
Johns Hopkins University, Dept. of Biostatistics Working Papers

12-20-2006

INTERACTING WITH LOCAL AND
REMOTE DATA RESPOSITORIES USING
THE stashR PACKAGE
Sandrah P. Eckel
Johns Hopkins Bloomberg School of Public Health, Department of Biostatistics, seckel@jhsph.edu

Roger Peng
Johns Hopkins Bloomberg School of Public Health, Department of Biostatistics

This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commercially reproduced without the permission of the
copyright holder.
Copyright © 2011 by the authors

Suggested Citation
Eckel, Sandrah P. and Peng, Roger, "INTERACTING WITH LOCAL AND REMOTE DATA RESPOSITORIES USING THE
stashR PACKAGE" (December 2006). Johns Hopkins University, Dept. of Biostatistics Working Papers. Working Paper 127.
http://biostats.bepress.com/jhubiostat/paper127

http://biostats.bepress.com/jhubiostat


Interacting with local and remote data

repositories using the stashR package

Sandrah P. Eckel Roger D. Peng

December 20, 2006

Abstract

The stashR package (a Set of Tools for Administering SHared Repositories) for R implements

a simple key-value style database where character string keys are associated with data values.

The key-value databases can be either stored locally on the user’s computer or accessed remotely

via the Internet. Methods specific to the stashR package allow users to share data repositories

or access previously created remote data repositories. In particular, methods are available for

the S4 classes ‘localDB’ and ‘remoteDB’ to insert, retrieve, or delete data from the database as

well as to synchronize local copies of the data to the remote version of the database. Users

efficiently access information from a remote database by retrieving only the data files indexed

by user-specified keys and caching this data in a local copy of the remote database. The local

and remote counterparts of the stashR package offer the potential to enhance reproducible

research by allowing users of Sweave to cache their R computations for a research paper in a

‘localDB’ database. This database can then be stored on the Internet as a ‘remoteDB’ database.

When readers of the research paper wish to reproduce the computations involved in creating a

specific figure or calculating a specific numeric value, they can access the ‘remoteDB’ database

and obtain the R objects involved in the computation.

1 Overview

We conduct scientific research by collecting data, analyzing and summarizing the evidence in the

data and then publishing substantive results in a paper. To verify scientific results we must either

replicate or, at a minimum, reproduce the findings of a previous study. Replication is the act of

collecting an independent data set in a similar manner to the original study and then using the

data to address a similar scientific question of interest. Reproduction of scientific research is the

1

Hosted by The Berkeley Electronic Press



act of using the same data as the original study and performing additional statistical analyses.

Replication is the highest standard of verification. Through replication, researchers can address the

uncertainty inherent in collecting a data sample from a larger population and improve upon any

shortcomings of previous data collection designs. Reproducibility allows researchers to evaluate

the sensitivity of the results from the initial statistical analysis of a study. Although replication

is ideal, in many cases reproduction is the most practical way to verify the results of a study. In

some instances, such as epidemiologic studies of national databases, reproduction is the only way

to verify the scientific findings of a study.

Truly reproducible research can be achieved by making the data used for statistical analysis

available to prospective analysts. Given the framework of reproduction, we need to be able to

distribute potentially large data sets and computations. To disseminate accurate data, we need a

system for physical data distribution that manages data updates by automatically synchronizing

each prospective analyst’s local copy of the data to the remote, master copy of the data. It follows

that we need software to help manage both the distribution and synchronization/caching of this

data. We introduce stashR to fill this need.

