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1 Introduction

This chapter is concerned with the analysis of data whose basic format is (xi, ti) : i =
1, ..., n where each xi denotes the location and ti the corresponding time of occurrence
of an event of interest. We shall assume that the data form a complete record of all
events which occur within a pre-specified spatial region A and a pre-specified time-
interval, (0, T ). We call a data-set of this kind a spatio-temporal point pattern, and
the underlying stochastic model for the data a spatio-temporal point process.

1.1 Motivating examples

1.1.1 Amacrine cells in the retina of a rabbit

One general approach to analysing spatio-temporal point process data is to extend
existing methods for purely spatial data by considering the time of occurrence as a
distinguishing feature, or mark, attached to each event. Before giving an examnple
of this, we give an even simpler example of a marked spatial point pattern, in which
the events are of just two qualitatively different types. Each event in Figure 1 rep-
resents the location of an amacrine cell in the retina of a rabbit. These cells play a
fundamental role in mammalian vision. One type transmits information when a light
goes on, the other type similarly transmits information when a light goes off. The
data consist of the locations of 152 on cells and 142 off cells in a rectangular region
of dimension 1060 by 662 µm.

The primary goal for the analysis of these data is to discriminate between two compet-
ing developmental hypotheses. The first hypothesis is that the pattern forms initially
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Figure 1: Amacrine cells in the retina of a rabbit. On and off cells are shown as
open and closed circles, respectively. The rectangular region on which the cells are
observed has dimension 1060 by 662 µm.

in two separate layers, corresponding to their pre-determined functionality, the sec-
ond that the pattern forms initially in a single, undifferentiated layer with function
determined at a later developmental stage. One way to formalise this in statistical
terms is to ask whether the two component patterns are statistically independent.
Approximate independence would favour the first hypothesis. As we shall discuss
in Section 2, this statement is a slight over-simplification but it provides a sensible
starting point for an analysis of the data.

Our description and later analysis of these data is based on material in Diggle, Eglen
and Troy (2005). For a general discussion of the biological background, see Hughes
(1985)

1.1.2 Bovine tuberculosis in Cornwall, UK

Our second example concerns the spatio-temporal distribution of reported cases of
bovine tuberculosis (BTB) in the county of Cornwall, UK, over the years 1991 to
2002. Individual cases are identified from annual inspections of farm-herds, hence the
effective time-resolution of the data is one year.

The prevalence of BTB has been increasing during the twelve-year period covered by
the data, but the observed annual counts exaggerate this effect because the scale of
the annual inspection programme has also increased. Each recorded case is classified
genetically, using the method of spoligotyping (Durr, Hewinson and Clifton-Hadley,
2000). The main scientific interest in these data lies not so much in the overall spatio-
temporal distribution of the disease, but rather in the degree of spatial segregation
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Figure 2: Spatial distributions of the four most common spoligotype data over the
fourteen years.

amongst the different spoligotypes, and whether this spatial segregation is or is not
stable over time. If the predominant mode of transmission is through local cross-
infection, we might expect to find a stable pattern of spatial segregation, in which
locally predominant spoligotypes persist over time, whereas if the disease is spread
primarily by the introduction of animals from remote locations which are bought and
sold at market, the resulting pattern of spatial segregation should be less stable over
time (Diggle, Zheng and Durr, 2005).

Figure 2 shows the spatial distributions of cases corresponding to each of the four most
common spoligotypes. The visual impression is one of strong spatial segregation, with
each of the four types predominating in particular sub-regions.
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Figure 3: Locations of 7167 incident cases of non-specific gastroenteric disease in
Hampshire, 1 January 2001 to 31 December 2002.

1.1.3 Gastroenteric disease in Hampshire, UK

Our third example concerns the spatio-temporal distribution of gastroenteric disease
in the county of Hampshire, UK, over the years 2001 and 2002. The data are derived
from calls to NHS Direct, a 24-hour, 7-day phone-in service operating within the UK’s
National Health Service. Each call to NHS Direct generates a data-record which
includes the caller’s post-code, the date of the call and a symptom code (Cooper,
Smith, O’Brien, Hollyoak and Baker, 2003). Figure 3 shows the locations of the 7167
calls from patients resident in Hampshire whose assigned symptom code corresponded
to acute, non-specific gastroenteric disease. The spatial distribution of cases largely
reflects that of the population of Hampshire, with strong concentrations in the large
cities of Southampton and Portsmouth, and smaller concentrations in other towns and
villages. Inspection of a dynamic display of the space-time coordinates of the cases
suggests the kind of pattern typical of an endemic disease, in which cases can occur
at any point in the study region at any time during the two-year period. Occasional
outbreaks of gastroenteric disease, which arise as a result of multiple infections from
a common source, should result in anomalous, spatially and temporally localised
concentrations of cases.

The data were collected as part of the AEGISS project (Diggle, Knorr-Held, Rowling-
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son, Su, Hawtin and Bryant, 2003), whose overall aim was to improve the timeliness
of the disease surveillance systems currently used in the UK. The specific statisti-
cal aims for the analysis of the data are to establish the normal pattern of spatial
and temporal variation in the distribution of reported cases, and hence to develop
a method of real-time surveillance to identify as quickly as possible any anomalous
incidence patterns which might signal the onset of an outbreak requiring some form
of public health intervention.

1.1.4 The UK 2001 epidemic of foot-and-mouth disease

Foot-and-mouth disease (FMD) is a highly infectious viral disease of farm livestock.
The virus can be spread directly between animals over short distances in contaminated
airborne droplets, and indirectly over longer distances, for example via the movement
of contaminated material. The UK experienced a major FMD epidemic in 2001,
which resulted in the slaughter of more than 6 million animals. Its estimated total
cost to the UK economy was around £8 billion (UK National Audit Office, 2002).
The epidemic affected 44 counties, and was particularly severe in the counties of
Cumbria, in the north-west of England, and Devon, in the south-west. Figure 4
shows the spatial distributions of all farms in Cumbria and Devon which were at-
risk at the start of the epidemic, and of the farms which experienced the disease.
In sharp contrast to the data on gastroenteric disease in Hampshire, the case-farms
are strongly concentrated in sub-regions within each of the two counties. Dynamic
plotting of the space-time locations of case-farms confirms the typical pattern of
a highly infectious, epidemic disease. The predominant pattern is of transmission
between near-neighbouring farms, but there are also a few, apparently spontaneous
outbreaks of the disease far from any previously infected farms.

The main control strategies used during the epidemic involved the pre-emptive slaugh-
ter of animal-holdings at farms thought to be at high risk of acquiring, and subse-
quently spreading, the disease. Factors which could affect whether a farm is at high
risk include, most obviously, its proximity to infected farms, but also recorded char-
acteristics such as the size and species composition of its holding. One objective in
analysing these data is to formulate and fit a model for the dynamics of the disease
which incorporates these effects. A model of this kind could then provide information
on what forms of control strategy would be likely to prove effective in any future
epidemic.

1.2 Chapter outline

In Section 2, we give a brief review of statistical methods for spatial point patterns,
illustrated by an analysis of the amacrine cell data shown in Figure 1. We refer
the reader to Diggle (2003) or Moller and Waagepetersen (2004) for more detailed
accounts of the methodology, and to Diggle, Eglen and Troy (2005) for a full account
of the data-analysis.
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Figure 4: Locations of at-risk farms (black) and FMD-case farms (red) in Cumbria
(left-hand panel) and in Devon (right-hand panel).

In Section 3, we discuss strategies for analysing spatio-temporal point process data.
We argue that an important distinction in practice is between data for which the
individual events (xi, ti) occur in a space-time continuum, and data for which the
time-scale is either naturally discrete, or is made so by recording only the aggregate
spatial pattern of events over a sequence of discrete time-periods. Our motivating
examples include instances of each of these scenarios. Other scenarios which we do
not consider further are when the locations are coarsely discretised by assigning each
event to one of a number of sub-regions which form a partition of A. Methods for the
analysis of spatially discrete data are typically based on Markov random field models.
An early, classic reference is Besag (1974). Book-length treatments include Cressie
(1991), Banerjee, Carlin and Gelfand (2003) and Rue and Held (2005).

In later sections, we describe some of the available models and methods through their
application to our motivating examples. This emphasis on specific examples is to
some extent a reflection of the author’s opinion that generic methods for analysing
spatio-temporal data-sets have not yet become well-established; certainly, they are
less well established than is the case for purely spatial data. Nevertheless, in the
final section of the chapter we will attempt to draw some general conclusions which
go beyond the specific examples considered, and can in that sense be regarded as
pointers towards an emerging general methodology.
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2 Statistical methods for spatial point processes

2.1 Descriptors of pattern: spatial regularity, complete spa-

tial randomness and spatial aggregation

A convenient, and conventional, starting point for the analysis of a spatial point
pattern is to apply one or more tests of the hypothesis of complete spatial randomness
(CSR), under which the data are a realisation of a homogeneous Poisson process. A
homogeneous Poisson process is a point process which satisfies two conditions: the
number of events in any planar region A follows a Poisson distribution with mean
λ|A|, where | · | denotes area and the constant λ is the intensity, or mean number of
events per unit area; and the numbers of events in disjoint regions are independent.
It follows that, conditonal on the number of events in any region A, the locations
of the events form an independent random sample from the uniform distribution on
A (see, for example, Diggle, 2003, Section 4.4). Hence, CSR embraces two quite
different properties: a uniform marginal distribution of events over the region A; and
independence of events. We emphasise that this is only a starting point, and that
the hypothesis of CSR is rarely of any scientific interest. Rather, CSR is a dividing
hypothesis (Cox, 1977), a test of which leads to a qualitative classification of an
observed pattern as regular, approximately random or aggregated.

