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Summary: In medical follow-up studies, ordered bivariate survival data are frequently encountered

when bivariate failure events are used as the outcomes to identify the progression of a disease. In

cancer studies interest could be focused on bivariate failure times, for example, time from birth

to cancer onset and time from cancer onset to death. This paper considers a sampling scheme

where the first failure event (cancer onset) is identified within a calendar time interval, the time

of the initiating event (birth) can be retrospectively confirmed, and the occurrence of the second

event (death) is observed subject to right censoring. To analyze this type of bivariate failure time

data, it is important to recognize the presence of bias arising due to interval sampling. In this paper,

nonparametric and semiparametric methods are developed to analyze the bivariate survival data with

interval sampling under stationary and semi-stationary conditions. Numerical studies demonstrate

the proposed estimating approaches perform well with practical sample sizes in different simulated

models. We apply the proposed methods to SEER ovarian cancer registry data for illustration of

the methods and theory.

Key words: Bivariate survival distributions; Copula; Interval sampling; Nonparametric and

semiparametric; Stationarity and semi-stationarity.
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1. Introduction

Ordered bivariate survival data arise frequently in medical follow-up studies when each

subject may experience bivariate failure events, which are considered as the major outcomes

to identify the progression of a disease. In cancer studies, for example, it is of interest to

understand the process from birth to cancer onset, and to death. It is common to collect data

with incidence of disease occurring within a calendar time interval. This type of sampling is

referred to as interval sampling and we consider an interval sampling scheme in this paper.

Consider a case population where case refers to the first failure event and two failure

events occur in a chronological order following the occurrence of the initiating event. Denote

the calendar time of the initiating event by T , the time from the the initiating event to

the first failure event by Y , and the time from the first event to the second by Z. The

variables Y and Z are expected to be correlated because they come from the same subject.

Bivariate failure times (Y, Z) are the outcome variables of interest in this paper. In statistical

literature, Visser (1996), Wang and Wells (1998), Lin, Sun and Ying (1999), and Schaubel

and Cai (2004) proposed various estimation methods for bivariate or multivariate survival

data subject to right censoring. In this paper, we consider the problem of interval sampling

and develop estimation approaches for analyzing the bivariate survival data with interval

sampling.

We assume that the sample includes those subjects who have experienced the first failure

event within a given time period, the initiating event of each subject can be retrospectively

identified, and the occurrence of the second failure event is prospectively identifed. Also

because of loss to follow-up or end-of-study, the observation of the second failure event is

subject to right censoring. For example, let T, Y , and Z respectively represent the calendar

time of birth, the time from birth to cancer onset, and the time from cancer onset to death

for a subject, and Y and Z are the variables of interest. The study cohort is made up of

http://biostats.bepress.com/jhubiostat/paper201



2 Biometrics, 000 0000

subjects whose first failure events occur within a calendar time interval [0, T0]. Moreover,

the observation of the second failure event is terminated at the calendar censoring time C

(C 6 T0). Bias arises due to interval sampling scheme, where the triplet (T, Y, Z) is observed

subject to the constrains −T 6 Y 6 T0− T and Y +Z 6 C − T . Figure 1 provides a simple

explanatory plot for bivariate survival data with interval sampling with constant C = T0.

[Figure 1 about here.]

The research is motivated by the problem in SEER cancer registry data, which also serves

as an example to illustrate how interval sampling design arises. The SEER (Surveillance,

Epidemiology, and End Results) program is an epidemiologic surveillance system consisting

of population-based cancer registries designed to track cancer incidence and survival in the

United States. Collection of the SEER data began from January 1, 1973 (Ries et al., 2002).

The registries routinely collect information on newly diagnosed cancer patients residing

in geographically defined areas representing 26 percent of the US population. The SEER

data are released as the Patient Entitlement and Diagnosis Summary File for cancer cases

diagnosed from 1973 to 2002. Basic diagnostic information is available for up to 10 diagnosed

cancer cases for each person, such as breast cancer, lung cancer, ovarian cancer, etc. It

contains information on each person’s month and year of birth, date of cancer diagnosis,

date of death, type of cancer, sex, race, state of residence etc. Taking ovarian cancer as our

illustrative example, the cancer cases diagnosed from 1973 to 2002 are the cohort of interest

under interval sampling, the initiating time is the birth time, and the bivariate failure events

are the diagnosis of ovaian cancer and death.

2. Stationarity, Semi-Stationarity, and Non-Stationarity

The case population considered in this paper is a cohort of subjects whose first failure event

occurs within a calendar time interval and then prospectively followed. We now introduce
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notation and assumptions to facilitate the development of the proposed work. Assume that

the initiating events occur over the calendar time with the intensity (or rate) function φ(t) for

t 6 T0. Let f(y, z), fy(y), fz(z), and φ(t) denote the population joint density function of (Y,

Z), marginal density of Y, Z, and the intensity function of T. Let Fy(·) and Fz(·) denote the

cumulative distribution functions of fy(·) and fz(·) respectively, y− = inf{y : Fy(y) > 0},

y+ = sup{y : Fy(y) < 1}, z− = inf{z : Fz(z) > 0}, z+ = sup{z : Fz(z) < 1} and

t− = inf{t : φ(t) > 0}. To reduce the mathematical complexity in the discussion, assume

the failure time Y has finite support, where y+ < ∞ so that φ can be normalized as a

probability density function. Let g(t) denote the population density function of T in the

interval [−y+, T0 − y− − z−], derived as normalized φ(t):

g(t) = φ(t)I(−y+ 6 t 6 T0 − y− − z−)/
∫ T0−y−−z−

−y+
φ(u)du (1)

Let G(·) denote the cumulative distribution function of g(·). Assume (T1, Y1, Z1), . . . ,

(Tn, Yn, Zn) are independent and identically distributed. Consider the following two assump-

tions:

S1. The disease process is independent of when the initiating event occurs. Or, equivalently,

assume that T is independence of (Y, Z).

S2. The occurrence of the initiating event started in the distant past and the rate of oc-

currence has been stabilized. Or, quantitatively, assume that t− is small enough so that t− 6

−y+, and that φ(t) is constant for −y+ 6 t 6 T0− y−− z− and G(·) is Uniform [−y+, T0−

y− − z−].

The two conditions serve as the fundamental assumptions for studying the probability

structures of the primary outcomes in this paper. We say that the model is stationary if

both (S1) and (S2) are satisfied, semi-stationary if only (S1) is satisfied, and non-stationary

if neither (S1) nor (S2) is assumed. The discussion here is focused on the stationary and

semi-stationary conditions. However, (S1) and (S2) may not always be valid, for example, if
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new treatment becomes available, the incident rate of disease may change over time, which

may also affect the distribution of (Y, Z). The non-stationary condition is beyond the scope

of this paper and will be explored in the future.

The rest of the paper is organized as follows. In section 3, bias due to the interval

sampling scheme is discussed, and a nonparametric model is developed to estimate the joint

survival function of bivariate survival data with interval sampling under stationary condition.

Section 4 proposes a semiparametric copula model of bivariate survival data under stationary

condition to study the dependency structure. A semi-stationary model is presented in section

5. Numerical studies in section 6 demonstrate that the proposed estimating methods perform

well with practical sample sizes in different simulated models. In section 7, a cohort of ovarian

cancer cases from SEER data is analyzed for illustration. Finally, concluding remarks and

discussion are included in section 8.

