who are positively loaded on the first eigenfrequency

(top-left plot in Figure 4) will tend to have much higher percent power around fre-

quency 0.6Hz than around 1.2Hz. Similarly, a subject who is positively loaded on the

second eigenfrequency (top-right panel in Figure 4) will have higher percent power

around frequencies 0.4 and 1.2Hz than around 0.8Hz. Moreover, differences between

percent power in these frequencies are quite sharp. Another interesting finding is

that the first 5 eigenfrequencies seem “dedicated” to discrepancies in the low part of

the frequency range [0.2, 2Hz]. Each of these eigenfrequencies explain roughly 10%

of the eigenfrequency variability for a combined 49% explained variability. Starting

with eigenfrequency 6 there is a slow but steady shift towards discrepancies at higher

frequency. Moreover, higher eigenfrequencies display more detail in the 8 to 10Hz

range, which is well within the α power range [8.1, 13.0Hz].

The eigenvariates shown in Figure 5 tell an equally interesting, but different,

story. First all eigenvariates indicate that in the time domain differences tend to be

smooth with very few sudden changes. An alternative interpretation would be that

some transitions may happen very fast in time, but are undetectable in the signal.

A closer look at the first eigenvariate indicates that, relative to the population aver-

25



age, subjects who are positively loaded on this component (top-left plot) will tend to

have: 1) higher percent power between the 30th and 50th minute; 2) slightly lower

percent power between minute 70 and 80; 3) higher percent power between minutes

120 and 140, but the discrepancy is smaller than the one around minute 40; and 4)

smaller percent power between minutes 180 and 210. The other eigenvariates have

similarly interesting interpretations. It is worth noting that eigenvariates become

roughly sinusoidal starting with the 7th eigenvariate. There are at least two alterna-

tive explanations for this occurrences. First, it could be that there are, indeed, high

frequency cycles in the population. Another possible explanation is that the distances

between peaks and valleys vary randomly across subjects; see Woodard, Crainiceanu

and Ruppert [29] for an explanation of this behavior.

The eigenfrequencies and eigenvariates are interesting in themselves, but it is the

Kronecker product of these bases that provides the projection basis for the actual

images. Figure 6 displays some population level basis components obtained as Kro-

necker products of eigenfrequencies and eigenvariates. We call these eigenimages; in

the fMRI context [1] eigenimages are referred to as eigenvectors or eigencomponents

and eigenfrequencies are referred to as eigenimages. The x-axis represents the fre-

quencies from 0.2 to 8Hz and the y-axis represent the time from sleep onset until

the end of the 4th hour are on the y-axis. Images are cut at 8Hz to focus on the

more interesting part of the graph, but analysis was conducted on frequencies up to

32Hz. The title of each image indicates the eigenfrequency number (F) and eigen-

variate number (T), as ordered by their corresponding eigenvalues. For example, F

= 1, T = 7 indicates the basis component obtained as a Kronecker product of the

1st eigenfrequency and the 7th eigenvariate. The checkerboard patterns observed in

the right panels are due to the 7th and 10th eigenvariate, which are the sinus-like

functions displayed in Figure 5.
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We now investigate the smoothing effects of the population level eigenimages. The

top left panel in Figure 7 displays the frequency by time plot of the fraction power

for the same subject shown in Figure 1. The only difference is that the time interval

was reduced to the first 4 hours after sleep onset. The top-right panel displays the

projection of the frequency by time image on a basis with 225 components obtained

as Kronecker products of the first 15 population level eigenfrequencies and the first

15 population level eigenvariates. The smooth surface provides a pleasing summary

of the main features of the original data by reducing some of the observed noise.