We do not attempt a precise mathematical definition of the descriptions “regular”
and “aggregated.” Roughly speaking, a regular pattern is one in which events are
more evenly spaced throughout A than would be expected under CSR, and typically
arises through some form of inhibitory dependence between events. Conversely, an
aggregated pattern is one in which events tend to occur in closely spaced groups.
Patterns of this type can arise as a consequence of marginal non-uniformity or a form
of attractive dependence, or both. In general, as shown by Bartlett (1964), it is not
possible to distinguish empirically between underlying hypotheses of non-uniformity
and dependence, using the information presented by a single observed pattern. Figure
5 shows an example of a regular, a completely random and an aggregated spatial point
pattern. The contrasts amongst the three are clear.

2.2 Functional summary statistics

Tests of CSR which are constructed from functional summary statistics of an observed
pattern are useful for two reasons: when CSR is conclusively rejected, their behaviour
gives clues as to the kind of model which might provide a reasonable fit to the data;
and they may suggest preliminary estimates of model parameters. Two widely used
ways of constructing functional summaries are through nearest neighbour and second-
moment properties. Third and higher-order moment summaries are easily defined,
but appear to be rarely (possibly too rarely) used in data-analysis; an exception
is Peebles and Groth (1975). They do feature more prominently in the theoretical
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Figure 5: Examples of a regular (upper-left panel), a completely random (upper-right
panel)and an aggregated (lower panel) spatial point pattern.

analysis of ecological models, as discussed elsewhere in this volume, and undoubtedly
offer potential insights which are not captured by second-moment properties.

Two nearest neighbour summaries are the distribution functions of X, the distance
from an arbitrary origin of measurement to the nearest event of the process, and of
Y , the distance from an arbitrary event of the process to the nearest other event.
We denote these by F (x) and G(y), respectively. The empirical counterpart of F (x)
typically uses the distances, di say, from each of m points in a regular lattice arrange-
ment to the nearest event, leading to the estimate F̃ (x) = m−1 ∑

I(di ≤ x) where
I(·) is the indicator function. Similarly, if ei is the distance from each of n events
to its nearest neighbour, then G̃(y) = n−1 ∑

I(ei ≤ y). Edge-corrected versions of
these simple estimators are sometimes preferred, and are necessary if we wish to com-
pare empirical estimates with the corresponding theoretical properties of a stationary
point process.

Derivations, and further discussion, of results in the remainder of this Section can be
found, for example, in Diggle (2003, Chapter 4).

Under CSR, F (x) = G(x) = 1 − exp(−λπx2), where λ is the intensity, or mean
number of events per unit area. Typically, in a regular pattern G(x) < F (x), whereas
in an aggregated pattern G(x) > F (x).

To describe the second-moment properties of a spatial point process, we need some
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additional notation. Let dx denote an infinitesimal neighbourhood of the point x,
and N(dx) the number of events in dx. Then, the intensity function of the process is

λ(x) = lim
|dx|→0

{

E[N(dx)]

|dx|

}

.

Similarly, the second-moment intensity function is

λ2(x, y) = lim
|dx|→0
|dy|→0

{

E[N(dx)N(dy)]

|dx||dy|

}

and the covariance density is

γ(x, y) = λ2(x, y) − λ(x)λ(y).

The process is stationary and isotropic if its statistical properties do not change under
translation and rotation, respectively. If we now assume that the process is stationary
and isotropic, the intensity function reduces to a constant, λ, equal to the expected
number of events per unit area. Also, the second-moment intensity reduces to a
function of distance, λ2(x, y) = λ2(r) where r = ||x − y|| is the distance between x
and y, and the covariance density is γ(r) = λ2(r)−λ2. In this case, the scaled quantity
ρ(r) = λ2(r)/λ

2 is called, somewhat misleadingly, the pair correlation function. For
a homogeneous Poisson process, g(r) = 1 for all r.

A more tangible interpretation of the pair correlation function is obtained if we in-
tegrate over a disc of radius s. This gives the reduced second-moment measure, or
K-function,

K(s) = 2π
∫ s

0
ρ(r)rdr. (1)

Ripley (1976, 1977) introduced the K-function as a tool for data-analysis. One of its
advantages over the pair correlation function is that it can be interpreted as a scaled
expectation of an observable quantity. Specifically, let E(s) denote the expected
number of further events within distance s of an arbitrary event. Then,

K(s) = λ−1E(s). (2)

The result (2) leads to several useful insights. Firstly, it suggests a method of estimat-
ing K(s) directly by the method of moments, without the need for any smoothing;
this is especially useful for relatively small data-sets. Secondly, it explains why K(s)
is a good descriptor of spatial pattern. For a completely random pattern, events are
positioned independently, hence E(s) = λπs2 and K(s) = πs2. This gives a bench-
mark against which to assess departures from CSR. For aggregated patterns, K(s)
is relatively large at small distances s because each event typically forms part of a
“cluster” of mutually close events. Conversely, for regular patterns K(s) is relatively
small at small distances s because each event tends to be surrounded by empty space.
Another useful property is that K(s) is invariant to random thinning, i.e. retention
or deletion of events according to a series of independent Bernoulli trials. This follows

9
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(Poisson process, solid line) and an aggregated or clustered (dotted line) point pattern.

immediately from (2), which expresses K(s) as the ratio of two quantities, both of
which vary by the same constant of proportionality under random thinning.

We use the following edge-corrected method of moments estimator proposed originally
by Ripley (1976, 1977). For data xi ∈ A : i = 1, ..., n, a natural estimator for E(s) is

Ẽ(s) = n−1
n

∑

i=1

∑

j 6=i

I(rij ≤ s), (3)

where rij = ||xi − xj||. Except for very small values of s, this estimator suffers from
substantial negative bias because events outside A are not recorded in the data. A
remedy is to replace the simple count in (3) by a sum of weights wij, where w−1

ij is
the proportion of the circumference of the circle with centre xi and radius rij which
lies within A. Finally, we estimate λ by (n− 1)/|A| where |A| denotes the area of A,
to give

K̂(s) = |A|{n(n − 1)}−1
n

∑

i=1

∑

j 6=i

wijI(rij ≤ s). (4)

Ripley used n/|A| to estimate λ. Our preference for (n− 1)/|A| has a slightly arcane
theoretical justification which is discussed in Chetwynd and Diggle (1998), but is
clearly of no great consequence when n is large.

Figure 6 shows estimates K̂(s) − πs2 for each of the three point patterns shown in
Figure 5. Subtraction of the CSR benchmark, K(s) = πs2, emphasises departures
from CSR, in effect acting as a magnifying glass applied to the estimate K̂(s).

Multivariate extensions of the K-function and its estimator were proposed by Lotwick
and Silverman (1982). For a stationary, isotropic process let λj : j = 1, ..., m denote
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the intensity of type j events. Define functions Kij(s) = λ−1
j Eij(s), where Eij(s)

is the expected number of further type j events within distance s of an arbitrary
type i event. Note that Kij(s) = Kji(s). Although this equality is not obvious
from the above definitions, it follows immediately from the multivariate analogue
of our earlier definition (1) of K(s) as an integrated version of the pair correlation
function. However, direct extension of (4) to the multivariate case leads to two
different estimates K̃ij(s) and K̃ji(s) which, following Lotwick and Silverman (1982),
we can combine to give the single estimate

K̂ij(s) = {niK̃ij(s) + njK̃ji(s)}/(ni + nj). (5)

Two useful benchmark results for multivariate K-functions are:

(i) if type i and type j events form independent processes, then Kij(s) = πs2;

(ii) if type i and type j events form a random labelling of a univariate process with
K-function K(s), then Kii(s) = Kjj(s) = Kij(s) = K(s).

2.3 Functional summary statistics for the amacrines data

Figure 7 shows estimates K̂ij(s)− πs2 for the amacrine cell data. Our interpretation

of the three estimates is as follows. Firstly, the near-equality of K̂11(s) and K̂22(s)
suggests that the underlying biological process may be the same for both types of cell.
Informally, the difference between K̂11(s) and K̂22(s) gives an upper bound to the size
of the sampling fluctuations in the estimates. Secondly, both estimates show a strong
inhibitory effect, with no two cells of the same type occurring within a distance of
around 30µm. Thirdly, the estimate K̂12(s) fluctuates around a value close to zero
at small distances s, suggesting that the two components patterns are approximately
independent. More specifically, K̂12(s) does not show the strong inhibitory effect
exhibited by both K̂11(s) and K̂22(s).

Collectively, these results are consistent with the first of the two developmental hy-
potheses for these data, namely that the component patterns of on and off cells form
initially in two separate layers which later fuse to form the mature retina. Specifically,
the separate layer hypothesis would imply statistical independence between the two
component patterns, hence K12(s) = πs2. In fact, as we discuss below, the component
patterns cannot strictly be independent because of the physical space required by each
cell body. The data are clearly not compatible with random labelling of an initially
undifferentiated pattern, as this would require all three estimated K-functions to be
equal to within sampling variation. Furthermore, it is difficult to imagine how any bi-
ologically plausible labelling process could preserve strict inhibition between any two
cells of the same type without imposing a similar constraint on two cells of opposite
type. Hence, the analysis summarised in Figure 7 strongly favours the separate layer
hypothesis.
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Figure 7: Estimates of the K-functions for the amacrine cell data. Each plotted
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line to K̂22(s) (off cells) and the solid line to K̂12(s). The parabola −πs2 is also shown
as a solid line.