3. Nonparametric Estimation of Joint Survival Function under Stationary

Condition

In this section, under stationary condition when both (S1) and (S2) hold, we develop a

nonparametric approach for estimating joint survival function on the basis of uncensored

data. For simplicity of the discussion, we first consider the case that the observation of the

second failure time ends at calendar time C, where particularly C = T0, a constant. This

simple censoring mechanism can be replaced by random censoring.

First consider the case that only (S1) is assumed, the joint density of uncensored (t, y, z)

can be derived as the density of (T, Y, Z) conditional on−T 6 Y 6 T0−T and Y +Z 6 T0−T :

p(t, y, z) = P (T = t, Y = y, Z = z| − Y 6 T 6 T0 − Y − Z)

=
g(t)f(y, z)I(−y 6 t 6 T0 − y − z)

P (−Y 6 T 6 T0 − Y − Z)

=

[
g(t)I(−y 6 t 6 T0 − y − z)

G(T0 − y − z)−G(−y)

]
·
[
{G(T0 − y − z)−G(−y)}f(y, z)∫
{G(T0 − u− v)−G(−u)}f(u, v)dudv

]
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= pc(t|y, z)p(y, z) (2)

The first bracket term above, which is denoted by pc(t|y, z), specifies the conditional density

of the observed t given the observed uncensored (y, z); the second bracket term, denoted by

p(y, z) is the joint density of uncensored (y, z).

Define the weight function w(y, z) = G(T0− y− z)−G(−y), which describes the selection

bias for observing (y, z). The value of the weight function coincides with the probability

for the initiating events to occur within the ‘window’ [−y, T0 − y − z). Taking the ovarian

cancer example to illustrate such weight, provided that the population of interest is a closed

population, the weight function can be interpreted as the proportion of the subjects born

in the interval [−y, T0 − y − z) from the total population born in [−y+, T0 − y− − z−]. As

a result, shorter time of y and z are observed with the weight as the proportion of births

from later calendar windows, and longer time of y and z are observed with the weight as the

proportion of births from earlier calendar windows.

The joint density function of uncensored (y, z) can be expressed as p(y, z) = w(y,z)f(y,z)∫ ∫
w(u,v)f(u,v)dudv

, so it is generally biased from its population density f(y, z), and the direction of bias is

determined by the weight function w(y, z).

Then, assuming both (S1) and (S2) hold, the joint density of uncensored (y, z) can be

further simplified as

p(y, z) =
(T0 − z)f(y, z)∫ ∫

(T0 − v)f(u, v)dudv
(3)

Therefore, the weight function reduces to T0 − z, and the nonparametric estimator of joint

survival function of (Y, Z) can be simply derived as

Ŝ(y, z) =

∑n
i=1(T0 − Zi)−1I(Yi > y,Zi > z)∑n

i=1(T0 − Zi)−1
(4)

where (Yi, Zi)’s are the uncensored bivariate failure times. S(y, z) is identifiable on the

domain {(y, z) : y+ z 6 T0− t−} and this constrain will be redundant if T0− t− > y+ + z+.

http://biostats.bepress.com/jhubiostat/paper201
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The above estimator can be proved to be the nonparametric maximum likelihood estimator

(NPMLE) of S(y, z), a special case under Vardi’s selection bias models (1982, 1985). The

asymptotic property of Ŝ(y, z) can be stated as follow.

Property 1. As n→∞, the process
√
n{Ŝ(y, z)−S(y, z)} converges weakly to a bivariate

zero-mean Gaussian process with covariance function

σ = W−1W{
∫∞
y

∫∞
z (T0 − v)−1f(u, v)dudv

W−1

[1− S(y
′
, z
′
)] (5)

+ S(y, z)[S(y
′
, z
′
)−

∫∞
y′

∫∞
z′ (T0 − v)−1f(u, v)dudv

W−1

]}

where W =
∫ ∫

(T0 − v)f(u, v)dudv, and W−1 =
∫ ∫

(T0 − v)−1f(u, v)dudv.

4. Semiparametric Copula Model under Stationary Condition

The nonparametric model discussed in section 3 only uses uncensored data. In this section,

we consider a semiparametric copula model, where we impose a slightly stronger assumption

on the dependency structure of the bivariate survival time of interest. The copula model

approach is widely used to model the dependence in survival data (Genest, Ghoudi and

Rivest, 1995; Li, Tiwari and Guha, 2007). By the proposed method we will be able to to

fully utilize the information from both uncensored and censored data. As will be studied

in this section, under stationary condition when both (S1) and (S2) are satisfied, ‘double

truncation’ from interval sampling does not result in bias on the first failure time, and

the second failure time is independently censored and can be treated as standard survival

data. We take advantage of these properties to semiparametrically estimate joint survival

distribution with copula model. The approach is attractive because it allows us to model

and estimate the margins and dependency seperately.

We will investigate the semiparametric copula model by a ‘two-stage’ estimation approach

similar to that of Genest et al. (1995) and Shih and Louis (1995). At the first stage, we explore

the probability structure for each failure time marginally and obtain the nonparametric
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consistent estimations for marginal survival functions under stationary condition, ignoring

the dependence. At the second stage, these estimators are substituted into a conditional

likelihood for the association parameter, yielding a pseudo likelihood (Gong and Samaniego,

1981). The association parameter is then estimated by solving the estimating equation

derived from pseudo conditional likelihood.

4.1 Failure Time Distributions under Stationary Condition

First of all, we consider the first failure time Y separately, which is sampled given −T 6

Y 6 T0 − T . The joint density of observed (t, y) can be written as

p(t, y) = P (T = t, Y = y| − Y 6 T 6 T0 − Y )

=
g(t)fy(y)I(−y 6 t 6 T0 − y)

P (−Y 6 T 6 T0 − Y )

=

[
g(t)I(−y 6 t 6 T0 − y)

G(T0 − y)−G(−y)

]
·
[
{G(T0 − y)−G(−y)}fy(y)∫
{G(T0 − u)−G(−u)}fy(u)du

]

= pc(t|y)py(y)

Under stationary condition when G is uniformly distributed, the marginal density of observed

y, py(y) becomes fy(y), which means the density of observed y coincides with its popula-

tion density and the ‘double truncation’ from interval sampling does not result in bias on

Y. Therefore, the nonparametric estimation of survival function Sy(y) of Y is simply the

empirical survival function Ŝy(y) =
∑n
i=1 I(Ỹi > y) where Ỹi’s are the observed first failure

time. Ŝy(y) is the nonparametric maximum likelihood estimator (NPMLE) of Sy(y).

Then, for the second failure time Z, we investigate the probability structure of it and

censoring time. We will explore when it remains a representative sample from the target

population. We first consider the case that the observation of second failure time ends at

calendar time C, where particularly C = T0, a constant. This simple censoring mechanism

can be replaced by random censoring C (C 6 T0) and we will discuss it later. Let W = T +Y

denote the calendar time when the first failure event occurs. Let {(min(Z,C −W ), I(Z 6

http://biostats.bepress.com/jhubiostat/paper201
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C−W )) : C > W} denote the observed second failure time and the corresponding censoring

indicator. A question of interest is whether it is appropriate to apply standard methods to

this survival data. It is known that the fundamental requirement for the validity of the usual

survival analysis is the independence between Z and C −W .