The bottom-left plot displays the projection of the frequency by time image on a

basis with 45 components obtained as Kronecker products of the first 15 subject

level eigenfrequencies and the first 3 subject level eigenvariates. We did not include

more subject level eigenvariates because they were indistinguishable from noise. The

bottom-right plot displays the difference between the projection on the subject level

basis (bottom-left panel) and the projection on the population level basis (top-right

panel). We conclude that both projections on the subject level and the population

level bases reduce the noise in the original image and provide pleasing summaries of

the main features of the data. The two summaries are not identical, with the subject-

level smooth being slightly closer to the original data in the δ frequency range (note

the sharper peaks) and the population-level smooth being closer to the original data

in the α frequency range (compare the number and size of peaks). While one could

argue about what basis one should use at the subject level, there is no doubt that

having a population level basis with reasonable smoothing properties is an excellent

tool if the final goal is statistical inference on populations of images. The current

practice of taking averages over frequencies in the δ power band can be viewed as a

much cruder alternative. These plots also indicate a potential challenge that was not

addressed. The variability around the signal seem to be roughly proportional with
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the signal, a rather unexpected feature of the data that deserves farther investigation.

This problem exceeds the scope of the current paper.

To analyze the clustering of images we used a basis with 100 components obtained

by taking the Kronecker product of the first 10 eigenfrequencies and first 10 eigenvari-

ates. Examples of these components are shown in Figure 6. The subject/visit-specific

coefficients were obtained by projecting the original images on this basis, which re-

sulted in a 100-dimensional vector of coefficients. Thus, we applied MFPCA [11]

to I = 3, 201 subjects observed at J = 2 visits, each subject/visit being charac-

terized by a vector vij of 100 coefficients. This took less than 10 seconds using a

personal computer with dual core processors 3GHz CPU and 8Gb RAM. We fit the

model (6) from Section 3.2.2 in matrix form V ij =
∑K

k=1 ξikφ
(1)
k +

∑L
l=1 ζijlφ

(2)
l + ηi,

where ξik ∼ N{0, λ(1)
k }, ζijl ∼ N{0, λ(2)

l } are mutually uncorrelated. We first fo-

cused on estimating λ
(1)
k , λ

(2)
l , φ

(1)
k , φ

(2)
l , K and L. The table in the web appendix

provides the estimates for the first 10 eigenvalues indicating that the level 2 eigen-

values quantifying the visit-specific variability are roughly 100 times larger than the

level 1 eigenvalues quantifying the subject-specific variability. Using the same nota-

tion as in [11] the proportion of variance explained by within-subject variability is

ρW = (
∑100

k=1 λ
(1)
k )/(

∑100
k=1 λ

(1)
k +

∑100
l=1 λ

(2)
l ). A plug-in estimator of ρW is ρ̂W = 0.033,

which indicates that the between-subject variability is very small compared to the

within-subject between-visit variability. In studies of δ-power [11] estimated a much

higher ρW , in the range [0.15, 0.20], depending on the particular application. Our

results do not contradict these previous results, as the subject-specific mean over all

time points was removed from the bivariate spectrogram. However, they indicate that

in the SHHS most of the within-subject correlation is contained in the margins of the

frequency by time image. The margins are the column and row means of the original

bivariate plots.
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The left panels in Figure 8 displays the first 4 subject-level eigenfunctions, φ
(1)
k ,

k = 1, . . . , K, in the coefficient space. In matrix format these bases are 10 × 10

dimensional and are hard to interpret. However, by pre- and post-multiplying them

with the population level matrices P and D, we obtain the eigenimages in the original

space, Φ
(1)
k = Pφ

(1)
k D. These eigenimages are displayed in the corresponding right

panels of Figure 8. The second figure in the web supplement provides the same results

for the level 2 eigenimages.

6 Discussion

Statistical analysis of populations of images when even one image cannot be loaded

in the computer memory is a daunting task. Historically, data compression or signal

extraction methods aim at reducing the very large images to a few indices that can

be then analyzed statistically. Examples are total brain volume obtained from MRI

studies or average percent δ-power in sleep EEG studies. In this paper we have

proposed an integrated approach to signal extraction and statistical analysis that:

1) uses the entire information available in images; 2) is computationally fast and

scalable to much larger studies; 3) provides equivalence results between the analysis

of populations of image coefficients and populations of images. The approach was

applied to the SHHS, arguably one of the largest studies analyzed statistically. Indeed,

only the EEG data in the study contains more than 85 billion observations. We are

in the process of deploying our methodology to longitudinal studies of fMRI, which

are roughly 3 orders of magnitude larger than the SHHS. What is called “massive” is

very quickly changing in Statistics.