2.4 Likelihood-based methods

Classical maximum likelihood estimation is straightforward for Poisson processes, but
notoriously intractable for other point process models. Two more tractable alterna-
tives are maximum pseudo-likelihood and Monte Carlo maximum likelihood. Both
are particularly well-suited to estimation in a class of models known as pairwise in-
teraction point processes, and it is this context that we discuss them here.

A third variant of likelihood-based estimation uses a partial likelihood. This method
is best known in the context of survival analysis (Cox, 1972, 1975). We describe its
adaptation to spatio-temporal point processes in Section 3.2.2.

2.4.1 Pairwise interaction point processes

Pairwise interaction processes form a sub-class of Markov point processes (Ripley and
Kelly, 1977). They are defined by their likelihood ratio, f(·), with respect to a Poisson
process of unit intensity. Hence, if χ = {x1, ..., xn} denotes a configuration of n points
in a spatial region A, then f(χ) measures in an intuitive sense how much more likely
is the configuration χ than it would be as a realisation of a Poisson process of unit
intensity. For a pairwise interaction process, we need to specify a parameter β wich
governs the mean number of events per unit area and an interaction function h(r),
where r denotes distance. Intuitively, h(r) is related to the likelihood that the model
will generate pairs of events separated by a distance r, in the sense that the likeklihood
for a particular configuration of events depends on the product of h(||xi − xj||) over
all distinct pairs of events. Hence, for example, a value h(r) = 0 for all r < δ would
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imply that no two events can be separated by a distance less than δ. The likelihood
ratio f(χ) for the resulting pairwise interaction point process is

f(χ) = c(β, h)βn
∏

j<i

h(||xi − xj||), (6)

where c(β, h) is a normalising constant which is generally intractable. Note that in a
homogeneous Poisson process, the number of points in A follows a Poisson distribution
with mean proportional to |A| and, conditional on the number of points in A, their
locations form an independent random sample from the uniform distribution on A. It
follows that a homogeneous Poisson process is a special case of a pairwise interaction
process in which h(u) = 1 for all u, and β is the intensity. More generally, in (6)
the parameter β is related to, but not necessarily equal to, the intensity. Provided
that the specified form of h(·) is legitimate, values of h(r) less than or greater than 1
correspond to processes which generate regular or aggregated patterns, respectively.

A sufficient condition for legitimacy is that h(r) ≤ 1 for all r, as this guarantees a
finite intensity for the resulting point process. It also leads to point patterns whose
character is inhibitory, meaning that close pairs of events are relatively unlikely by
comparison with a Poisson process of the same intensity. Pairwise interaction point
process of this kind are widely used for modelling regular spatial point patterns.

Specifications in which h(u) > 1 are more problematic. An intuitive explanation
for this is that if, over a range of distances r, the interaction function takes values
h(r) ≥ h0, where h0 > 1, then the product term on the right hand side of (6) can

be as large as h
n(n−1)/2
0 , and this cannot be balanced by adjusting the value of β in

(6). Hence, the likelihood increases without limit as n → ∞. This perhaps explains
why, even if we are prepared to consider n as fixed, pairwise interaction processes with
h(r) > 1 tend to generate unrealistically strong spatial aggregation,with large clusters
of near-coincident events. For a rigorous discussion of the properties of pairwise
interaction processes with h(r) > 1, see Gates and Westcott (1986).

2.4.2 Maximum pseudo-likelihood

The method of maximum pseudo-likelihood was originally proposed by Besag (1975,
1978) as a method for real-valued, spatially discrete processes. Besag et al (1982)
derived a point process version by considering a limit of binary-valued processes on
a lattice, as the lattice spacing tends to zero. For a finite-dimensional probability
distribution, the pseudo-likelihood is the product of the full conditional distributions,
i.e. the conditional distributions of each Yi given the values of all other Yj. Hence, if
Y = (Y1, ..., Yn) has joint probability density f(y), then the pseudo-likelihood is, in
an obvious notation,

∏n
i=1 f(yi|yj, j 6= i).

For a point process, the pseudo-likelihood uses conditional intensities in place of
the full conditional distributions. In particular, for a Markov point process with
likelihood ratio f(·), the conditional intensity for an arbitrary point u given the
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observed configuration X on A − {u} is

λ(u; X) =

{

f(X ∪ {u})/f(X) : u /∈ X
f(X)/f(X − {u}) : u ∈ X

and the log-pseudo-likelihood is

n
∑

i=1

log λ(xi; X) −
∫

A
λ(u; X)du.

2.4.3 Monte Carlo maximum likelihood

Monte Carlo maximum likelihood estimation, as described here, was proposed by
Geyer and Thompson (1992). Geyer (1999) and Moller and Waagepetersen (2004)
discuss the method in the context of point process models including, but not restricted
to, pairwise interaction point processes.

Conditional on the number of events in a specified region A, the likelihood for a
pairwise interaction point process can be written in principle as

`(θ) = c(θ)f(X; θ), (7)

where X = {x1, ..., xn} is the observed configuration of the n events in A. For most
models of interest, the normalising constant c(θ) in (7) is intractable. However, note
that

c(θ)−1 =
∫

X
f(X; θ)dX

=
∫

X
f(X; θ) ×

c(θ0)

c(θ0)
×

f(X; θ0)

f(X; θ0)
,

for any value of θ0. If we now define r(X; θ, θ0) = f(X; θ)/f(X; θ0) then we can write

c(θ)−1 = c(θ0)
−1

∫

X
r(X; θ, θ0)c(θ0)f(X; θ)dX

= c(θ0)
−1Eθ0

[r(X; θ, θ0)]dX,

where Eθ0
[·] denotes expectation with respect to the distribution of X when θ = θ0.

This in turn allows us to re-express the likelihood (7) as

`(θ) = c(θ0)f(X; θ)/Eθ0
[r(X; θ, θ0)]. (8)

It follows from (8) that for any fixed value θ0, the maximum likelihood estimator θ̂
maximises

Lθ0
(θ) = log f(X; θ) − log Eθ0

[r(X; θ, θ0)]. (9)

Now, choose any value θ0, simulate realisations Xj : j = 1, ..., s with θ = θ0 and define

Lθ0,s(θ) = log f(X; θ) − log s−1
s

∑

j=1

[r(Xj; θ, θ0)]. (10)
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Then, the value θ̂MC which maximises (10) is a Monte Carlo maximum likelihood
estimator (MCMLE) for θ. Note the indefinite article. A Monte Carlo log-likelihood
Lθ0,s(θ) is typically a smooth function of θ and can easily be maximised numerically,
but it is also a function of θ0, s and the simulated realisations Xj. In practice, we
would want to choose s sufficiently large that the Monte Carlo variation introduced
by using a sample average in place of the expectation on the right-hand side of (9) is
negligible. However, for given s the behaviour of the MCMLE is critically dependent
on the choice of θ0, the ideal being to choose θ0 equal to θ̂ in which case the Monte
Carlo variation in (10) is zero at θ = θ̂. More generally, obtaining a sufficiently
accurate Monte Carlo approximation to the intractable expectation in (9) raises a
number of practical issues which, in the author’s experience, make it difficult to
automate the procedure.

2.5 Bivariate pairwise interaction point processes

The family of pairwise interaction point processes can readily be extended to the
multivariate case by specifying a set of interaction functions, one for each possible
pair of types of event. In the bivariate case, and again treating the numbers of events
of each type as fixed, we denote the data by a pair of configurations, X1 = {x1i : i =
1, ..., n1} and X2 = {x2i : i = 1, ..., n2}.

In a bivariate pairwise interaction process, the joint density for X1 and X2 is f(X1, X2) ∝
P11P22P12, where

P11 =
n1
∏

i=2

i−1
∏

j=1

h11(||x1i − x1j||),

P22 =
n2
∏

i=2

i−1
∏

j=1

h22(||x2i − x2j||)

and

P12 =
n1
∏

i=1

n2
∏

j=1

h12(||x1i − x2j ||).

As in the univariate case, a sufficient condition for the legitimacy of the model is that
0 ≤ hij(r) ≤ 1 for all r. However, and in contrast to the univariate case, a model
of this kind can easily generate spatially aggregated component patterns. Figure 8
shows an example from Diggle, Eglen and Troy (2005), in which marginal aggregation
is induced by specifying a strongly inhibitory interaction between events of opposite
type.

2.6 Likelihood-based analysis of the amacrine cell data

The analysis in Section 2.3 suggested that a suitable model for the amacrine data
might be a bivariate pairwise interaction process with strongly inhibitory marginal
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Figure 8: Simulated realisations of bivariate pairwise interaction point processes each
with 50 events of either type on the unit square and simple inhibitory interaction
functions. In both panels, the minimum permissible distance between any two events
of the same type is 0.025. In the left-hand panel, the two component patterns are
independent. In the right-hand panel, the minimum permissible distance between
any two events of opposite types is 0.1.

properties and approximate independence between the two components.

Our first stage in fitting a model of this kind is to use maximum pseudo-likelihood
estimation in conjunction with a piece-wise constant specification of h(u) to identify
a candidate model for the interaction within each component pattern. We then use
Monte Carlo maximum likelihood to fit a suitable parametric model to each compo-
nent. Figure 9 shows the result, together with a Monte Carlo maximum likelihood
estimate using the parametric model

h(u; θ) =

{

0 : u ≤ δ
1 − exp[−{(u − δ)/φ}α] : u > δ

. (11)

The fit adopts common parameter values for the two types of cell, on the basis of
a Monte Carlo likelihood ratio test under the assumption that the two component
processes are independent; for details, see Diggle, Eglen and Troy (2005). In fitting
the parametric model, we used a fixed value δ = 10µm, representing the approximate
physical size of each cell body, and estimated the remaining parameters as φ̂ = 49.08
and α̂ = 2.92.