When (S1) holds, the density of Z conditional on W = w is

pz(z|w) =
P (Z = z, Y = w − T )

P (T + Y = w)

=

∫ w
w−y+ f(w − t, z)g(t)dt∫ ∫ w
w−y+ f(w − t, v)g(t)dtdv

= fz(z)

∫ w
w−y+ fy|z(w − t, z)g(t)dt∫ ∫ w
w−y+ f(w − t, v)g(t)dtdv

For each z,
∫ w
w−y+ fy|z(w− t, z)dt = 1 and

∫ ∫ w
w−y+ f(w− t, v)dtdv = 1. When (S2) also holds,

which means g(t) is a constant, the density pz(z|w) of observed data is independent of w

and equals the population density fz(z). Given that C is a constant, the above independence

of Z and W results in the independence of Z and censoring time C −W . This result also

extends to random censoring.

Consider the case that the calendar censoring time C is random. Assume that C is

independent of (W,Z), that is, the censoring is independent of when the first failure event

occurs and the second failure time. From the preceding discussion, we know that under

stationary condition, the second failure time is a random sample from the population given

that C > W . Let pc(z|w) be the density of Z given W = w and C > W ; then clearly,

pc(z|w) = p(z|w) because C is independent of (W,Z). Then the density of the observed

second failure time, pc(z|w) equals fz(z) and is independent of w. Further, the failure time Z

is independent of the censoring time C −W because Z is independent of (W,C). Therefore,

the survival data {(min(zi, ci − wi), I(zi 6 ci − wi)) : ci > wi} can be treated as the usual

right-censored data for inferences of Z and the nonparametric maximum likelihood estimator

(NPMLE) for the marginal survival function Sz(z) of Z is the Kaplan-Meier estimator.
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4.2 Copula Model and Two-stage Semiparametric Estimation

Suppose bivariate failure times (Y, Z) come from the Cα copula for some association param-

eter α, where Cα is a distribution function with density cα on [0, 1]2, then the joint survival

function and density function of (Y, Z) are given by

S(y, z) = Cα(Sy(y), Sz(z)), y, z > 0

f(y, z) = cα(Sy(y), Sz(z))fy(y)fz(z), y, z > 0

The ‘two-stage’ estimating strategy and the conditional likelihood method are used to esti-

mate the association parameter α. Conditional likelihood approaches in statistical literature

are sometimes used as a tool to eliminate nuisance parameters. The conditional likelihood

preserves most, if not all, of the information for the focused parameters if the conditional

statistics are ancillary. For the observed data (t, y, x, δ) where x = min(z, c − t − y) and

δ = I(z 6 c− t− y), the conditional likelihood function of {(y, x, δ)} given {t} is

Lc(α) =
∏
i

f(yi, xi)
δi ∂S(yi,xi)

1−δi

∂yi

Sy(ci − ti)− Sy(−ti)

Clearly, the distribution of T is eliminated by the conditioning procedure. We estimate

two margins Sy(y) and Sz(z) by the empirical function Ŝy(y) and the Kaplan-Meier esti-

mator Ŝz(z), respectively. Denote (Sy(yi), Sz(xi)) by (ui, vi) for i = 1, . . . , n. Then given

(ui, vi, Sy(ci − ti), Sy(−ti), δi), the conditional likelihood of α is

Lc(α) ∝
n∏
i=1

f(yi, xi)
δi
∂S(yi, xi)

1−δi

∂yi
=

n∏
i=1

cα(ui, vi)
δi
∂Cα(ui, vi)

1−δi

∂ui
(6)

Let L(α, ui, vi) denote cα(ui, vi)
δi ∂Cα(ui,vi)

1−δi

∂ui
. The semiparametric estimator α̂ for α is the

solution to the estimating equation derived from the pseudo conditional likelihood

Uα(α, û, v̂) =
∂

∂α

n∑
i=1

log L(α, ûi, v̂i)

=
∂

∂α

[
n∑
i=1

δilog{cα(ûi, v̂i)}+ (1− δi)log{
∂Cα(ûi, v̂i)

∂ui
}
]

=
∂

∂α

[
n∑
i=1

δilog{cα(Ŝ(yi), Ŝ(xi))}+ (1− δi)log{
∂Cα(Ŝ(yi), Ŝ(xi))

∂ui
}
]

= 0
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Under the regularity conditions stated in the Appendix the estimator of the association

parameter has the following asymptotic property.

Property 2. As n→∞,
√
n(α̂−α) converges to normal distribution with mean zero and

variance ρ2 = (ρ2
1 + ρ2

2)/ρ4
1.

The precise definitions of ρ2
1 and ρ2

2, together with the details of the proof can be found in

the Appendix.

5. Semi-stationary Model

In section 3 and 4, Both (S1) and (S2) are assumed for the development of the statistical

methods. This stationary condition typically holds for stable disease. In this section, we

consider the situation when (S2) is violated and only (S1) is valid, and focus on a semi-

stationary model based on uncensored data. Specifically, we consider a parametric density

function of T, g(t; θ), where θ ∈ Θ and Θ is an open set in Rk. For example, in cancer

studies, g describes the growth of birth cohort for cases. Particular interest is focused on the

estimations of parameter θ in g(t; θ) and joint survival function of (Y, Z). For simplicity, it

is assumed that the observation of Z is censored only by the end of the calendar sampling

time T0.

5.1 Estimation of θ

The estimation of θ in g(t; θ) is also complicated by the bias from interval sampling. We

explore the sampling bias on the distribution of T here. For given (y, z), the calendar time of

the initiating event, t, is observable subject to the constraint −y 6 t 6 T0−y− z. Similar to

the discussion shown in the formula (2) of section 3, the sampling density of T is generally

biased. The conditional likelihood approach is used to estimate the parameter θ in g. When

(S1) is assumed, the conditional likelihood function of the observed {t} given the observed
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{(y, z)} is

Lc(θ) =
n∏
i=1

Pc(ti|yi, zi, θ) =
n∏
i=1

{ g(ti; θ)

G(T0 − yi − zi; θ)−G(−yi; θ)
}

As a nice feature of this approach, the target parameter θ is the only parameter involved

in conditional likelihood and the nuisance parameter f(·, ·) is eliminated by the conditioning

procedures. The conditional maximum likelihood estimate of θ, denoted by θ̂, can be derived

by maximizing Lc(θ) for θ ∈ Θ. Large sample properties of θ̂ can be obtained using techniques

similar to those of Andersen (1970) or using techniques for M-estimators (Serfling, 1980).

Under regularity conditions and as n→∞, the estimator θ̂ converges in probability to θ, and

√
n(θ̂ − θ) converges weakly to a mean zero multivariate normal distribution with variance-

covariance matrix I−1
c , where Ic = E[{ ∂

∂θ
log pc(Ti|Yi, Zi)}{ ∂∂θ log pc(Ti|Yi, Zi)}

t] is the Fisher

information matrix for the conditional likelihood function Lc(θ).

5.2 Estimation of Joint Survival Function S(y, z)

We then study how to estimate the joint survival function of (Y, Z) under semi-stationary

condition. The maximum likelihood approach in many situations produces efficient estima-

tors of the model parameters. However, in the current model, the full likelihood function

L, L(θ, f(·, ·)) = Lc(θ)Ly,z(θ, f(·, ·)), does not factorize into simple terms. Although the

maximum likelihood estimator from L is likely to be efficient under regularity conditions,

numerical computation and inferences of the estimation procedures could be difficult to

derive. Here, a method based on the joint probability structure of T and (Y, Z) is developed

for the estimation of S(y, z).