The most important contribution of our paper is furthering the foundation for

next generation statistical studies. We call this area the large N , large P , large J
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problem, where N denotes the number of subjects, P denotes the dimensionality

of the problem, and J denotes the number of visits or observations within cluster.

Note that the famous small N large P problem can be obtained from our problem

by setting J = 1 and cutting N . Our methods are designed for K-dimensional

matrices where dimensions naturally split into 2 different modalities, e.g. time and

frequency in spectral analysis and time and space in fMRI. Because we use a two-

stage singular value decomposition (SVD) our method inherits the weaknesses of the

SVD: 1) sensitivity to noise, correlation and outliers; 2) dependence on methods for

choosing the dimension of the underlying linear space; and 3) lack of invariance under

nonlinear transformations of the data.

It is important to better position our work with respect to other methods used

for image analysis, including Principal Component Analysis (PCA) [5, 15, 23], In-

dependent Component Analysis (ICA) [6, 13, 14] and Partial Least Squares (PLS)

[7, 27, 28]. In short, our method is a multi-stage PCA method. Indeed, the sub-

ject level SVD of the data matrix Y i is a decomposition Y i = U iΣiV i, where: 1)

V i are the right eigenvectors of the matrix Y i and satisfy Y T
i Y i = V T

i Σ2
i V i; 2)

U i are the left eigenvectors of the matrix Y i and satisfy Y iY
T
i = UT

i Σ2
i U

T
i ; and

3) Σi is a diagonal matrix containing the square roots of the eigenvalues of Y T
i Y i

and Y iY
T
i on the main diagonal. The method we proposed is a multi-stage PCA

method because it extracts the firs K left and right subject-specific eigenvectors,

it stacks them and conducts a second-stage PCA analysis on the stacked eigenvec-

tors. ICA is an excellent tool for decomposing variability in independent rather than

uncorrelated components and works very well when signals are non-normal. How-

ever, statistically principled ICA analysis of populations of images is still in its in-

fancy. Group ICA [2, 3] cannot currently be applied to, say, hundreds of functional

Magnetic Resonance Images (fMRIs). Moreover, ICA uses PCA as a pre-processing
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step before conducting ICA. We are aware that the team behind the 1000 Con-

nectome [http://www.nitrc.org/projects/fcon_1000/] has reportedly used group

ICA methods for analyzing thousands of fMRI. However, the software posted does not

show how to conduct group ICA on these images. We speculate that the team pooled

results from many small-group ICA analyses, which is likely to be computationally

expensive. PVD is a simple and very fast alternative that could inform future group

ICA methods. Partial least squares regression (PLS-regression) is related to princi-

pal components regression (PCR) and, thus, regression using SVD decompositions.

We are not yet focusing on the regression part of the problem and are interested in

smoothing and decomposing the variability of populations of images.

A simple alternative to our two-stage SVD was suggested by the Associate Editor.

Using notations in equation (2), the method would sum the Y iY
′
i and use the SVD

of this sum to estimate P and then sum the Y ′
iY i matrices and use the SVD of this

sum to estimate D. This is a very simple and compelling idea that we have also

considered. This is an excellent, and potentially faster, alternative to our default

PVD procedure in the particular example we consider here. However, there are many

reasons for using PVD. First, in many applications one of the dimensions is very

large. For example in fMRI the number of voxels is in the millions and calculating

and diagonalizing the space-by-space covariance matrix would be out of the question.

Second, our method provides the subject-specific left and right eigenfunctions and

opens up new analysis possibilities. For example, one could be interested in studying

the variability of ULi
, the matrix containing the first Li left eigenvectors of the data

matrix Y i, around P , the population level matrix of left eigenvectors. Third, our

method is probably equally fast and requires only minimal additional coding. Fourth,

both methods are reasonable ways of constructing the P and D matrices. Simply

putting forward the PVD formula will lead to many ways of building P and D.
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A few open problems remain and will need to be addressed. First, theoretic

and methodological approaches are needed to determine the cutoff dimension for

the number of subject-specific eigenfrequencies and eigenvariates retained for the

second stage of the analysis. While we use the same number of eigenfrequencies

and eigenvectors it may make sense to keep a different number of bases in each

dimension. Second, methods are needed to address the noise in images. The noise

in the frequency by time plots is large and its size probably depends on the size of