For the bivariate analysis, we use the same parametric form (11) for the three inter-
action functions h11(r), h22(r) and h12(r). For φ tending to zero, the model for h12(r)
reduces to a simple inhibitory form, h12(r) = 0 for r < δ12 and h12(r) = 1 otherwise,
with independence of the two components as the special case δ12 = 0. Independence
is strictly impossible because no two cells can occupy the same location, but it is
reasonable to treat δ12 as a parameter to be estimated because the two types of cell
are located at slightly different depths within the retina. Diggle, Eglen and Troy
(2005) conclude that a bivariate model with a simple inhibitory h12(r) and δ̂12 = 4.9
gives a reasonable fit to the data.
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Figure 9: Non-parametric maximum pseudo-likelihood estimates of the pairwise in-
teraction functions for on cells (solid line) and for off cells (dashed line), together
with parametric fit assuming common parameter values for both types of cell (dotted
line).

3 Strategies for the analysis of spatio-temporal point

patterns

Many of the tools used to analyse spatial point process data can be extended to the
spatio-temporal setting. Functional summaries based on low-order moments can be
extended in the obvious way by considering configurations of events at specified spa-
tial and temporal positions. For example, Diggle, Chetwynd, Haggkvist and Morris
(1995) defined a spatio-temporal K-function K(s, t) such that λK(s, t) is the ex-
pected number of further events within distance s and time t of an arbitrary event
of the process. Bhopal, Diggle and Rowlingson (1992) used an estimate of K(s, t) to
analyse the spatio-temporal distribution of apparently sporadic cases of legionnaire’s
disease. However, the spatio-temporal setting opens up other modelling and analysis
strategies which take more explicit account of the directional character of time, and
the consequently richer opportunities for scientific inference.

3.1 Strategies for discrete-time data

As noted earlier, discrete-time spatio-temporal point process data can arise in two
ways; either the underlying process genuinely operates in discrete-time, or an un-
derlying continuous-time process is observed at a discrete sequence of time-points.
A hypothetical example of the former would be the yearly sequence of spatial point
distributions formed by the natural regeneration of an annual plant community. The
Cornwall BTB data described in Section 1.1.2 are an example of the latter.
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3.1.1 Transition models

For genuinely discrete-time processes, a natural strategy is to build a transition model
to describe the changes between successive times. In symbolic notation, if Pt denotes
the spatial point process at time t a transition model for the joint distribution of
P = {P1,P2, ..,Pt} takes the form

[P] = [P1][P2|P1]...[Pt|Pt−1, ...P1] (12)

A convenient working assumption would be that the process is Markov in time, and
this may have some mechanistic justification when times correspond to successive
generations, as in our hypothetical example.

3.1.2 A transition model for spatial aggregation

A standard example of a spatial point process model which leads to spatially ag-
gregated patterns is a Neyman-Scott clustering process (Neyman and Scott, 1958),
defined as follows. Parent events form a homogeneous Poisson process with intensity
ρ events per unit area. The parents then generate numbers of offspring as an inde-
pendent random sample from the Poisson distribution with mean µ. The positions
of the offspring relative to their parents are an independent random sample from
the bivariate Normal distribution with mean zero and variance matrix σ2I, where
I denotes the identity matrix. The observed point pattern is then taken to be the
superposition of the offspring from all parents.

An obvious way to turn the Neyman-Scott process into a transition model is to let
the offspring of one generation become the parents for the next generation. Kingman
(1977) discusses a model of this kind in questioning whether the basic Neyman-Scott
formulation can arise as the equilibrium distribution of a spatio-temporal process.
Note in particular that the spatio-temporal process defined in this way may die out
after a finite number of generations. Figure 10 shows the result of a simulation on the
unit square with periodic boundary conditions, i.e. events are generated on a torus,
which is then unwrapped to form the unit square region A. The model parameters are
ρ = 100, σ = 0.025 and µ = 1. Setting µ = 1 implies that the mean number of events
in each generation is ρ, but with a variance which increases from one generation to
the next; if Nt denotes the number of events in the tth generation, then E[Nt] = ρ
for all t and Var(Nt) = tρ.

The simulation shows how the spatial aggregation in the resulting patterns tends
to increase with successive generations, although it is not clear that this informal
description can be expressed rigorously, not least because on any finite region the
process is certain eventually to become extinct.
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Figure 10: Simulated realisation of a transition model for spatial aggregation.The first
row shows the first three generations of the process, stating from a completely random
spatial distribution. The second row shows the 50th, 70th and 90th generations.

3.1.3 Marked point process models

When time is artificially discrete as a consequence of the data-recording process, a
principled approach would be to formulate a continuous-time model and to deduce
from the model the statistical properties of the observed, discrete-time data. A more
pragmatic strategy is to analyse the data as a marked spatial point process, treat-
ing time as an ordered categorical mark attached to the spatial location of each
event. From this point of view, methods for the analysis of multivariate spatial point
processes, which are marked point processes with categorical marks, can be applied
directly and the discussion of multivariate point processes in Section 2 is relevant.
However, the way in which the results of any such analysis are interpreted should, so
far as is possible, take account of the natural ordering of time.

This pragmatic strategy is unlikely to deliver a model with a direct, mechanistic
interpretation, but is a useful approach for descriptive analysis. In Section 4 we
illustrate the approach with an analysis of the Cornwall BTB data, as reported in
Diggle, Zheng and Durr (2005).

3.2 Analysis strategies for continuous-time data

Even when continuous-time data are available, we shall preserve a distinction between
empirical and mechanistic modelling. An empirical model aspires to provide a good

19

Hosted by The Berkeley Electronic Press



descriptive fit to the data, but does not necessarily admit a context-specific scientific
interpretation. A mechanistic model is more ambitious, embodying features which
relate directly to the underlying science. To some extent, this is a false dichotomy. On
the one hand, a good empirical model will include parameters which are interpretable
in ways relevant to the scientific context and, minimally, should furnish an answer to
a scientifically interesting question. On the other hand, even a mechanistic model will
be at best an idealised, and quite possibly a crude, approximation to the truth. From
a statistical perspective, a simple but well-identified model may be more valuable
than an over-complicated model incorporating more parameters than can reasonably
be estimated from the available data.

3.2.1 Empirical modelling: log-Gaussian spatio-temporal Cox processes

A Cox process, introduced in one time-dimension by Cox (1955), is a Poisson process
with a varying intensity which is itself a stochastic process. For our purposes, we
need a model for a non-negative valued spatio-temporal stochastic process Λ(x, t).
Then, conditionally on Λ(x, t) our point process is a Poisson process with intensity
Λ(x, t). This implies that, again conditionally on Λ(x, t), the number of events in any
spatio-temporal region, say A × (0, T ), is Poisson-distributed with mean

µA,T =
∫ T

0

∫

A
Λ(x, t)dxdt

and the locations and times of the events are an independent random sample from
the distribution on A × (0, T ) with probability density proportional to Λ(x, t).

By far the most tractable class of real-valued spatio-temporal stochastic processes is
the Gaussian process, S(x, t) say, for which the joint distribution of S(xi, ti) for any set
of points (xi, ti) is multivariate Normal. A log-Gaussian Cox process is Cox process
whose intensity is of the form Λ(x, t) = exp{S(x, t)}, where S(x, t) is a Gaussian
process (Moller, Syversveen and Waagepetersen, 1998).

The properties of a log-Gaussian Cox process are determined by the mean and co-
variance structure of S(x, t). Note firstly that any spatial and/or temporal variation
in the mean of S(x, t) translates into a multiplicative, deterministic component to
Λ(x, t), hence we can always re-express our model as Λ(x, t) = λ(x, t) exp{S(x, t)}
where the mean of S(x, t) is a constant. In the stationary case, a convenient pa-
rameterisation is to set E[S(x, t)] = −0.5σ2, where σ2 = Var{S(x, t)}. This gives
E[exp{S(x, t)}] = 1, hence λ(x, t) is the unconditional space-time intensity, or mean
number of events per unit time per unit area in an infinitesimal neighbourhood of the
point (x, t). In the remainder of this Section, we assume that λ(x, t) = 1 and focus
on the specification of the stochastic component exp{S(x, t)}.

In general, if S(x, t) has mean −0.5σ2 and covariance function

Cov{S(x, t), S(x′, t′) = σ2ρ(x, x′, t, t′)
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then the covariance function of exp{S(x, t)} is

γ(x, x′, t, t′) = exp{σ2ρ(x, x′, t, t′)} − 1,

and γ(·) is also the covariance density of the Cox process (see Brix and Diggle,
2001, but note also the correction in Brix and Diggle, 2003). In the stationary case,
γ(x, x′, t, t′) = γ(u, v), where u = ||x − x′|| and v = |t − t′|.

Brix and Moller (2001) consider a sub-class of spatio-temporal log-Gaussian Cox
processes in which S(x, t) = S(x) + g(t) where g(t) is a deterministic function. One
interpretation of this sub-class is that S(x) represents spatial environmental variation
which does not vary over time, and exp{g(t)} represents a time-varying birth-rate for
new events. A natural extension would be to replace g(t) by a stationary stochastic
process G(t), which would give an additive decomposition of the correlation function
of S(x, t) as

ρ(u, v) = {σS
SρS(u) + σ2

GρG(v)}/(σ2
S + σ2

G).