First consider the case when θ is known. As the previous discussion in the formula (2) of

section 3, the joint density function p(y, z) of observed uncensored (y, z) can be written as

p(y, z) =
{G(T0 − y − z; θ)−G(−y; θ)}f(y, z)∫ ∫
{G(T0 − u− v; θ)−G(−u; θ)}f(u, v)dudv

http://biostats.bepress.com/jhubiostat/paper201
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Thus an estimator of joint survival function of (Y, Z) is

Ŝ(y, z, θ) =

∑n
i=1{G(T0 − Yi − Zi; θ)−G(−Yi; θ)}−1I(Yi > y,Zi > z)∑n

i=1{G(T0 − Yi − Zi; θ)−G(−Yi; θ)}−1

Assume θ is known, just as the similar conclusion in Section 3, the process
√
n{Ŝ(y, z, θ)−

S(y, z)} converges weakly to a bivariate zero-mean Gaussian process with covariance function

σ∗ = W ∗
−1W

∗{
∫∞
y

∫∞
z {G(T0 − u− v; θ)−G(−u; θ)}−1f(u, v)dudv

W ∗
−1

[1− S(y
′
, z
′
)]

+ S(y, z)[S(y
′
, z
′
)−

∫∞
y′

∫∞
z′ {G(T0 − u− v; θ)−G(−u; θ)}−1f(u, v)dudv

W ∗
−1

]}

where W ∗ =
∫ ∫
{G(T0−u−v; θ)−G(−u; θ)}f(u, v)dudv, and W ∗

−1 =
∫ ∫
{G(T0−u−v; θ)−

G(−u; θ)}−1f(u, v)dudv.

Now we consider the general case when θ is an unknown parameter. We replace θ in

Ŝ(y, z, θ) by the conditional maximum likelihood estimator θ̂ and derive an estimator of

S(y, z) as Ŝ(y, z, θ̂). Note that the error of Ŝ(y, z, θ̂) can be decomposed into two terms:

Ŝ(y, z, θ̂)− S(y, z) = {Ŝ(y, z, θ)− S(y, z)}+ {Ŝ(y, z, θ̂)− Ŝ(y, z, θ)}

where the first error term has been determined by σ∗. The error in the second term is

generated by the use of θ̂ for estimating θ. The corresponding distributions of the two terms

can be proven to be asymptotically orthogonal to each other because θ in the second term

is estimated by the conditional likelihood estimator.

The joint survival function can be estimated by

Ŝ(y, z, θ̂) =

∑n
i=1{G(T0 − Yi − Zi; θ̂)−G(−Yi; θ̂)}−1I(Yi > y,Zi > z)∑n

i=1{G(T0 − Yi − Zi; θ̂)−G(−Yi; θ̂)}−1
(7)

where (Yi, Zi)’s are the uncensored bivariate failure times. Again, S(y, z) is identifiable on

the domain {(y, z) : y + z 6 T0 − t−}. The proposed estimator Ŝ(y, z, θ̂) has the desired

asymptotic property as follow.

Property 3. As n → ∞, the process
√
n{Ŝ(y, z, θ̂) − S(y, z)} converges weakly to a

bivariate zero-mean Gaussian process with covariance function

Σ = ∇θŜ(y, z, θ)T I−1
c ∇θŜ(y, z, θ) + σ∗ (8)
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The detail of the proof of Property 3 can be found in the Appendix.

It is true that the marginal survival function Sy(y) of Y can be estimated directly by

Ŝ(y, 0, θ̂); while, we could also apply the same technique to model (T, Y ) and estimate Sy(y)

based on the observed (t, y). To be specific, Sy(y) can be estimated by

Ŝy(y, θ̂∗) =

∑n
i=1{G(T0 − Ỹi; θ̂∗)−G(−Ỹi; θ̂∗)}−1I(Ỹi > y)∑n

i=1{G(T0 − Ỹi; θ̂∗)−G(−Ỹi; θ̂∗)}−1
(9)

where Ỹi’s are the observed first failure time and θ̂∗ is obtained by maximizing the conditional

likelihood function of the observed {t} given the observed {y}. It is noticed that Ỹi’s contain

more data points than Yi’s, which are from the uncensored bivariate failure times (Yi, Zi),

thus the estimate Ŝy(y, θ̂∗) is expected to be more efficient than Ŝ(y, 0, θ̂).

The marginal survival function for Z is generally not easy to be estimated under semi-

stationary condition due to the induced sampling bias and dependence censoring; however,

it is possible to estimate the conditional probability function

P (Z > z|y1 < Y 6 y2) =
S(y1, z)− S(y2, z)

Sy(y1)− Sy(y2)

as long as y+z 6 T0−t−. An estimator of P (Z > z|y1 < Y 6 y2) is given by Ŝ(y1,z,θ̂)−Ŝ(y2,z,θ̂)

Ŝy(y1,θ̂∗)−Ŝy(y2,θ̂∗)
.

Estimation of such a conditional survival function can be used to detect possible correlation

between Y and Z.

6. Simulation Studies

6.1 Nonparametric Estimation under Stationary Condition

Two sets of simulations are carried out to assess the finite-sample performance of the

nonparametric estimator Ŝ(y, z) of the joint survival function as well as its variance estimator

under stationary condition.

The data {(t1, y1, z1), . . . , (tn, yn, zn)} are generated by the interval sampling scheme in the

simulation studies. Let W be a random variable with Uniform(0, 1) distribution and define

T = −13W + 9. The bivariate failure times (Y, Z) are generated from Clayton’s bivariate

http://biostats.bepress.com/jhubiostat/paper201



14 Biometrics, 000 0000

survival function S(y, z) = (Sy(y)−α+Sz(z)−α−1)−1/α, α > 0 with unit exponential margins.

The value of the association parameter α is set to 0 and 2 in the first and second sets of

simulations, respectively, corresponding to independent and correlated bivariate failure times

(Y, Z). An observation (t, y, z) is included (untruncated and uncensored) in the data set if

and only if 0 6 t + y 6 10 and censored if t + y + z > 10. The proportion of untruncated

and uncensored observations is around 0.7. In each scenario, 1000 simulated samples are

generated, each with 400 subjects.

The findings of the simulations are shown in Table 1. For the joint survival function,

the results are given at 16 selected bivariate time points (y, z), where y and z take val-

ues 0.2231, 0.5108, 0.9163 and 1.6094, corresponding to marginal survival probabilities of

0.8, 0.6, 0.4 and 0.2. Both the point estimator Ŝ(y, z) and its standard error estimator appear

to be unbiased.

[Table 1 about here.]

6.2 Semiparametric Copula Model under Stationary Condition

The performance of the two-stage estimator in the semiparametric copula model under

stationary condition is examined by simulations. We use unit exponential margins, and

choose three values of α in each of the three Archimedean copula models as follows.

Clayton′s Family(1978) : Cα(u, v) = (u−α + v−α − 1)−1/α, α > 0. The failure times

(Y, Z) are positively associated when α > 0 and independent for α→ 0.

Positive stable (Hougaard,1986) : Cα(u, v) = exp(−[{−log(u)}α + {−log(v)}α]1/α),

α > 1. The failure times (Y, Z) are positively associated when α > 1 and independent for

α→ 1.

Frank′s family (1979) : Cα(u, v) = − 1
α
log{1 + (e−αu−1)(e−αv−1)

e−α−1
}, α 6= 0. The failure

times (Y, Z) are positively associated when α > 0, negatively associated when α < 0 and

independent for α→ 0.
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Two sampling schemes are explored - the random sampling and the interval sampling.

A set of data {(t1, y1, z1), . . . , (tn, yn, zn)} is generated with interval sampling: define T =

−13W + 9, where W follows Uniform(0, 1) distribution, and let the bivariate failure times

(Y, Z) be generated from the three aforementioned copula models. An observation (t, y, z) is

included in the data set if and only if 0 6 t+ y 6 10 and censored if t+ y+ z > 10. For each

value of α we generate 1000 simulated samples with n = 400.