2 The stashR Package

The stashR package is an extension to local and remote databases of the filehash package by (Peng,

2006), which allows users to work interactively with data sets too large to be loaded into R as a

single object by alternatively using a key-value database. A key-value database is a collection of

data files, each indexed by a character string “key”. One example of a key-value database is a

multi-center study consisting of data from 4 cities (New York, Los Angeles, Chicago and Seattle)

where data for each city is stored in a file named ‘ny’, ‘la’, ‘chicago’, and ‘seattle’ respectively. In this

case, the key-value database allows a researcher to download data from a particular city of interest

instead of downloading the entire dataset at once. The stashR package can be used to create a

local ‘localDB’ key-value database and to download data from a ‘remoteDB’ key-value database

stored remotely on the internet. A local key-value database, ‘localDB’, is stored locally on the

user’s computer so that the user has control over the content of the database. A remote key-value

database, ‘remoteDB’, is stored on a remote server. A ‘remoteDB’ user can download data from the

remote server to a local copy of the database on his or her own computer. This dual functionality of

the stashR package addresses the need for managing data distribution and synchronizing cached

2

http://biostats.bepress.com/jhubiostat/paper127



data copies in fully reproducible research.

The stashR package adds important functionalities to data handling and distribution in R. These

contributions include:

• the ability to access remote databases efficiently

• a set of tools for creating a local database for exporting to a remotely accessible server

• a tool for synchronizing local copies of a database to the remote version

• an abstract interface for interacting with local and remote databases.

3 Design Rationale

3.1 Remote vs. Local

The stashR package is designed for interacting with both local and remote data repositories. A

repository is structured set of files in which data and metadata are stored to facilitate data ac-

cessibility. Each of the main user interface functions in stashR is a generic function with specific

methods defined for repository objects of class ‘localDB’, the local version of a key-value database,

and for objects of class ‘remoteDB’, the remote version of a key-value database. A ‘localDB’ data

repository is stored on a user’s local disk whereas a ‘remoteDB’ data repository is stored on a remote

server on which the user typically does not have the right to edit files. When interacting with a

‘localDB’ data repository, the user can insert, fetch, delete and list keys of the available data files.

When interacting with a ‘remoteDB’ data repository, the user creates a copy of the repository on

his or her local disk that contains only the desired data files from the remote repository. The user

interface functions for the ‘remoteDB’ repository are similar to those for the ’localDB’ repository.

When the user fetches data from a remote repository, it is either accessed using the local cache,

or downloaded from the remote repository if it has not previously been downloaded. The stashR

package also has a feature to synchronize the local copy of a repository to the remote repository.

3.2 Repository Layout

The ‘remoteDB’ repository consists of a root directory containing a data directory, a text file ‘keys’

that lists of each of the character keys corresponding to a data file in the data directory, and a text

file ‘url’ that lists the repository’s URL on the remote server. The data directory contains compressed

3

Hosted by The Berkeley Electronic Press



data files labelled according to their corresponding character key. Each data file has a corresponding

‘.SIG’ text file that lists the 32-byte MD5 checksum from running md5sum() on the data file (see

the R package tools for more details) and the data file’s identifying character key. The ‘.SIG’ files

allow for synchronization of the local data copies to the master version of the data repository on the

remote server. The ‘localDB’ repository has an identical layout to the ‘remoteDB’ repository except

that it does not have a ‘url’ file.

3.3 Caching and Synchronization

The stashR package allows users to cache or access cached data in a ‘localDB’ or ‘remoteDB’ repos-

itory. A key feature of the stashR package, is the ability for a user to download desired data from a

’remoteDB’ repository in a local directory and, at a later date, synchronize their locally cached data

to the data in the remote ‘remoteDB’ data repository. The synchronization feature allows a user

to efficiently maintain an up-to-date local cache of remotely stored data by downloading updated

versions of the remote data files only when needed.

As noted in Section 3.2, each data file has a corresponding ‘.SIG’ file that contains the MD5

checksum of the data file along with the key indexing the data file. The MD5 checksum is theoret-

ically a nearly unique character string that identifies a file. If a small change is made to a file, its

corresponding MD5 checksum will change dramatically. Sychronization in the package stashR is

acheived by comparing the MD5 checksum in the ‘.SIG’ file corresponding to the local copy of the

data and the MD5 checksum in the‘.SIG’ file corresponding to the remote data file. If a this data

file has been modified on the remote data repository, the MD5 checksums will not match, and the

new data file and ’.SIG’ file will be downloaded to the local copy of the repository to synchronize

the local copy of the data to the remote version of the data.