Brix and Diggle (2001) develop an approach to spatio-temporal prediction using a
separable spatio-temporal correlation function

ρ(u, v) = r(u) exp(−v/β). (13)

In (13), r(u) is any valid spatial correlation function, whilst the exponential term
reflects the underlying Markov-in-time structure of the model for S(x, t), which they
derive as follows.

First, consider a discretisation of continuous two-dimensional space into a fine grid,
say of size M by N , and write St for the MN -element vector of values of S(x, t) at
the grid-points. Now, assume that St evolves over time according to the stochastic
differential equation

dSt = (A − BSt)dt + dUt (14)

where A is an MN -element vector, B is a non-singular MN ×MN matrix and Ut is a
discrete-space approximation of spatial Brownian motion. In the stationary case, (14)
corresponds to a Gaussian process S(x, t) with spatio-temporal covariance structure

Cov{S(x, t), S(x − u, t − v)} = σ2r(u) exp(−vB).

Brix and Diggle focus on the special case in which B = β−1I for some scalar β > 0, in
which case S(x, t) has variance σ2 and separable spatio-temporal correlation function
given by (13).

Separability of the spatial and temporal correlation properties is a reasonable working
assumption for an empirical, descriptive model, but may be too inflexible for some ap-
plications. For example, it implies that for any single location, x0 say, the conditional
distribution of S(x0, t) given the whole of the process S(x, t′) for some t′ < t de-
pends only on S(x0, t

′). Gneiting (2002) reviews the relevant literature and proposes
a general class of stationary, non-separable spatio-temporal covariance functions.
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Within the log-Gaussian Cox process framework, model-specification corresponds ex-
actly to the problem of specifying a model for a spatio-temporal Gaussian process.
See, for example, the chapters by Higdon, and by Gneiting, Genton and Guttorp, in
this volume.

3.2.2 Mechanistic modelling: conditional intensity and a partial likeli-

hood

Accepting that the distinction between what we have chosen to call empirical and
mechanistic models is not sharp, a mechanistic model is one which seeks to explain
how the evolution of the process depends on its past history, in a way which can be
interpreted in terms of underlying scientific mechanisms. A natural way to specify a
model of this kind is through its conditional intensity function. Let Ht denote the
accumulated history of the process, i.e. the complete set of locations and times of
events occurring up to time t. Then, the conditional intensity function, λ(x, t|Ht),
represents the conditional intensity for an event at location x and time t, given Ht.
This assumes amongst other things, that multiple, coincident events cannot occur;
for a rigorous discussion, see for example Daley and Vere-Jones (1988, Chapter 2).

A defining property of a Poisson process is that its conditional intensity function
is equal to its unconditional intensity, in other words the future of the process is
stochastically independent of its past. A more interesting example of a conditional
intensity function is the following, which bears some resemblance to the discrete-time
transition model illustrated in Section 3.1.2. Each event of the process at time zero
subsequently produces offspring according to an inhomogeneous temporal Poisson
process with intensity α(u), realised independently for different events. As in the ear-
lier, discrete-time example, the positions of the offspring relative to their parents are
an independent random sample from the bivariate Normal distribution with mean zero
and variance matrix σ2I. Each offspring, independently, then follows the same rules
as their parent: it produces offspring according to an inhomogeneous Poisson process
with intensity α(u− t), where t denotes its birth-time, and each offspring is spatially
dispersed relative to its parent according to a bivariate Normal distribution with mean
zero and variance σ2I. The events of the process are the resulting collection of loca-
tions x and birth-times t. If we order the events of the process so that ti < ti+1 for all
i, then the history at time t is Ht = {(xi, ti) : i = 1, ..., Nt}, where Nt is the number
of events to have occurred by time t. Writing f(x) = (2πσ2)−1 exp{−x′x/(2σ2)}, the
conditional intensity function is

λ(x, t)|Ht) =
Nt
∑

i=1

α(t − ti)f(x − xi).

The number of offspring produced by any event of this process is Poisson-distributed,
with mean

µ =
∫ ∞

0
α(u)du,
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which we therefore assume to be finite. The number of events as a function of time,
Nt, forms a simple branching process, and eventual extinction is certain if µ ≤ 1.
Otherwise, the probability of extinction depends both on µ and on the initial condi-
tions at time t = 0. The spatial character of the process varies considerably, according
to to both the detailed model specification and the initial conditions. However, the
cumulative spatial distribution of events occurring up to time t tends to becomes
progressively more strongly aggregated as t increases, because of the combined effects
of the successive clustering of groups of offspring around their respective parents
together with the extinction of some lines of descent.

For data (xi, ti) ∈ A × (0, T ) : i = 1, ..., n, with t1 < t2 < ... < tn, the log-likelihood
associated with any point process specified through its conditional intensity function
can be written as

L(θ) =
n

∑

i=1

log λ(xi, ti|Hti) −
∫ T

0

∫

A
λ(x, t|Ht)dxdt. (15)

See, for example, Daley and Vere-Jones (1988, Chapter 13). Two major obstacles to
the use of (15) in practice are that the form of the conditional intensity may itself
be intractable, and that even when the conditional intensity is available, as in our
example above, direct evaluation of the integral term in (15) is seldom straightforward.
Monte Carlo methods are becoming more widely available for problems of this kind
(Geyer, 1999; Moller and Waagepetersen, 2004). However, in practice these methods
often need careful tuning to each application and the associated cost of developing
and running reliable code can be an obstacle to their routine use.

As an alternative, computationally simpler approach to inference for models which are
defined through their conditional intensity, Diggle (2005) proposes a partial likelihood,
which is obtained by conditioning on the locations xi and times ti and considering
the resulting log-likelihood for the observed time-ordering of the events 1, ..., n. Now
let

pi = λ(xi, ti|Hti)/
n

∑

j=i+1

λ(xj, ti|Hti). (16)

Then, the partial log-likelihood is

Lp(θ) =
n

∑

i=1

log pi. (17)

This method is a direct adaptation to the space-time setting of the seminal proposal
in Cox (1972) for proportional hazards modelling of survival data; see also Moller and
Sorensen (1994). As discussed in Cox (1975), estimates obtained by maximising the
partial likelihood inherit the general asymptotic properties of maximum likelihood
estimators, although their use may entail some loss of efficiency by comparison with
full maximum likelihood estimation. Also, some parameters of the original model
may be unidentifiable from the partial likelihood. The loss of identifiability can be
advantageous if the non-identified parameters are nuisance parameters. This often
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applies, for example, in the proportional hazards model for survival data (Cox, 1972),
where it is helpful that the baseline hazard function can be left unspecified. Otherwise,
and again as exemplified by the proportional hazards model for survival data, other
methods of estimation are needed to recover the unidentified parameters; see, for
example, Andersen, Borgan, Gill and Keiding (1992).

4 Bovine tuberculosis: non-parametric smoothing

methods for estimating spatial segregation

Recall that the data for this application are the locations, genotypes and year of de-
tection of all known cases of bovine tuberculosis (BTB) amongst farm animals in the
county of Cornwall, UK. Figure 2 showed maps of the locations for each of the four
most common genotypes, collapsed over time. These maps give a clear impression of
spatial segregation, by which we mean that the county can be partitioned approxi-
mately into sub-regions where one or other of the four genotypes predominates. More
formally, suppose that the pattern of cases in Figure 2 is generated by a multivariate
Poisson process with intensities λk(x) corresponding to cases of genotype k = 1, ..., 4.
Then, the probability that a case at location x will be of type j, conditional on there
being a case of one of the four types at x, is

pj(x) = λj(x)/
4

∑

k=1

λk(x).

We say that the pattern is unsegregated if pj(x) = pj for all j and all x. At the
opposite extreme, the pattern is completely segregated if, at each x, pj(x) = 1 for one
of j = 1, ..., 4. Estimating and mapping the type-specific probabilities pj(x) allows
an assessment of intermediate degrees of spatial segregation.

A specific question posed by these data is whether the pattern of spatial segregation
is stable over time, as this would point towards constant re-infection by the locally
predominant genotype, rather than to introduced infections transmitted through cat-
tle bought and sold at market. We present here an analysis taken from Diggle, Zheng
and Durr (2005) which is intended to answer this question. Our aim is to estimate
possibly time-varying type-specific probability surfaces pjt(x), the conditional proba-
bilities that a case at location x in time-period t will be of type j.

In this spatio-temporal setting, we assume that cases form a discrete-time sequence
of multivariate Poisson processes with intensity functions λjt(x). Although this is not
strictly consistent with the infectious nature of the disease, it provides a reasonable
working model within which we can answer the specific question of interest. The
Poisson assumption lends itself more naturally to the general approach described in
Sections 2 and 3.1.3, where we consider the time-dimension as a qualitative mark
attached to the spatial location of each event, rather than to a transition modelling
approach as described in Sections 3.1.1 and 3.1.2. The latter would be more natural if
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the goal of the analyis was to model the transmission of the disease between farms, but
this is ruled out because of the very coarse time-resolution of the annual inspection
regime. We therefore approach the analysis of the data as a problem in non-parametric
intensity estimation for a multivariate Poisson process.