Table 2 presents simulation results with data generated by random sampling and interval

sampling. The mean of the proposed estimates is seen to be quite close to the true value of

α. Furthermore, the variances of the estimators are reasonably small for different values of

α. For the three models, the proposed method performs quite well for both sampling plans.

[Table 2 about here.]

6.3 Semi-stationary Model

Data {(t1, y1, z1), . . . , (tn, yn, zn)} with interval sampling are generated for the semi-stationary

model. Define T = −3W + 10, where W follows Exp(θ) distribution, and let the bivariate

failure times (Y, Z) be generated from Clayton’s bivariate survival function with unit expo-

nential margins. The association parameter α is set to 2 in the simulation, corresponding to

the correlated bivariate failure times (Y, Z). An observation (t, y, z) is included in the data

set if and only if 0 6 t+y 6 10 and censored if t+y+z > 10. The proportion of untruncated

and uncensored observations is around 0.6. 1000 simulated samples are generated, each with

400 subjects.

For the joint survival function, the results are given at 8 selected bivariate time points (y, z)

as shown in Table 3. The conditional likelihood estimate of θ, θ̂, for each generated data set

is calculated. The semiparametric estimate of S(y, z), Ŝ(y, z, θ̂), is calculated using formula

(7) in section 5.2. Table 3 gives the simulation results including the Monte Carlo means of θ̂
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and Ŝ(y, z, θ̂), and the standard errors of θ̂ and Ŝ(y, z, θ̂) based on 1000 replications for each

choice of parameter, θ = 0.5, 1, 2.

[Table 3 about here.]

7. Data Analysis: An Application to SEER Cancer Registry Data

7.1 Analysis under Semi-stationary Condition

We present an analysis of the ovarian cancer cases in the SEER registry data by the proposed

semi-stationary model. The SEER data set used here consists of information from 36728

ovarian cancer patients diagnosed between 1973 and 2002, and the observations are subject

to interval sampling. 24236 out of 36728 patients died before Dec 31, 2002. In the analysis

of SEER data, the residual lifetime after cancer onset was typically analyzed by standard

survival analysis methods and the onset age distribution was empirically estimated. The bias

due to interval sampling was commonly ignore in both data analysis and research findings.

In the analysis we assume that the joint distribution of the age of cancer onset and the

residual lifetime is independent of the birth time of the study cohort. We apply the proposed

method in the semi-stationary model to the SEER ovarian cancer data. In our analysis, the

variable T represents the birth time of ovarian cancer patient, Y represents the patient’s

age of cancer onset, and Z represents residual lifetime. All the variables are analyzed by a

continuous scale in years. Figure 2 shows the exploratory plots of ovarian cancer statistics,

which includes the kernel density estimate for T , the empirical distribution function estimate

for Y and the Kaplan-Meier estimate for Z based on the observed data. The density estimate

for T is likely to be biased due to interval sampling, although the y-plot is expected to be

close to the true curve when the stationary condition is approximately satisfied. To estimate

the t-distribution, we use two polynomial density models for (1) in section 2: a linear model

φ(t) = c0 + θ1t, and a quadratic polynomial model φ(t) = c0 + θ1t + θ2t
2, where in both
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models c0 is a given positive-valued constant. The joint survival function S(y, z) is estimated

based on the semi-stationary model.

[Figure 2 about here.]

In the data the earliest birth is t = −89.4 and the latest is t = 7.30 with the time origin

0 corresponds to Jan 1, 1973. The model-based density plots of t are shown in Figure 3

(a), where the difference between the linear and quadratic models is considerably small.

By comparing the model-based density plots with the kernel density plot, it demonstrates

the huge bias in estimating the birth density by the empirical estimate. Interestingly, an

increasing trend in birth cohort over the calendar time is found in both models. Such a trend

could be explained by the effect of Post-World War II baby boom or the improvement of

ovarian cancer screening techniques, or other unclear factors.

[Figure 3 about here.]

Given the small difference of the two models, the linear model is chosen as the birth

density in the analysis. The proposed estimates for θ and S(y, z) are calculated, with the

corresponding standard error estimates by 500 bootstrap samples. The estimate of θ together

with its standard error estimate is θ̂ = 3.914 (s.e. = 0.030). Table 4 summarizes the proposed

estimates for the joint survival function S(y, z) at 9 selected bivariate time points where

y = 62.2, 69.8, 77.5 years and z = 0.25, 1.58, 4.58 years, corresponding to the 1st, 2nd, and

3rd quartiles of the observed age of cancer onset and residual lifetime. The result shows

that the joint survival functions are generally underestimated by the empirical estimate, and

the magnitude of bias is non-ignorable when it is compared to the proposed estimate. For

example, the estimated proportions of patient who was diagnosed later than 62 years old

and survived longer than 4.6 years by the empirical estimate and proposed one are 16% vs

22%.
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[Table 4 about here.]

It is of interest to study the marginal distribution of age of cancer onset. The estimated

marginal distributions by the empirical and proposed method are plotted in Figure 3 (b).

The estimated median age of ovarian cancer onset by the proposed method is 77.0 years,

older than the observed 69.8 years. The impact of the age of cancer onset on the residual

lifetime is explored and demonstrated in Figure 4, by comparing P (Z > z|y1 < Y 6 y2), the

conditional probability functions of residual lifetime giving different onset age subgroups:

(y1, y2) = (0, 60) for onset age less than or equal to 60 years, (y1, y2) = (60, 70) for onset age

between 60 and 70 years, and (y1, y2) = (70,∞) for onset age greater than 70 years. It is

observed that, given older age of onset, the probability of survival after cancer onset is lower;

therefore a negative association between age of onset and residual lifetime is presented. The

result is sort of just as we expected because of the biological limitation of the overall lifetime.

[Figure 4 about here.]

Table 4 also provides estimated joint survival distributions by race subgroups. It is shown

that the white are likely to be diagnosed at older age and survive longer than the non-

white, which is a consistent result with the findings in the literature. Figure 4 also shows

the negative associations between age of onset and residual lifetime for both race subgroups:

white and non-white. The method provides an exploratory tool to compare the failure time

performance for different risk subgroups.

7.2 Example of Copula Model under Stationary Condition

In this section we present an example to illustrate the proposed method in the semiparametric

copula model considered in section 4, and study the dependency structure of the bivariate

survival times (Y, Z).

The SEER ovarian cancer data file consists of 36728 patients diagnosed between 1973 and
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2002. We assume constant birth rate of the studying cohort and analyze the data by the

proposed semiparametric copula model. The analytical result in section 7.1 shows that there

is a negative association between the age of ovarian cancer onset and the residual lifetime.