4 Interface

4.1 Creating a ‘localDB’ repository or a local copy of a ‘remoteDB’ repository

There are two steps to creating a ‘localDB’ or a ‘remoteDB’ object. The first step is to call new("localDB",

dir, name) or new("remoteDB", dir, url, name) where ‘dir’ is a character string spec-

ifying the local directory in which to create the new ‘localDB’ repository of the local copy of the

‘remoteDB’ repository. The ‘url’ argument is unique to objects of the ‘remoteDB’ class and it spec-

4

http://biostats.bepress.com/jhubiostat/paper127



ifies as a character string the URL of the root directory of the remote key-value database. The

‘name’ argument is a character string specifying the label that will be associated with the ‘localDB’

or ‘remoteDB’ repository. Upon calling new, the appropriate initialize method will be called to

create the local directories needed for either storing the cached copy of the database for ‘remoteDB’

objects or for storing the data for ‘localDB’ objects.

4.2 Accessing a remoteDB database

The user-end interfaces to ‘localDB’ or ‘remoteDB’ databases are of the functions dbFetch, dbInsert,

dbList, dbExists, dbDelete and dbSync. Each of these functions is a generic function defined

in the filehash package and has a specific method for objects of the ‘remoteDB’ and ‘localDB’ classes

(with the exception of dbSync, which is only available for the ‘remoteDB’ class). The first argument

for any of the above functions is an object of class ‘remoteDB’ or ‘localDB’.

4.2.1 dbFetch

The function dbFetch takes two arguments. The first argument is either a ‘localDB’ or ‘remoteDB’

object and second argument is a character string key indexing a data object.

For objects of the class ‘remoteDB’, dbFetch first checks to see if the provided key’s data file

and .SIG file exist in the local copy of the ‘remoteDB’ repository. If the data and .SIG files indexed by

the key do not exist, then dbFetch downloads the two files from the remote repository to the local

copy and reads the data file. If the data and .SIG file do exist in the local copy of the repository, then

dbFetch compares the MD5 checksum stored in the .SIG file from the local repository to the MD5

checksum stored in the .SIG file in the remote repository. If the MD5 checksums are the same, then

dbFetch reads the file from the local repository. Otherwise, dbFetch downloads the updated

version of the data and .SIG files from the remote repository and reads the data file. The object

associated with the key, that was stored in the corresponding data file, is returned by dbFetch.

Similarly, for objects of the class ‘localDB’, dbFetch checks if the provided character value key’s

data file and ‘.SIG’ file exist in the local repository. If the files exist, then dbFetch reads the data

file from the local directory and returns the R object stored in the data file. If the corresponding

files do not exist, then dbFetch returns an error.

5

Hosted by The Berkeley Electronic Press



4.2.2 dbInsert

The function dbInsert) takes four arguments. The first argument, like any of the other user-end

interfaces is either a ‘localDB’ or ‘remoteDB’ object. The second argument is a character string key

indexing the file that will be created to store the object indicated by the ‘value’ argument. The third

argument, value, is any R object that the user wishes to store in the repository.

Calling dbInsert on a ‘remoteDB’ object returns an error message. Thus the user cannot write

to a remote repository or write to his or her local copy of the remote repository, which would make

the two versions of the repository out of sync.

On the other hand, calling dbInsert on a ‘localDB’ object writes the value to a data file

corresponding to the specified key within the local data directory. Also, dbInsert appends the

specified key to the end of the ‘keys’ file if the key is not already included in the ‘keys’ file. The

fourth argument of the dbInsert function allows the user to specify whether or not they will

allow dbInsert to overwrite a pre-existing file with the same key. The defalt is set to ‘TRUE’ so

that dbInsert will overwrite a pre-existing file indexed by the same key as the file that the user

is trying to insert with dbInsert.

4.2.3 dbList

The function dbList(db = "localDB") or dbList(db = "remoteDB", save = FALSE)

takes a ‘localDB’ or ‘remoteDB’ object as its argument. For ‘remoteDB’ objects, there is also an

option to save the ‘keys’ file from the remote repository to the analogous location in the local copy

of the repository. For both classes of objects, dbList reads the character string key values stored

in the ‘keys’ file of the repository and returns a vector of the keys.