The spatial distribution of farms at risk is not uniform over the county although it
is, to a good approximation, constant over the twelve-year time-period covered by
the data. Also, as noted earlier, variation in the temporal intensity of the disease
is confounded with variation in the extent of the annual testing programme. We
therefore factorise λjt(x) as

λjt(x) = λ0(x)µ0(x, t)ρjt(x), (18)

where λ0(x) represents the spatial intensity of farms, µ0(x, t) the spatio-temporal
intensity of recorded cases of unspecified type and the functions ρjt(x) represent
the spatially, temporally and genotypically varying risks which are the quantities of
interest. The type-specific probabilities associated with (18) are

pjt(x) = λjt(x)/
4

∑

k=1

λkt(x) = ρjt(x)/
4

∑

k=1

ρkt(x), (19)

which implies that spatio-temporal variations in the pattern of segregation can be
estimated without our knowing either the spatial distribution of farms (although
this is available if required) or, more importantly (because it is not available), the
spatio-temporal variation in the extent of the inspection programme. Note that to
estimate non-specific spatial variation in risk, we would need to make the additional
assumption that µ0(x, t) = µ0(t).

We estimate the type-specific probability surfaces using a simple kernel regression
method. Let nt denote the number of recorded cases in time-period t. Write the data
for time-period t in the form of a set of non-specific case-locations xit : i = 1, ..., nt

and associated labels Yit giving the genotype of each case. Then, our kernel regression
estimator of pjt(x) is

p̂jt(x) =
nt
∑

i=1

wij(x)I(Yit = j), (20)

where

wij(x) = wj(x − xit)/
nt
∑

k=1

wj(x − xkt),

wj(x) = w(x/hj)/h
2
j and

w(x) = exp(−||x||2/2). (21)

The Gaussian kernel function (21) could be replaced by any other non-negative-
valued weighting function. The choice of kernel function is usually less important
than the choice of the band-width constants, hj, which determine the amount of
smoothing applied to the data in estimating the pjt(x). Using a common set of
band-widths across time-periods makes for ease of interpretation. We shall also use
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a common band-width, h, for all 4 components of the p-surface, as this ensures that
∑m

j=1 p̂j(x) = 1 for every location x.

To choose the value of h, we proceed as follows. Conditioning on the case-locations,
the log-likelihood for the labels Yit under the Poisson process model has the multino-
mial form,

L(h) =
m

∑

t=1

nt
∑

i=1

m
∑

j=1

I(Yit = j) log pjt(xit; h).

Maximising L(h) would give the degenerate solution ĥ = 0. To avoid this, we use a
cross-validated form of the log-likelihood,

Lc(h1, ..., h4) =
r

∑

t=1

n
∑

i=1

m
∑

j=1

I(Yit = j) log p̂
(it)
jt (xit),

where p̂
(it)
jt (xi) denotes the kernel estimator (20), but based on all of the data except

(xit, Yit).

The data from the years prior to 1997 are too sparse to allow non-parametric es-
timation of the pjt(x). We therefore applied the kernel regression method to data
from the years 1997 to 2002. To maintain sufficient numbers of cases per genotype
per time-period, we also combined data from successive years to give r = 3 discrete
two-year time-periods.

The null hypothesis of interest is that pjt(x) = pj(x) for j = 1, .., 4 and t = 1, ..., r.
An ad hoc statistic for a Monte Carlo test of this hypothesis is

T p =
4

∑

j=1

∑

x∈X

r
∑

t=1

(p̂j(x, t) − p̄j(x))2 , (22)

where X = {xt
i : i = 1, 2, . . . , nt; t = 1, 2, . . . , s}, p̂j(x, t) is the estimated type-specific

probability surface for type j in time-period t and p̄j(x) = r−1 ∑r
t=1 p̂j(x, t).

The band-width which maximises the cross-validated log-likelihood is h = 9647 me-
tres. A Monte Carlo test based on the statistic (22) using 999 simulations gave an
attained significance level of 0.015, hence the null hypothesis is rejected at the con-
ventional 5% level. However, the changes in the segregation pattern over time appear
to be somewhat subtle. Figures 11, 12 and 13 show the estimated type-specific prob-
ability surfaces over the three consecutive time-periods. The general pattern is of an
increase in the extent of spatial segregation over time. Thus, genotype 15 becomes
progressively more dominant in north central Cornwall, genotype 20 has established
near-dominance in the far west by 2001/02, and spoligotype 9 is dominant in the east
of Cornwall, but within a territory which becomes more confined to an area close to
the eastern boundary as time proceeds. Finally, genotype 15 shows an apparently
stable spatial distribution over the three time-periods.

In summary, our findings from our analysis of the BTB data are that there is very
strong spatial segregation amongst the four most common genotypes, and that the
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Figure 11: Kernel regression estimates of type-specific probability surfaces for cases
in years 1997-98.

pattern of spatial segregation is broadly consistent over time, albeit with subtle but
statistically significant differences between successive two-year periods.

Further methodological developments in progress include replacing the non-parametric
kernel regression methodology by a hierarchical stochastic model, in which the spatio-
temporal intensities are determined by a multivariate, discrete-time log-Gaussian pro-
cess, hence λj(x, t) = exp{Sj(x, t)} where {S1(x, t), ..., S4(x, t)} is a quadri-variate
Gaussian process. The hierarchical stochastic modelling framework is better able to
deal with the relatively small numbers of cases of each genotype in each time-period
by exploiting the assumed statistical dependencies between genotypes and over time.
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Figure 12: Kernel regression estimates of type-specific probability surfaces for cases
in years 1999-2000.

5 Real-time surveillance for gastroenteric disease:

log-Gaussian Cox process modelling

Our second application has previously been reported in greater detail by Diggle,
Knorr-Held, Rowlingson, Su, Hawtin and Bryant (2003) and by Diggle, Rowlingson
and Su (2005). It concerns the development of a real-time surveillance system for
non-specific gastroenteric disease in the county of Hampshire, UK, using the data
described in Section 1.1.3.

The methodological problem is to build a descriptive model of the normal pattern
of spatio-temporal variation in the distribution of incident cases, and to use the
model to identify unusual, spatially and temporally localised, departures from this
pattern, which we call “anomalies.” The wider aim is that statistical evidence of
current anomalies in the spatio-temporal distribution of incident cases can then be
combined with other forms of evidence, for example reports from pathology laboratory
analyses of faecal samples, to trigger an earlier response to an emerging problem than
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Figure 13: Kernel regression estimates of type-specific probability surfaces for cases
in years 2001-02.

is typically achieved by current surveillance systems. For further discussion, see Diggle
et al (2003).

Our descriptive model is a log-Gaussian Cox process of the kind proposed by Brix and
Diggle (2001) and discussed in Section 3.2.1. Our model needs to allow for both spatial
and temporal heterogeneity in the rate of calls to NHS Direct. The heterogeneity
arises through a combination of factors including spatial variation in the density of
the population at risk and aspects of the pattern of usage of NHS Direct by different
sectors of the community; for example, there is a clear day-of-the-week effect due
to the relative inaccessibility of other medical service at weekends, whilst anecdotal
evidence suggests that NHS Direct is used disproportionately more often by young
families than by the elderly. We assume that these spatial and temporal effects operate
independently, whereas the spatially and temporally localised anomalies which we
wish to detect are governed by a spatio-temporally correlated stochastic process.
Hence, within the framework of log-Gaussian Cox processes, we postulate a spatio-
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temporal intensity function for incident cases of the form

λ(x, t) = λ0(x)µ0(t) exp{S(x, t)}, (23)

where S(x, t) is a stationary, spatio-temporal Gaussian process with expectation
E[S(x, t)] = −0.5σ2, variance Var{S(x, t)} = σ2 and separable correlation function
Corr{S(x, t), S(x − u, t − v)} = ρ(u, v) = r(u) exp(−v/β). As noted earlier, this
specification guarantees that E[exp{S(x, t)}] = 1 for all x and t. We now add the
constraint that λ0(x) integrates to 1 over the study-region. The function µ0(t) then
represents the time-varying total intensity, or mean number per unit time, of incident
cases over the whole county, whilst λ0(x) becomes a probability density function for
the spatial distribution of incident cases, averaged over time. The spatial correlation
function r(u) is in principle arbitrary, but we have found that a simple exponential,
r(u) = exp(−u/φ), gives a reasonable fit to the Hampshire data.

To fit the model, we need to estimate the functions λ0(x) and µ0(t), and the additional
parameters σ2, φ and β which specify the Gaussian process S(x, t). We consider each
of these estimation problems in turn.

For the spatial density λ0(x), it is hard to envisage a suitable parametric model. Also,
we cannot assume that the spatial distribution of the relevant population, namely
users of NHS Direct, matches that of the overall population distribution over the
county of Hampshire, hence we cannot use census information to estimate λ0(x).
We therefore use a non-parametric kernel density estimation method. This is very
similar to the kernel regression method discussed in Section 4 but adapted to the
density estimation setting. Using the Gaussian kernel (21), and band-width h, the
kernel estimate of λ0(x) is

λ̂0(x) = n−1
n

∑

i=1

h−2w{h−1(x − xi)}, (24)

where xi : i = 1, ..., n are the case-locations. Because of the very severe variations in
population density across the county, any choice of a fixed band-width h is liable to
be an unsatisfactory compromise between the relatively large and small band-widths
which would be appropriate in the more rural and urban areas, respectively. We
therefore follow a suggestion in Silverman (1985), in which we first construct a fixed
band-width pilot estimator λ̃0(xi) using (24) with a subjectively chosen band-width
h0, then calculate g̃, the geometric mean of λ̃0(xi) : i = 1, ..., n, and use a locally
adaptive kernel estimator

λ̂0(x) = n−1
∑

h−2
i φ{(x − xi)/hi}

with hi = h0{λ̃0(xi)/g̃}
−0.5. This has the required effect of applying a larger band-

width in the more rural areas, where λ̃0(x) is relatively small. Figure 14 shows the
resulting estimate λ̂0(x).