The copula model allows us to quantitatively examine the association. The marginal survival

functions of the age of onset and the residual lifetime are estimated by empirical survival

function and Kaplan-Meier estimate respectively, and the dependency structure is fitted

by copula model of Frank’s family. For the overall ovarian cancer patients, the estimated

association parameter α̂ is -4.747 with 95% bootstrap percentile confidence interval (-4.815,

-4.656), and the corresponding estimated Kandall’s tau, the rank correlation coefficient, τ̂

is -0.440 with 95% bootstrap percentile confidence interval (-0.445, -0.434), by the formula

of τ(α) = 1 + 4
α

(
∫ α

0
t

α(et−1)
dt − 1) for Frank’s family. For those who are white, α̂ is -4.790

with 95% bootstrap percentile confidence intervals (-4.874, -4.698), and τ̂ is -0.443 with 95%

bootstrap percentile confidence interval (-0.449, -0.437). For those who are non-white, α̂ is

-4.504 with 95% bootstrap percentile confidence interval (-4.752, -4.248), and τ̂ is -0.424

with 95% bootstrap percentile confidence interval (-0.441, -0.406). The result also suggests a

significant negative association between the age of cancer onset and the residual lifetime, for

the overall, white and non-white ovarian cancer patients respectively. And the magnitude of

association is slightly different between the white and the non-white. While it is noticed that

because it often takes a long time for the ovarian cancer occur, the stationary assumption

of constant birth rate over time may be inappropriate. Therefore, the future development of

semiparametric copula model under semi-stationary condition will be important for SEER

ovarian cancer data and other bivariate survival data problems.

8. Concluding Remarks

In collection of registry or surveillance data of a disease, it is common to identify incidence

of disease within a calendar time interval and subsequently collect bivariate or multivariate
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survival data as end points for progression of the disease. This paper considers statistical

issues which arise due to the use of interval sampling, and develops nonparametric and

semiparametric methods for bivariate survival data with interval sampling. The copula model

approach is proposed to study the dependency structure of the bivariate survival data under

stationary condition. However, we recognize that the assumption of stationarity does not

always hold, and it will be very interesting to relax the assumption and extend method in

the copula model to more general cases for future research.

Moreover, the assessment of risk factors or treatment is crucial in biomedical studies, so

it would be worthwhile to develop efficient estimating methods for the regression model

for bivariate survival data with interval sampling. The covariates involved in the regression

model could be defined at baseline or time-dependent. In sometime applications, information

about time-dependent variables would become available only after a certain time point. For

example, the treatment information of SEER ovarian or breast cancer patients is provided by

SEER-Medicare Link Data (Warren et al., 2002) which were collected from 1986 instead of

1973. Therefore a prevalent sample is involved and this further complicates the analysis. In

such model settings, methods need to be developed to address the problems and bias arising

from both interval and prevalent sampling. Furthermore, copula model approach could also

be extended to accommodate covariates with regression model in the study of the association.

Acknowledgements

References

Andersen, E. B. (1970). Asymptotic properties of conditional likelihood estimators. Journal

of the Royal Statistical Society, Series B (Methodological) 32, 283–301.

Clayton, D. G. (1978). A model for association in bivariate life tables and its application in

epidemiological studies of familial tendency in chronic disease incidence. Biometrika 65,

141–151.

Hosted by The Berkeley Electronic Press



Analyzing Bivariate Survival Data with Interval Sampling and Application to Cancer Epidemiology 21

Frank, M. J. (1979). On the simultaneous associativity of F (x, y) and x + y − F (x, y).

Aequationes Mathematicae 19, 194–226.

Genest, C., Ghoudi, K., and Rivest, L.-P. (1995). A semiparametric estimation procedure of

dependence parameters in multivariate families of distributions. Biometrika 82, 543–552.

Gong, G. and Samaniego, F. J. (1981). Pseudo maximum likelihood estimation: theory and

applications. Annals of Statistics 9, 861-869.

Hougaard, P. (1986). A class of multivariate failure time distribution. Biometrika 73, 671–

678.

Kosorok, M. R. (2008). Introduction to empirical processes and semiparametric inference.

New York: Springer.

Li, Y., Tiwari, R., Guha, S. (2007). Mixture cure survival models dependent censoring.

Journal of the Royal Statistical Society, Series B (Methodological) 69, 285–306.

Lin, D.-Y., Sun, W., and Ying, Z. (1999). Nonparametric estimation of gap time distributions

for serial events with censored data. Biometrika 86, 59-70.

Ries, LAG, Eisner, M. P., Kosary, C. L., Hankey, B. F., Miller, B. A., Clegg, L., Mariotto, A.,

Feuer, E. J., Edwards, B. K. (eds). SEER Cancer Statistics Review, 1975-2002, National

Cancer Institute. Bethesda, MD.

Schaubel, D. E. and Cai, J. (2004). Nonparametric estimation of gap time survival functions

for ordered multivariate failure time data. Statistics in Medicine 23, 1885–1900.

Serfling, R. J. (1980). Approximation theorems of mathematical statistics. New York: Wiley.

Shih, J. H, and Louis, T. A. (1995). Inferences on the association parameters in copula

models for bivariate survival data. Biometrics 51, 1384–1399.

Vardi, Y. (1982). Nonparametric estimation in the presence of length-bias. Annals of

Statistics 10, 616–620.

Vardi, Y. (1985). Empirical distributions in selection bias models. Annals of Statistics 13,

http://biostats.bepress.com/jhubiostat/paper201



22 Biometrics, 000 0000

178–203.

Visser, M. (1996). Nonparametric estimation on the bivariate survival function with appli-

cation to vertically transmitted AIDS. Biometrika 83, 507–518.

Wang, W.-J. and Wells, M. T. (1998). Nonparametric estimation of successive duration times

under dependent censoring. Biometrika 85, 561–572.

Warren, J. L., Klabunde, C. N., Schrag, D., Bach, P. B. and Riley, G. F. (2002). Overview

of the SEER-Medicare data: content, research applications, and generalizability to the

United States elderly population. Medical Care 40, 3–18.

Appendix

Proof of Property 2

Assuming that the joint distribution of (Y, Z) belongs to a copula model family, standard reg-

ularity conditions for maximum likelihood estimate hold and functions Wα(α, Sy(y), Sz(z)),

Vα(α, Sy(y), Sz(z)), Vα,1(α, Sy(y), Sz(z)), and Vα,2(α, Sy(y), Sz(z)) are continuous and bounded

for (y, z) ∈ A = [y−, y+]× [z−, z+], where

Wα(α, Sy(y), Sz(z)) =
∂logL(α, u, v)

∂α
, Vα(α, Sy(y), Sz(z)) =

∂2logL(α, u, v)

∂α2

Vα,1(α, Sy(y), Sz(z)) =
∂2logL(α, u, v)

∂α∂u
, Vα,2(α, Sy(y), Sz(z)) =

∂2logL(α, u, v)

∂α∂v

The above assumptions are used in the proof and the asymptotic normality of α̂ can be

proved by the techniques outlined below.

Using Taylor expansion on the score function Uα(α, Ŝy, Ŝz) around α0, rearranging and

evaluating it at α = α̂, we get

√
n(α̂− α0) ∼=

−Uα(α0, Ŝy, Ŝz)/
√
n∑n

i=1 Vα(α0, Ŝy(Yi), Ŝz(Xi))/n

Since Ŝy(·) converges in probability to Sy(·) uniformly in [y−, y+], Ŝz(·) converges to Sz(·)

uniformly in [z−, z+], and Vα(α, u, v) is a continous function of u and v, |Vα(α0, Ŝy(y), Ŝz(z))−

Vα(α0, Sy(y), Sz(z))| converges in probability to zero for (y, z) ∈ A = [y−, y+]× [z−, z+]. Thus
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∑n
i=1 Vα(α0, Ŝy(Yi), Ŝz(Xi))/n and

∑n
i=1 Vα(α0, Sy(Yi), Sz(Xi))/n are asymptotically equiva-

lent, which by the law of large numbers converges to ρ2
1, specified as

ρ2
1 = E[−Vα(α0, Sy(Yi), Sz(Xi))] =

∫
A
−Vα(α0, Sy(y), Sz(z))dHα0(y, z, δ)

where Hα0 is the joint distribution of (Y,X, δ). Next, we have

√
n
−1
Uα(α0, Ŝy, Ŝz) =

√
n

∫
A
Wα(α0, Ŝy(y), Ŝz(z))dHn(y, z, δ)