4.2.4 dbExists

In general terms, the function dbExists allows a user to determine which elements of a vector of

character string keys are contained in the repository. The function dbExists(db = "localDB"

or "remoteDB", key = key) has a second argument, ‘key’, which takes a vector of character

strings. The logical vector returned by dbExists is of the same length as the vector of character

keys.

For both objects of class ‘remoteDB’ and objects of class ‘localDB’, dbExists returns TRUE

for each key that indexes a data file contained the repository (as indicated in the ‘keys’ file of the

6

http://biostats.bepress.com/jhubiostat/paper127



repository). If a key in the vector of keys specified as the key argument to dbExists indexes a

file that is not contained ‘keys’ file of the repository, dbExists returns FALSE in the corresponding

position of the output vector of logical values.

4.2.5 dbDelete

The function dbDelete allows a user to delete both the data and ‘.SIG’ file indexed by a particular

key from the repository. The function call is dbDelete(db = "remoteDB" or "localDB",

key = "character"). Calling dbDelete on a ‘remoteDB’ object returns an error message since

the user does not have access to the remote repository to delete the specified files. On the other

hand, calling dbDelete on a ‘localDB’ object results in the deletion of the specified data and ‘.SIG’

file from the data directory of the local repository. The specified key is also deleted from the ‘keys’

file in the top-level directory of the repository.

4.2.6 dbSync

The stashR function for synchronizing local copies of data stored on a remote repository is the

generic function dbSync. Currently, dbSync only has a method for objects of the ‘remoteDB’ class

because one would only need to synchronize a local copy of a remote database. The dbSync

function takes as arguments a ‘remoteDB’ object and a (possibly null) character vector of keys,

called ‘key’. If the ‘key’ vector contains a character string key that corresponds to a data file that

has not yet been downloaded to the local copy of the repository, dbSync returns an error message.

If the ‘key’ vector is null, then dbSync obtains a list of the data files that have been locally cached,

checks if these data files have changed on the remote repository, and then updates the necessary

data files. Similarly, if the ‘key’ vector contains only keys for data files that have been locally

downloaded, dbSync will only check and, if necessary, update the files specified in the ‘key’ vector.

5 Examples

5.1 Objects of the class ‘localDB’

For objects of the class ‘localDB’, we start out by defining a local directory in which we will create

the repository.

> library(stashR)

7

Hosted by The Berkeley Electronic Press



Simple key-value database (version 0.8-1 2006-09-25)

A Set of Tools for Administering SHared Repositories

(version 0.1 2006-12-11)

> wd <- getwd()

> dir <- file.path(wd, "localDBExample")

Next, we perform a two-step process to create the ‘localDB’ object, which we will call ‘fhLocal’.

> fhLocal <- new("localDB", dir = dir, name = "localDB Example")

We now insert different types of R objects into the local repository to create a basic ‘localDB’ data-

base. Note that each time we call dbList, we see the keys indexing all of the data files we have

inserted.

> v <- 1:10

> dbInsert(fhLocal, key = "vector", value = v, overwrite = TRUE)

> m <- matrix(1:20, 5, 4)

> dbInsert(fhLocal, key = "matrix", value = m, overwrite = TRUE)

> d <- data.frame(cbind(id = 1:5, age = c(12, 11,

+ 15, 11, 14), sex = c(1, 1, 0, 1, 0)))

> dbInsert(fhLocal, key = "dataframe", value = d,

+ overwrite = TRUE)

> dbList(fhLocal)

[1] "vector" "matrix" "dataframe"

> l <- list(v = v, m = m, df = d)

> dbInsert(fhLocal, key = "list", value = l, overwrite = TRUE)

> dbList(fhLocal)

[1] "vector" "matrix" "dataframe" "list"

We can fetch any of the R objects saved in our local repository.

> dbFetch(fhLocal, "dataframe")

8

http://biostats.bepress.com/jhubiostat/paper127



id age sex

1 1 12 1

2 2 11 1

3 3 15 0

4 4 11 1

5 5 14 0

If we delete a data file from the local repository, dbList or dbExists can be used to confirm the

deletion.