To estimate the mean number of cases per day, µ0(t), a parametric approach is more
reasonable. We use a Poisson log-linear regression model incorporating day-of-the-
week effects as a 7-level factor, time-of-year effects as sine-cosine wave at frequency
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Figure 14: Locally adaptive kernel estimate of λ0(x) for the Hampshire gastroenteric
disease data.

ω = 2π/365, plus its first harmonic, and a linear trend to reflect progressive up-take
in the usage of NHS Direct during the period covered by the data. Hence,

log µ0(t) = δd(t) + α1 cos(ωt) + η1 sin(ωt) + α2 cos(2ω) + η2 sin(2ωt) + γt, (25)

where d(t) codes the day of the week. The Poisson formulation does not account for
the extra-Poisson variation which, as anticipated, the data exhibit, but nevertheless
produces consistent estimates on the assumption that (25) is a correct specification
for µ0(t). Figure 15 compares the resulting estimate, centred on the average of the
seven daily intercepts δd(t), with the observed numbers of calls per day, averaged over
each week. The spring peak in incidence is a well-known feature of this group of
diseases.

To estimate the parameters of the stochastic component of the model, S(x, t), we
have used a simple method-of-moments approach, based on matching empirical and
theoretical second-moment properties of the data and model, respectively. We are cur-
rently developing an implementation of a Monte Carlo maximum likelihood method,
based on material in Moller and Waagepetersen (2004). A partial justification for the
method-of-moments approach is that the main goal of the analysis is real-time spatial
prediction, whose precision is limited by the relatively low daily incidence of cases,
whereas parameter estimation draws on the complete set of data; hence, efficiency of
parameter estimation is not crucial.
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Figure 15: Fitted log-linear model for the mean number of gastroenteric disease cases
per day adjusted for day-of-the-week effects (solid line), and observed numbers of
cases per day averaged over successive weeks (solid dots).

Consider first the parameters of the spatial covariance structure of S(x, t), namely

Cov{S(x, t), S(x − u, t)} = σ2 exp(−|u|/φ).

The corresponding spatial pair correlation function is g(u) = exp{σ2 exp(−|u|/φ)},
and the estimation method consists of minimising the criterion

∫ u0

0
[{log ĝ(u)} − {log g(u)}]2du, (26)

where u0 = 2km is chosen subjectively as the apparent range of the spatial correlation,
and ĝ(u) is a non-parametric estimate of the pair correlation function. We use a time-
averaged kernel estimator,

ĝ(u) =
1

2πuT |A|

T
∑

t=1

n
∑

i=1

∑

i6=j

Kh(u− ‖ xi − xj ‖)wij

λt(xi)λt(xj)
. (27)

In (27), each of the summations over i 6= j refers to pairs of events occurring on the
same day, T is the length of the study-period, A the study area, wij is Ripley’s (1977)

edge-correction as used in (4), λt(x) = λ̂0(x)µ̂0(t) and

Kh(u) =

{

0.75h−1(1 − u2/h2) : −h ≤ u ≤ h
: otherwise.
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To estimate the temporal correlation parameter β, we again match empirical and
theoretical second-moment properties, as follows. Let Nt denote the numbers of inci-
dent cases on day t. For our model, the time-variation in µ0(t) makes the covariance
structure of Nt non-stationary. We obtain

Cov(Nt, Nt−v) = µ0(t)1(v = 0) + {µ0(t)µ0(t − v)} ×

{
∫

W

∫

W
λ0(x1)λ0(x2) exp[σ2 exp(−v/β) exp(−u/φ)]dx1dx2 − 1}

(28)

Note that the expression for Cov(Nt, Nt−v) given by Brix and Diggle (2001) is incor-
rect. To estimate β we minimise

v0
∑

v=1

n
∑

t=v+1

{Ĉ(t, v) − C(t, v; β)}2,

where v0 = 14 days, Ĉ(t, v) = NtNt−v − µ̂0(t)µ̂0(t− v) and C(t, v; θ) = Cov(Nt, Nt−v)
as defined in (28) but plugging in the previously estimated values for σ2 and φ.

The resulting estimates are shown in Figure 16. Note in particular that the scales
on which the spatial and temporal dependence decay are broadly consistent with
the known character of the diseases in question, which are spread by direct contact
between infected individuals and generally have latent periods of the order of a few
days.

We now use the fitted model for spatial prediction, as follows. Firstly, and with
the same justification as given above for the use of potentially inefficient methods
of parameter estimation, we use plug-in values of the estimated model parameters,
thereby ignoring the effects of parameter uncertainty on the predictive distributions of
interest. We then use a Metropolis-adjusted Langevin algorithm, as described in Brix
and Diggle (2001), to generate samples from the conditional distribution of S(x, t)
given data up to time t. For display purposes, we choose a critical threshold value
c > 1 and map predictive exceedance probabilities,

pt(x) = P (exp{S(x, t)} > c|data) (29)

We would argue that mapping pt(x) is more relevant than mapping predictive es-
timates, Ŝ(x, t). The latter are highly variable because of the relatively low daily
incidence and would be liable to over-interpretation. We suggest that the value of c
should be chosen by the public health practitioner to represent a multiplicative in-
crease in the local daily incidence which, if verified, would be regarded as practically
significant. A high predictive probability that this threshold has been exceeded at a
particular time and place would then suggest that some kind of follow-up action may
be required, for example to ascertain whether recent cases in the immediate vicinity
might have a common cause, or are more likely to be unrelated chance occurrences.

Figure 17 shows an example of the resulting map of pt(x) for one day in March 2003,
using the threshold value c = 2. Note that the colour-scale for pt(x) is continuous,
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Figure 16: Empirical (solid line) and fitted (dashed line) second-moment properties for
the Hampshire gastroenteric disease data. The left-hand panel shows the logarithm
of the pair correlation function, the right-hand panel the temporal autocovariance
function.

but non-linear so that only predictive probabilities close to 1 show up as orange or
red. We also emphasise that the value c = 2 was chosen for illustrative purposes
and is much smaller than would be associated, in this application, with a genuine
outbreak of public health concern.

As noted above, one way to refine the methodology associated with this application
would be to use Monte Carlo maximum likelihood estimation for the covariance pa-
rameters of S(x, t). A brief outline of this method follows. We approximate the
continuous spatio-temporal domain A× (0, T ) by a fine lattice, and denote by X and
S the point process data and the latent Gaussian process in this discretised domain.
The likelihood for the model, L(θ; X) say, is the marginal distribution of X, which is
intractable, whereas the joint distribution of X and S can be written explicitly as the
product of the conditional distribution of X given S and the marginal distribution of
S, both of which have known standard forms – Poisson and Gaussian, respectively.
It follows that for any fixed value θ0,

L(θ; X) =
∫

f(S, X; θ)dS

=
∫

f(S, X; θ) ×
L(θ0; X)

L(θ0; X)
×

f(S, X; θ0)

f(S, X; θ0)
dS
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Figure 17: Predictive exceedance probabilities pt(x) for the Hampshire gastroenteric
disease data on a day in March 2003, using the threshold value c = 2. Incident cases
over five consecutive days are shown as circles of diminishing size to correspond to
the progressive discounting of past data in constructing the predictive distribution of
S(x, t).

= L(θ0; X)
∫

f(S, X; θ)

f(S, X; θ0)
f(S|X; θ0)dS.

Hence, the likelihood ratio between θ and θ0 is

L(θ; X)/L(θ0; X) = Eθ0

[

f(S, X; θ)

f(S, X; θ0)

]

, (30)

where Eθ0
[·] denotes expectation with respect to the conditional distribution of S

given X at θ = θ0. In (30), we now replace the theoretical expectation by a sample
mean over Monte Carlo simulations, using the same Metropolis-adjusted Langevin
algorithm as used earlier to simulate samples from the predictive distribution of S
given X. Note also that writing S = a(θ) + B(θ)Z, where Z is a vector of in-
dependent standard Gaussian variates, gives f(S, X; θ) = f(X|Z; θ)f(Z), in which
case the ratio within the expectation term on the right hand side of (30) reduces to
f(X|Z; θ)/f(X|Z; θ0).

Another possible refinement of the methodology would be to use a stochastic model
of daily incidence in place of the deterministic µ0(t). In particular, the rising trend
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evident during the two-year period covered by the data which were used to develop
the model was not sustained thereafter. More generally, patterns in the usage of NHS
Direct are liable to fluctuate in response to changes in policy-related factors within
the NHS system whose combined effects are hard to capture in a deterministic model.
A pragmatic strategy would be the following. Postulate a temporal log-Gaussian Cox
process for the daily incident counts, Nt, as a series of conditionally independent
Poisson counts with conditional expectations exp(αt + Mt), where αt encodes day-
of-the-week effects and Mt is a latent Gaussian process. Use this model to generate
real-time predictions α̂t + M̂t, which can then be plugged into the spatial prediction
algorithm in place of the log-linear regression estimates µ̂0(t).

6 Foot-and-mouth disease: mechanistic modelling

and partial likelihood analysis

To illustrate the partial likelihood method described in Section 3.2.2, we analyse the
foot-and-mouth data using a mechanistic model proposed by Keeling et al (2001).
The analysis reported here is taken from Diggle (2005).

The model assumes that the rate of transmission of infection between an infected
farm i and a susceptible farm j is given by

λij(t) = λ0(t)AiBjf(||xi − xj||)Iij(t), (31)

where λ0(t) is a baseline rate of infection, Ai and Bj encode characteristics of the
farms in question which affect their infectivity and susceptibility respectively, f(·) is
a transmission kernel which models the spread of infection as a function of distance,
and Iij(t) is an indicator that farm i is infective and farm j susceptible at time t.
The data include, as applicable for each animal-holding farm, the dates on which
the disease was reported and on which the stock was culled. To allow for reporting
delays, we assume that a farm is reported as a case τ days after it becomes infective.
A farm remains infective unless and until its stock is culled. A farm is susceptible if
it is not infective, and has not had its stock culled.