=
√
n

∫
A
Wα(α0, Ŝy(y), Ŝz(z))dHα0(y, z, δ)

+
√
n

∫
A
Wα(α0, Ŝy(y), Ŝz(z))(dHn − dHα0)(y, z, δ)

= πn(α0, Ŝy, Ŝz) + ηn(α0, Ŝy, Ŝz) (A.1)

where Hn is the empirical distribution of Hα0 . We further decompose ηn into two terms,

ηn(α0, Ŝy, Ŝz) =
√
n

∫
A

[Wα(α0, Ŝy(y), Ŝz(z))−Wα(α0, Sy(y), Sz(z))](dHn − dHα0)(y, z, δ)

+
√
n

∫
A
Wα(α0, Sy(y), Sz(z))(dHn − dHα0)(y, z, δ)

Because Ŝy → Sy, Ŝz → Sz,
√
n(Hn − H) → Op(1), and Wα is continuous and bounded,

by the dominated convergence theorem, the first term in ηn convergence to 0. The second

term of ηn is a sum of n i.i.d. random variables of mean zero and variance ρ2
1, so it converges

to normal with mean zero and variance ρ2
1 by the central limit theorem. Using Von Mises

expansion on πn(α0, Ŝy, Ŝz) around Sy and Sz, we get

πn(α0, Ŝy, Ŝz) ∼= πn(α0, Sy, Sz) +
√
n

∫
ICy(y)d(Ŝy − Sy)(y) +

√
n

∫
ICz(z)d(Ŝz − Sz)(z)

= 0 +
√
n

∫
ICy(y)d(Ŝy − Sy)(y) +

√
n

∫
ICz(z)d(Ŝz − Sz)(z)

where ICy and ICz are obtained by differentiating π(α0, (1− ε1)Sy + ε1Ŝy, (1− ε2)Sz + ε2Ŝz)

with respect to ε1 and ε2 and evaluating at ε1 = ε2 = 0, and ICy(y) = −
∫ y

0

∫ z0
0 Vα,1(α0, Sy(u),

Sz(z))hα0(u, z, δ)dzdu and ICz(z) = −
∫ z

0

∫ y0
0 Vα,2(α0, Sy(y), Sz(u))hα0(y, u, δ)dydu. By the

counting process asymptotic techniques,
√
n(Ŝy(y) − Sy(y)) is asymptotically equivalent

to as a sum of n i.i.d. random variables
∑
i I

0
1 (Yi)(y)/

√
n. Similarly,

√
n(Ŝz(z) − Sz(z))
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is asymptotically equivalent to as a sum of n i.i.d. random variables
∑
i I

0
2 (Xi, δi)(z)/

√
n.

I0
1 and I0

2 are martingales, defined as I0
1 (Yi)(y) = −Sy(y)[

∫ y
0
dN1i(u)
p(Y>u)

−
∫ y

0
I{Yi>u}dΛ1(u)

p(Y>u)
] and

I0
2 (Xi, δi)(z) = −Sz(z)[

∫ z
0

dN2i(u)
p(Z>u,C2>u)

−
∫ z

0
I{Xi>u}dΛ2(u)
p(Z>u,C2>u)

] where C2 = C − T − Y , N1i(u) =

I{Yi 6 u}, N2i(u) = I{Zi 6 u, δi = 1}, and Λ1 and Λ2 are the cumulative hazard functions

for Y and Z. Then we have

πn(α0, Ŝy, Ŝz) ∼=
1√
n

[
∑
i

∫
A
Vα,1(α0, Sy(y), Sz(z))I0

1 (Yi)(y)dHα0(y, z, δ)

+
∫
A
Vα,2(α0, Sy(y), Sz(z))I0

2 (Xi, δi)(z)dHα0(y, z, δ)]

=
1√
n

[
∑
i

I1(Yi, α0) + I2(Xi, δi, α0)]

which is a sum of n i.i.d. random variables. Since ICy and ICz are deterministic functions,

the expectation of I1 and I2 are 0. By the central limit theorem, πn(α0, Ŝy, Ŝz) converges to

normal with mean 0 and variance ρ2
2, specified as

ρ2
2 = E[{I1(Y, α0) + I2(X, δ, α0)}2] =

∫
A

[I1(y, α0) + I2(z, δ, α0)]2dHα0(y, z, δ)

Note that we have proved that πn(α0, Ŝy, Ŝz) is asymptotically equivalent to 1√
n
[
∑
i I1(Yi, α0)+

I2(Xi, δi, α0)], and ηn(α0, Ŝy, Ŝz) is asymptotically equivalent to 1√
n

∑
iWα(α0, Sy(Yi), Sz(Xi)).

πn and ηn are asymptotically independent as in the proof of Theorem 1 in Shih and Louis

(1995). Hence,
√
n(α̂−α) converges to normal with mean zero and variance ρ2 = (ρ2

1+ρ2
2)/ρ4

1.

Proof of Property 3

It is crucial to study the asymptotic property of Ŝ(y, z, θ̂). Observe that

√
n{Ŝ(y, z, θ̂)− S(y, z)} =

√
n{Ŝ(y, z, θ)− S(y, z)}+

√
n{Ŝ(y, z, θ̂)− Ŝ(y, z, θ)} (A.2)

Note that if θ is known, the property of Ŝ(y, z, θ̂) follows from Vardi (1985) with a θ-

involved weight function. As identified in Section 5.2, the process
√
n{Ŝ(y, z, θ) − S(y, z)}

converges weakly to a bivariate zero-mean Gaussian process with covariance function σ∗. By

the counting processes methodology, the first term in (A.2) can be approximated by
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√
n{Ŝ(y, z, θ)− S(y, z)} = n−1/2 ∑n

i=1 φ(θ, Yi, Zi, y, z) + op(1) (A.3)

where E[φ(θ, Yi, Zi, y, z)] = 0 for each θ.

To develop the asymptotic result of the second term in (A.2), the additional variation

created by estimating θ by the use of θ̂ needs to be handled. Empirical process and semipara-

metric inference techniques are employed for the asymptotic properties of the second term

in (A.2). Ŝ(y, z, θ) can be re-expressed as the empirical process Ŝ(y, z, θ) = n−1 ∑n
i=1 I(Yi >

y,Zi > z)r(Yi, Zi, θ), where r(Yi, Zi, θ) = {G(T0−Yi−Zi;θ)−G(−Yi;θ)}−1∑n

i=1
{G(T0−Yi−Zi;θ)−G(−Yi;θ)}−1 . In Section (5.1), it

has been shown that
√
n(θ̂−θ) converges in distribution to a mean zero multivariate normal

distribution with variance-covariance matrix I−1
c , where θ̂ is the MLE from the conditional

likelihood function Lc. Therefore by the functional delta method for the empirical process

(Kosorok, 2008), we get
√
n{Ŝ(y, z, θ̂)−Ŝ(y, z, θ)} D−→ N(0,∇θŜ(y, z, θ)T I−1

c ∇θŜ(y, z, θ)).