> dbDelete(fhLocal, "vector")

> dbExists(fhLocal, "vector")

[1] FALSE

> dbList(fhLocal)

[1] "matrix" "dataframe" "list"

5.2 Objects of the class ‘remoteDB’

The same data used in the previous example for ‘localDB’ has been stored in a ‘remoteDB’ repository

on the internet at:

> myurl <- "http://www.biostat.jhsph.edu/˜seckel/remoteDBExample"

In this example, we will use the ‘remoteDB’ methods for the stashR package interface functions:

dbFetch, dbList, dbExists and dbSync. Note that we will not use dbInsert and dbDelete

functions because these methods simply return error messages for ‘remoteDB’ objects.

Again, we start off with the two-step process of creating a ‘remoteDB’ object. The local copy of

the database will be located in our working directory under a directory called ‘remoteDBExample’.

> wd <- getwd()

> dir <- file.path(wd, "remoteDBExample")

> fhRemote <- new("remoteDB", url = myurl, dir = dir,

+ name = "remoteDB Example")

9

Hosted by The Berkeley Electronic Press



When we run dbList on the ‘remoteDB’ object, ‘fhRemote’, we see the same four character string

keys corresponding to the data values from the previous example. Using the save = TRUE option

in dbList saves a copy of the ‘keys’ file from the remote version of the database to the local copy

of the database. The function dbExists can be used as a shortcut, when the list of keys is long,

to see which elements of a vector of keys are contained in the database.

> dbList(fhRemote, save = TRUE)

[1] "matrix" "dataframe" "list" "vector"

> dbExists(fhRemote, c("vector", "array", "list",

+ "function"))

[1] TRUE FALSE TRUE FALSE

We can fetch any of the data values indexed by the keys resulting from dbFetch. Once we have

downloaded a data file to the local cache, dbFetch simply looks in the local cache for the data file

rather than downloading the file again over the internet.

> dbFetch(fhRemote, "vector")

trying URL 'http://www.biostat.jhsph.edu/˜seckel/remoteDBExample/data/vector'

Content type 'text/plain; charset=UTF-8' length 59 bytes

opened URL

downloaded 59 bytes

trying URL 'http://www.biostat.jhsph.edu/˜seckel/remoteDBExample/data/vector.SIG'

Content type 'text/plain; charset=UTF-8' length 42 bytes

opened URL

downloaded 42 bytes

[1] 1 2 3 4 5 6 7 8 9 10

> dbFetch(fhRemote, "matrix")

trying URL 'http://www.biostat.jhsph.edu/˜seckel/remoteDBExample/data/matrix'

Content type 'text/plain; charset=UTF-8' length 97 bytes

10

http://biostats.bepress.com/jhubiostat/paper127



opened URL

downloaded 97 bytes

trying URL 'http://www.biostat.jhsph.edu/˜seckel/remoteDBExample/data/matrix.SIG'

Content type 'text/plain; charset=UTF-8' length 42 bytes

opened URL

downloaded 42 bytes

[,1] [,2] [,3] [,4]

[1,] 1 6 11 16

[2,] 2 7 12 17

[3,] 3 8 13 18

[4,] 4 9 14 19

[5,] 5 10 15 20

> dbFetch(fhRemote, "matrix")

[,1] [,2] [,3] [,4]

[1,] 1 6 11 16

[2,] 2 7 12 17

[3,] 3 8 13 18

[4,] 4 9 14 19

[5,] 5 10 15 20

As mentioned previously, the function dbSync allows a user to synchronize a local copy of a remote

database to the remote version of the database. Using the key = NULL option synchronizes all

data files in the local copy of the database, while specifying a vector of keys synchronizes only the

specified keys.