the signal. Conducting SVD of images with complex noise structure remains an open

area of research. Third, investigating the optimality properties, or lack thereof, of

our procedure is needed and may lead to better or faster procedures. Fourth, better

visualization tools will need to be developed to address the data onslaught. In spite

of our best efforts, we believe that better ways of presenting terrabytes, and soon

petabytes, of data are needed. Fifth, better understanding of the geometry of images

in very-high dimensional spaces is necessary.
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Figure 4: First 10 population level eigenfrequencies for the combined data from visit
1 and 2. The X-axis is frequency in Hz. Eigenfrequencies are truncated at 16Hz for
plotting purposes, but they extend to 32Hz.
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Figure 5: First 10 population level eigenvariates for the combined data from visit 1
and 2. The X-axis is time from sleep onset in hours.
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Eigenfrequencies

Comp. 1 5 6 7 8 9 10 11 12 13

λ (×10−2) 9.95 9.58 9.38 8.80 8.19 6.73 4.45 2.37 1.92 1.69

sum % var 9.96 49.09 58.49 67.31 75.51 82.25 86.71 89.08 90.10 92.69

Eigenvariates

Comp. 1 5 6 7 8 9 10 11 12 13

λ (×10−2) 2.10 1.21 1.07 0.89 0.74 0.63 0.55 0.49 0.42 0.37

sum % var 12.65 47.67 54.13 59.50 63.94 67.75 71.09 74.04 76.57 78.82

Table 3: Variance and cumulated percent variance explained by population level
eigenvalues from the observed variance of eigenvalues at the subject level. The labels
eigenfrequencies and eigenvariates refer to the left and right eigenvectors, respectively.
Population level eigenfrequencies are the eigenvectors in the RF dimensional subspace
spanned by the collection of the first 10 eigenfrequencies at the subject level across
all subjects. Population level eigenvariaes are the eigenvectors in the RT dimensional
subspace spanned by the collection of the first 10 eigenvariates at the subject level
across all subjects.
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F = 1, T =1 F = 1, T =4 F = 1, T =7 F = 1, T =10

F = 4, T =1 F = 4, T =4 F = 4, T =7 F = 4, T =10

F = 7, T =1 F = 7, T =4 F = 7, T =7 F = 7, T =10

F = 10, T =1 F = 10, T =4 F = 10, T =7 F = 10, T =10

Figure 6: Some population level basis components obtained as Kronecker products of
eigenfrequencies and eigenvariates. The x-axis are the Frequencies from 0.2 to 8Hz are
on the x-axis time from sleep onset until the end of the 4th hour are on the y-axis.
The title of each image indicates the eigenfrequency number (F) and eigenvariate
number (T), as ordered by their corresponding eigenvalues. For example, F = 1,
T = 7 indicates the basis component obtained as a Kronecker product of the 1st
eigenfrequency and the 7th eigenvariate.
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Figure 7: Image smoothing for one subject for the first 4 hours of sleep after sleep
onset. Top left panel displays the normalized power up to 16Hz, even though the
analysis is based on data up to 32Hz. Top right panel displays the smooth image ob-
tained by projection on the first 15 eigenfrequencies and first 3 smoothed eigenvariates
at the subject level; the other eigenvariates at the subject level are indistinguishable
from white noise. Bottom left panel displays the smooth image obtained by pro-
jection on the first 15 eigenfrequencies and first 15 eigenvariates at the population
level (some shown in Figure 3). Bottom right panel displays the difference between
the subject-level smooth (top right panel) and population level smooth (bottom left
panel).
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Signal eigenvalue 1 Eigenimage 1

Signal eigenvalue 2 Eigenimage 2

Signal eigenvalue 3 Eigenimage 3

Signal eigenvalue 4 Eigenimage 4

Figure 8: Left panels: first 4 subject-specific eigenimages, φ
(1)
k , of the multivariate

process of image coefficients, V ij. Right panels: first 4 subject-specific eigenimages,

Pφ
(1)
k D, of the image process, Y ij. Right panels are reconstructed from the left

panels using the transformation φ
(1)
k → Pφ

(1)
k D from the coefficient to the image

space.
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