Thus, the second term in (A.2) can be approximated by

√
n{Ŝ(y, z, θ̂)− Ŝ(y, z, θ)} = n−1/2∇θŜ(y, z, θ)T I−1

c

n∑
i=1

∂

∂θ
logpc(Ti|Yi, Zi) + op(1)

= n−1/2∇θŜ(y, z, θ)T I−1
c

n∑
i=1

ϕ(Ti, Yi, Zi) + op(1) (A.4)

where E[ϕ(Ti, Yi, Zi)] = E[ ∂
∂θ
logpc(Ti|Yi, Zi)] = 0. Combining the preceding results of (A.3)

and (A.4), we get

√
n{Ŝ(y, z, θ̂)−S(y, z)} ∼= n−1/2

n∑
i=1

φ(θ, Yi, Zi, y, z)+n−1/2∇θŜ(y, z, θ)T I−1
c

n∑
i=1

ϕ(Ti, Yi, Zi) (A.5)

Also the corresponding distributions of those two terms are asymptotically orthogonal to

each other, since

E{φ(θ, Yi, Zi, y, z)ϕ(Ti, Yi, Zi)} = E{φ(θ, Yi, Zi, y, z)E[
∂

∂θ
logpc(Ti|Yi, Zi)|Yi, Zi]} = 0 (A.6)

(A.5) and (A.6) imply that
√
n{Ŝ(y, z, θ̂)−S(y, z)} converges weakly to a bivariate zero-mean

Gaussian process with covariance function, specified as ∇θŜ(y, z, θ)T I−1
c ∇θŜ(y, z, θ) + σ∗.

http://biostats.bepress.com/jhubiostat/paper201



26 Biometrics, 000 0000

Time 0 Time T0
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Figure 1. The interval sampling cohort
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Figure 2. Exploratory plots of ovarian cancer statistics (Biased Estimates).
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Figure 3. (a) Model-based birth density plots: solid line represents the biased empirical
estimate, dashed line represents the estimate from linear model fit, and dotted line represents
the estimate from quadratic model fit. (b) Estimated marginal distributions of age of cancer
onset: solid line represents the empirical estimate, dotted line represents the proposed bias
adjusted estimate.
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Figure 4. Estimated conditional survival functions of residual lifetime giving different
onset age subgroups: solid line represents the subgroup of onset age >70 years, dashed line
represents the subgroup of onset age 60-70 years, and dotted line represents the subgroup of
onset age 660 years.
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Table 1
Simulation summary statistics for Ŝ under stationary assumption: (a) true joint survival probabilities, (b) empirical
means of estimated joint survival probabilities, (c) empirical standard errors of estimated joint survival probabilities,

and (d) empirical means of standard error estimates.

Independent Correlated
z z

y 0.2231 0.5018 0.9163 1.6094 0.2231 0.5018 0.9163 1.6094

0.2231 (a)0.640 0.480 0.320 0.160 0.686 0.547 0.383 0.198
(b)0.638 0.476 0.315 0.156 0.694 0.555 0.389 0.199
(c)0.030 0.031 0.028 0.022 0.028 0.030 0.030 0.026
(d)0.030 0.030 0.028 0.023 0.027 0.030 0.030 0.026

0.5108 (a)0.480 0.360 0.240 0.120 0.547 0.469 0.353 0.193
(b)0.476 0.354 0.233 0.115 0.556 0.476 0.357 0.193
(c)0.030 0.028 0.025 0.018 0.031 0.030 0.030 0.025
(d)0.030 0.029 0.025 0.019 0.030 0.031 0.030 0.026

0.9163 (a)0.320 0.240 0.160 0.080 0.383 0.353 0.295 0.182
(b)0.315 0.234 0.154 0.076 0.386 0.355 0.296 0.180
(c)0.028 0.025 0.020 0.015 0.031 0.030 0.030 0.025
(d)0.028 0.025 0.021 0.015 0.030 0.030 0.029 0.025

1.6094 (a)0.160 0.120 0.080 0.040 0.198 0.193 0.182 0.143
(b)0.156 0.116 0.076 0.039 0.199 0.195 0.183 0.143
(c)0.022 0.019 0.015 0.011 0.026 0.026 0.026 0.024
(d)0.022 0.019 0.015 0.011 0.026 0.026 0.025 0.024

Hosted by The Berkeley Electronic Press



Analyzing Bivariate Survival Data with Interval Sampling and Application to Cancer Epidemiology 31

Table 2
Simulation summary statistics for α̂ under varying sampling schemes, from 1000 samples from Clayton’s family ,

Positive stable frailties and Frank’s family.

Model α Sampling Mean(α̂) SD(α̂)

Clayton’s family 0.500 Random 0.488 0.093
Interval 0.480 0.108

1.333 Random 1.316 0.149
Interval 1.283 0.179

3.000 Random 2.946 0.261
Interval 2.898 0.304

Positive stable frailties 1.250 Random 1.249 0.026
Interval 1.256 0.058

1.667 Random 1.667 0.067
Interval 1.663 0.095

2.500 Random 2.487 0.103
Interval 2.478 0.155

Frank’s family 2.000 Random 2.014 0.328
Interval 1.986 0.357

-1.000 Random -0.994 0.280
Interval -1.010 0.347

-2.000 Random -1.977 0.320
Interval -1.984 0.372
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Table 3
Simulation summary statistics for Ŝ under semi-stationary assumption: (a) true joint survival probabilities S, (b)

means of estimated joint survival probabilities Ŝ, and (c) standard errors of Ŝ.

θ Mean(θ̂) SD(θ̂) y z
0.2231 0.5018 0.9163 1.6094

0.500 0.506 0.079

0.2231 (a)0.686 0.547 0.383 0.198
(b)0.685 0.544 0.381 0.198
(c)0.032 0.037 0.041 0.039

0.9163 (a)0.383 0.353 0.295 0.182
(b)0.381 0.351 0.294 0.182
(c)0.041 0.041 0.041 0.038

1.000 1.008 0.090
0.2231 (a)0.686 0.547 0.383 0.198

(b)0.685 0.546 0.381 0.197
(c)0.037 0.045 0.052 0.054

0.9163 (a)0.383 0.353 0.295 0.182
(b)0.381 0.351 0.292 0.180
(c)0.052 0.054 0.055 0.055

2.000 2.010 0.167
0.2231 (a)0.686 0.547 0.383 0.198

(b)0.679 0.538 0.369 0.181
(c)0.056 0.076 0.095 0.107

0.9163 (a)0.383 0.353 0.295 0.182
(b)0.373 0.342 0.281 0.165
(c)0.094 0.098 0.103 0.108
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Table 4
Analytical result from the SEER ovarian cancer data: (a) Empirical joint survival functions, (b) Proposed estimates

of joint survival function Ŝ(y, z, θ̂), and (c) Standard error estimates of Ŝ(y, z, θ̂).

All races White Non-white

z z z
y 0.25 1.58 4.58 0.25 1.58 4.58 0.25 1.58 4.58

62.2 (a)0.622 0.367 0.160 0.631 0.375 0.163 0.569 0.307 0.121
(b)0.623 0.402 0.222 0.629 0.407 0.227 0.573 0.344 0.175
(c)0.049 0.030 0.017 0.053 0.035 0.020 0.003 0.002 0.001

69.8 (a)0.412 0.220 0.093 0.420 0.227 0.093 0.348 0.173 0.064
(b)0.451 0.268 0.139 0.457 0.273 0.143 0.391 0.219 0.105
(c)0.034 0.020 0.011 0.039 0.023 0.012 0.001 0.001 0.001

77.5 (a)0.189 0.086 0.034 0.192 0.089 0.034 0.144 0.064 0.022
(b)0.243 0.128 0.062 0.248 0.130 0.063 0.196 0.100 0.045
(c)0.018 0.010 0.005 0.021 0.011 0.005 0.002 0.001 0.001
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