> dbSync(fhRemote, key = NULL)

> dbSync(fhRemote, key = c("matrix", "vector"))

11

Hosted by The Berkeley Electronic Press



6 Application: NMMAPS database

The National Morbidity, Mortality, and Air Pollution Study (NMMAPS) is a large multi-city time

series study of the short-term effects of ambient air pollution on health (Samet et al., 2000a,b; Peng

et al., 2005). The primary aims of the study were to develop methods for integrating national-level

databases for the purposes of assessing the health effects of air pollution. Another aim was to

disseminate the assembled datasets as well as software implementing the methodology developed.

To this end, the Internet-based Health and Air Pollution Surveillance System (iHAPSS) website was

created (http://www.ihapss.jhsph.edu/) to distribute the data, methods, and documentation.

Currently, the multi-city NMMAPS database of weather, air pollution, and mortality time series

data are available from the iHAPSS website in two formats. The first format consists of separate

city-specific comma-separated-value (CSV) files and is the most generic, suitable for reading into

almost any statistical package. The second format is specific to the R software system and is the

NMMAPSdata package (Peng and Welty, 2004). This R package combines all of the data into a

single bundle and provides a few functions for reading the data into R.

In practice, one may not be interested in purely reproducing the multi-city analyses of the

original NMMAPS study. Certain users may be interested in city-specific analyses or in pooling

results over a small number of cities in a region. For example, an official working in a local public

health office may be interested only in the air pollution health risks for his or her city. Such an

analysis may not depend on data from other cities. These users would therefore only require a

subset of the available data.

As an alternative to the NMMAPSdata package we have developed the NMMAPSlite package

which takes advantage of the functionality made available by the stashR package. This package,

when loaded, establishes a connection to three separate ‘remoteDB’ databases containing NMMAPS

data. The three databases are

• outcome: daily mortality counts for 108 U.S. cities spanning the years 1987–2000;

• exposure: daily time series of weather and air pollution variables;

• Meta: metadata for the NMMAPS cities and other information.

The data from each database is associated with a key that is derived from the name of the city.

The primary functions in the NMMAPSlite package for accessing the NMMAPS data are readCity,

getMetaData, listCities, and initDB. The readCity function in NMMAPSlite is used for

12

http://biostats.bepress.com/jhubiostat/paper127



reading the mortality, air pollution, and weather data from the exposure and outcome data-

bases. This function has one required argument, which is the abbreviated name of the cities.

A character vector of all the names available from the database can be obtained by calling the

listCities function. The readCity function fetches the outcome and exposure data and by

default, merges them together in to one data frame and returns it to the user. If the user sets the

option asDataFrame = FALSE, then a list of two data frames named “outcome” and “exposure”

is returned. In addition, there is an option to collapse the age categories of the mortality/outcome

data before merging it with the exposure data.

The getMetaData function can be used to obtain objects from the Meta database. Called with

default arguments, getMetaData returns a character vector with the names of the metadata ob-

jects that are available from the database. If getMetaData is passed a non-NULL name argument,

then it returns the object associated with that name from the Meta database.

Before any data can be downloaded after loading/attaching the package, one must first call

the initDB function to create the local directory where for caching the remote data. By default,

initDB creates a directory called “NMMAPS” in which it will cache local copies of the data. The

initDB function also initializes the ‘remoteDB’ class objects with the correct URLs of the databases.

> library(NMMAPSlite)

> initDB(basedir = "NMMAPS")

After initializing the database, one can access the data using the above-mentioned functions.

> listCities()[1:10]

> data <- readCity("akr")

> getMetaData()

Census data is available for each of the cities in the database and can be obtained by calling

getMetaData("census"). In addition, a short description of all of the variables available for

each city can be found by typing ?variables.

7 Discussion

7.1 Related R packages

The filehash package allows an individual to interactively access a (potentially quite large) dataset

through a key-value database located locally on the user’s disk. As stashR is an extension of

13

Hosted by The Berkeley Electronic Press



filehash, stashR is related to many of the large data handling packages mentioned in Peng (2006).