In the analysis reported here, we assume that τ = 5 days and model the infectivity
and susceptibility factors as

Ai = (αn1i + n2i) (32)

and
Bj = (βn1i + n2i). (33)

where n1i and n2i are the numbers of cows and sheep held by farm i at the start of the
epidemic. The parameters α and β therefore represent the relative infectiousness and
susceptibility, respectively, of cows to sheep. For the transmission kernel, we assume
that

f(u) = exp{−(u/φ)κ} + ρ. (34)
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Keeling et al (2001), did not specify a functional form for f(·), but (34) captures the
qualitative features of the results which they reported in graphical form. In particular,
they reported a sharper-than-exponential decay with distance, which in (34) would
correspond to κ < 1, whilst ρ in (34) represents the contribution to the epidemic from
apparently spontaneous cases which occur remotely from any previous case.

For any farm k, we define λk(t) =
∑

j λjk(t), from which we obtain the conditional
intensities

λ(xi, ti|Hti) = λi(ti)/
∑

k

λk(ti).

The partial log-likelihood follows by substitution of the conditional intensities into
(16) and (17). To maximise the partial log-likelihood we use the Nelder-Mead simplex
algorithm (Nelder and Mead, 1965) as implemented in the R function optim(), which
provides a numerical estimate of the Hessian matrix.

In the model for the transmission kernel, the parameters κ and ρ are poorly identified
because the cases which appear to correspond to long-range transmission are few in
number, and can be explained empirically either by including a small, positive value
of ρ or by adjusting the value of κ. Because ρ corresponds formally to what is known
to be a real effect, namely the indirect spread of infection via the movement of farm
equipment and staff, we retain ρ as a positive-valued parameter to be estimated,
but fix κ = 0.5 to correspond to the observation in Keeling et al (2001) that the
transmission kernel is more sharply peaked than exponential.

We first investigated whether the data in Cumbria and Devon support the assumption
of a common set of parameters in the two counties. The likelihood ratio test statistic
for common versus separate parameters is 2.98 on 4 degrees of freedom, hence p = 0.56
and we therefore accepted the hypothesis of common parameter values. We then
obtained common parameter estimates (α̂, β̂, φ̂, ρ̂) = (4.92, 30.68, 0.39, 9.9 × 10−5).
For all practical purposes, ρ̂ ≈ 0, although a likelihood ratio test formally rejects
ρ = 0 because the likelihood is sensitive to the precise probabilities which the model
assigns to rare events.

One question of specific interest is whether the infectivities and susceptibilities for
individual farms, Ai and Bj, are linear or sub-linear in the numbers of animals. To
investigate this, we extend (32) and (33) to Ai = (αnγ

1i + nγ
2i) and Bj = (βnγ

1i + nγ
2i),

respectively, where γ is an additional parameter to be estimated. Fitting this five-
parameter model results in a large increase in the maximised log-likelihood, from
−6196.3 to −5861.4.

Another possible extension of the model would be to include farm-level covariates
by defining Ai = (αnγ

1i + nγ
2i) exp(z′iδ), where zi is a vector of covariates for farm

i, with a similar expression for the susceptibilities Bj. The zi might, for example,
codify management practices or other measured characteristics of individual farms
which could affect their propensity to transmit, or succumb to, the disease. By
way of illustration, we consider adding a log-linear effect of farm area to the model.
The likelihood ratio statistic for the covariate effect is 3.26 on 1 degree of freedom,
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Parameter Estimate 95% confidence interval
α 1.42 1.13 1.78
β 36.17 0.19 692.92
φ 0.41 0.36 0.48
ρ 1.3 × 10−4 8.5 × 10−5 2.1 × 10−4

γ 0.13 0.09 0.21

Table 1: Parameter estimation for the five-parameter model fitted to combined data
from Cumbria and Devon

corresponding to p = 0.07. However, we can expect this test to be rather weak,
because the observed distribution of farm area is extremely skewed, and the few
farms with large areas will therefore have high leverage.

Estimates for the five-parameter model are shown in Table 1, together with approx-
imate 95% confidence limits deduced from the numerical estimate of the Hessian
matrix. Optimisation was conducted on the log-scale for all parameters, which is
why the confidence limits are not symmetric about the point estimates. Estimated
correlations amongst the parameter estimates are all small, the largest being 0.25
between log φ and log ρ. The results in Table 1 indicate a strongly sub-linear depen-
dence of infectivity and susceptibility on the numbers of animals. Note that under
the weak form of dependence implied by the estimate of γ, the estimate of β is very
imprecise.

These results are qualitatively similar to those reported in Keeling et al (2001), al-
though they only considered the case γ = 1. They reported point estimates α̃ = 1.61
and β̃ = 15.2. They did not specify a parametric model for the transmission kernel
but their Figure 1B shows similar behaviour to our fitted model, decaying from 1 at
u = 0 to approximately 0.1 at u = 1km, compared with our f̂(1) = 0.21.

Finally, we use a simple adaptation of the Nelson-Aalen estimator (Andersen, Bor-
gan, Gill and Keiding, 1992, Chapter 4) to obtain a non-parametric estimate of the
cumulative base-line hazard,

Λ̂0(t) =
∫ t

0
λ̂0(u)du.

We re-write (31) as λij(t) = λ0(t)ρij(t) and define ρ(t) =
∑

i

∑

j ρij(t). The Nelson-
Aalen estimator is now given by

Λ̂0(t) =
∫ t

0
ρ̂(u)−1dN(u)

=
∑

i:ti≤t

ρ̂(ti)
−1, (35)

where ρ̂(t) is the parametric estimate of ρ(t) implied by the fitted model. Figure 18
shows the Nelson-Aalen estimates obtained from the Cumbria and Devon data. The
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Figure 18: Estimated cumulative baseline hazards in Cumbria (solid line) and in
Devon (dotted line) for the five-parameter model.

generally lower estimates for Devon are consistent with the lower overall prevalence
of the disease (137 cases out of 8182 at-risk farms in Devon, 657 cases out of 5090
at-risk farms in Cumbria). Both estimates are approximately linear over the first two
to three months, by which time the epidemic in Devon has almost run its course.
The slope of the Cumbria estimate increases thereafter. This does not necessarily
imply a failure of the culling strategies being applied, since the model already takes
account of their effects, but rather suggests that external environmental effects, for
example the increase in animal movements outdoors in spring and summer, may have
promoted an increase in the virulence of the disease process.

This analysis of the foot-and-mouth data demonstrates the feasibility of using the
partial likelihood approach to answer a variety of questions relevant to an under-
standing of the underlying disease process. The method of fitting is quite flexible,
and it would be straightforward to extend the model in various ways, for example
by including additional farm-level covariates. A fuller analysis of the data will be
reported separately. More generally, the partial likelihood provides a useful method
for analysing any spatio-temporal point process model which which is specified via
its conditional intensity function. The method is based on a generally accepted prin-
ciple of inference with known asymptotic properties, whilst being computationally
straightforward and therefore well-suited to routine use.
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7 Discussion

In this chapter, we have tried to indicate the scope for simple adaptation of existing
methods, and for development of new methods, to analyse spatio-temporal point
process data. Data-sets of this kind are becoming more widely available, perhaps
reflecting the increased ability in many fields of science to capture such data routinely.
More fundamentally, interesting scientific questions concerning the dynamic spatio-
temporal behaviour of natural systems cannot easily be addressed using purely spatial
or temporal information.

In the author’s opinion, simple adaptations of existing spatial statistical methods,
as illustrated by our analysis of the bovine tuberculosis data, will continue to be
valuable for descriptive analysis, and are more or less forced on us when the data
are coarsely discretised in time. But when data with a fine resolution in both the
spatial and temporal dimensions are available, models which explicitly recognise the
directional nature of time by conditioning future behaviour on past outcomes are
likely to be more insightful. Our analyses of the gastroenteric disease data and of
the foot-and-mouth data illustrate this general philosophy. For the gastroenteric
disease application our model for the latent stochastic process S(x, t) is, essentially,
a multivariate time series model incorporating a qualitatively sensible, if admittedly
also computationally convenient, Markov dependence structure in time. The cross-
correlation structure of the model is then chosen so as to have a parsimonious spatial
interpretation whilst giving a reasonable empirical fit to the data. In contrast, for
the foot-and-mouth data we use a previously proposed mechanistic model in which
the conditioning on past events is used explicitly to quantify the current risk of
transmission of the disease from an infective to a susceptible farm.

As in other areas of statistics, the development of computationally intensive, Monte
Carlo methods of inference has greatly enhanced our ability to fit relatively complex
and realistic models. However, it is still all too easy to find combinations of data
and model for which fitting by Monte Carlo methods is computationally infeasible.
Also, the requirement to tune Monte Carlo algorithms to each non-standard applica-
tion imposes very real constraints on the statistician’s ability to compare a range of
candidate models within a reasonable time-scale whilst ensuring that Markov chain
Monte Carlo algorithms have converged to their equilibrium distributions and that
inferences about parameter combinations of interest are appropriately insensitive to
pragmatic choices of multivariate priors. For these reasons, we see a place for methods
of inference such as the partial likelihood method proposed in Diggle (2005) and ap-
plied here to the foot-and-mouth data, which are capable of routine implementation
whilst still being based on generally accepted statistical principles.
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