One such package is g.data by David Brahm (Brahm, 2002). One of the main ideas of filehash

and hence stashR is that by using keys to index the data, we can efficiently download only the

necessary data objects on an interactive level. The g.data package provides interfaces to delayed-

data packages (DDPS). DDPS efficiently accesses data by exploiting the lazy evaluation feature of R

to load the specified data into memory only once the data is requested. An individual can interface

with one of the common relational databases (Oracle, MySQL or SQLite) in R by using the S4

methods and generics in the DBI package created by the R Special Interest Group on Databases

(R-SIG-DB) (2006), along with ROracle, RMySQL or RSQLite respectively.

The reposTools package on Bioconductor by Gentry and Gentleman (2004), which mainly

serves to create and interfaced with repositories of R packages, has several features whose purposes

are similar to features of the stashR package. Briefly, the reposTools package allows a user post

the contents of a local directory to a server for distribution. While creating the remote repository,

resposTools adds files to the repository that contain information about the repository’s contents.

On the client side, reposTools allows users to access the packages or objects in the remote repos-

itory and download, install or update to the user’s specified local directory. The automatic library

management feature of reposTools keeps track of which R packages are installed on the user’s sys-

tem as well as the corresponding version numbers which facilitates the updating packages feature

of reposTools. Both the reposTools and stashR packages help an individual to create a remote

repository to distribute the contents to other R users, who are provided with specific methods to

interface with the remote repository. Both packages allow a user to download files from the remote

repository to a local repository and later to ‘synchronize’ or ‘update’ local copies of files or packages

to the remote version. Unlike reposTools, the stashR package contains the tools to construct local

repositories, but stashR does not yet automate the posting of this repository to a server as does

reposTools. The key difference between the two packages is that reposTools is intended for repos-

itories of R packages whereas stashR is designed for repositories of key-value databases which can

store arbitrary R data objects.

7.2 Extensions and future work

The stashR package has been designed as a tool for both authors and readers of statistical docu-

ments in the context of streamlining and enhancing reproducible research documents created, for

example, by using Sweave. There is a need for future work linking, on the producer’s end, the

14

http://biostats.bepress.com/jhubiostat/paper127



results of R code chunks of Sweave documents to a localDB database. This local database would

then need to be transferred in an automatic way as a remoteDB database to a repository on the

internet. Ideally, this internet repository would be a central database that all statistical researchers

could use, although individuals could alternatively choose to store their data on their own server.

On the consumer’s end, we need to develop a method for allowing a user to ‘click’ on a figure or

numerical result in a pdf document produced by Sweave and then have returned to them the R

objects (stored in the remoteDB database) used in the computation of their result of interest as

well as the R code chunk that operates on these objects. In this case, the R objects used in the

computation of each figure or numerical value would be indexed by a key that is the name of each

R code chunk in the Sweave document.

References

Brahm, D. E. (2002), “Delayed Data Packages,” R News, 2, 11–12.

Gentry, J. and Gentleman, R. (2004), reposTools: Repository tools for R, R package version 1.5.2.

Peng, R. D. (2006), “Interacting with data using the filehash package,” R News, 6, 19–24.

Peng, R. D., Dominici, F., Pastor-Barriuso, R., Zeger, S. L., and Samet, J. M. (2005), “Seasonal

Analyses of Air Pollution and Mortality in 100 US Cities,” American Journal of Epidemiology, 161,

585–594.

Peng, R. D. and Welty, L. J. (2004), “The NMMAPSdata Package,” R News, 4, 10–14.

R Special Interest Group on Databases (R-SIG-DB) (2006), DBI: R Database Interface, R package

version 0.1-10.

Samet, J. M., Zeger, S. L., Dominici, F., and et al. (2000a), The National Morbidity, Mortality, and

Air Pollution Study, Part I: Methods and Methodological Issues, Health Effects Institute, Cambridge

MA.

— (2000b), The National Morbidity, Mortality, and Air Pollution Study, Part II: Morbidity and Mor-

tality from Air Pollution in the United States, Health Effects Institute, Cambridge MA.

15

Hosted by The Berkeley Electronic Press


	12-20-2006
	INTERACTING WITH LOCAL AND REMOTE DATA RESPOSITORIES USING THE stashR PACKAGE
	Sandrah P. Eckel
	Roger Peng
	Suggested Citation



