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Summary. Capture-recapture models were developed to estimate survival

using data arising from marking and monitoring wild animals over time.

Variation in the survival process may be explained by incorporating relevant

covariates. We develop nonparametric and semiparametric regression mod-

∗email: gimenez@cefe.cnrs-mop.fr
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els for estimating survival in capture-recapture models. A fully Bayesian

approach using MCMC simulations was employed to estimate the model

parameters. The work is illustrated by a study of Snow petrels, in which

survival probabilities are expressed as nonlinear functions of a climate co-

variate, using data from a 40-year study on marked individuals, nesting at

Petrels Island, Terre Adélie.

Key words: auxiliary variables; Bayesian inference; demographic rates;

environmental covariates; penalized splines; WinBUGS.

1. Introduction

Understanding population structure and changes in that structure is essential

for both species conservation and management. Because of human activities,

it appears crucial to explain and forecast the effects of climatic and environ-

mental perturbations on population dynamics. The analysis of data arising

from observations of marked animals is therefore an important tool for esti-

mating demographic parameters that govern populations.

In the last forty years, a challenging research topic has been the esti-

mation of survival, and when possible, to explain variations using auxiliary

variables like e.g. time, age of animal or relevant covariates like temperature

or rainfall. Most traditional models exhibit a product-multinomial likeli-

hood structure, allowing inference in a unified context by classical maximum

likelihood (Lebreton et al., 1992) through user-friendly software like MARK

(White and Burnham, 1999) or M-SURGE (Choquet et al., 2004). The

Bayesian approach has been proposed as an alternative (see Brooks et al.,

2000 for a review).

To model survival probability, the analysis is usually embedded in the
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Generalized Linear Model (GLM) framework (Lebreton et al., 1992). A

logit link for survival probabilities is frequently used but other functions

are possible (Williams et al., 2002). Covariates may be incorporated, and

here we will focus on environmental covariates that vary over sampling oc-

casions but remain constant over individuals, as defined by Pollock (2002).

Individual covariates require a separate treatment, and this point will be

discussed in the last section. Most frequently, covariates are related to sur-

vival by a linear or a quadratic function, on the logit scale. However, this

may be unrealistic. For example, it has been shown that using global indices

such as the North Atlantic Oscillation (NAO) could relate to population dy-

namics in complex nonlinear ways (Mysterud et al., 2001; see also Stenseth

and Mysterud, 2002 for a general discussion). Other covariates that may

affect population dynamics in a non-linear way include population density

through density-dependence (see e.g. Sinclair, 1989) or age, through senes-

cence defined as a reduction in survival among old individuals (Loison et al.,

1999; Catchpole et al., 2004). In many of these examples a nonparamet-

ric alternative avoids strong parametric assumptions and could suggest new,

scientifically relevant, parametric models.

In this paper we extend the traditional GLM framework using General-

ized Additive Models (GAMs) ideas popularized by Hastie and Tibshirani

(1990). Rather than specifying a fixed link between survival and covariates

in the model, the shape of the relationship is determined by the data, us-

ing penalized splines (Ruppert et al., 2003). Our choice has been guided by

the equivalence between a penalized spline formulation of the nonparamet-

ric problem with Generalized Linear Mixed Models (GLMMs) that simplifies

3

Hosted by The Berkeley Electronic Press



further extensions.

The paper is organized as follows. In the next section, we give the likeli-

hood for classical survival models, and the nonparametric regression of sur-

vival probabilities on covariates is established. In Section 3, we consider

a natural extension to the nonparametric model, when a semiparametric

regression model for survival is introduced. As well as including the non-

parametric component, this allows us to model a parametric component at

the same time. Section 4 gives the details of the Bayesian inference and we

show how our approach particularly benefits from the use of Bayesian graphi-

cal modeling through Gibbs sampling. Section 5 illustrates our method using

data from a 40-year study of individually marked Snow petrels (Pagodroma

nivea), in trying to relate their survival to a climate covariate. The last

section discusses the limits and potential of our approach.

2. Theory

2.1 CJS likelihood

We assume here that our capture-recapture study includes I +1 sampling

occasions at which animals are caught or observed, so that I recaptures or

re-observations may be actually made. On each occasion, new unmarked

animals are given unique marks and then released. Previously marked ani-

mals can also be sampled, and after their identity is recorded, they are also

released back into the studied population. This protocol gives rise to a set

of animal encounter histories, made up of 1 and 0 depending respectively

on whether an animal is detected or not. Cormack (1964), Jolly (1965) and

Seber (1965) independently derived the likelihood for such capture-recapture

data, and this model will be referred to as the CJS model. Schwarz and Se-
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ber (1999) and Williams et al. (2002) give reviews of the CJS model and its

applications. Data are frequently summarized in an upper triangular array,

m, called the m-array, where mij, i = 1, . . . , I, j = i + 1, . . . , I + 1, is the

number of animals released at time ti and subsequently recaptured for the

first time at time tj. Also the column vector R contains the Ri, i = 1, . . . , I,

which are the numbers of marked animals released into the population at

times ti; these comprise newly marked animals and those recaptured at time

ti. Under the assumption that animals are independent (see e.g. Williams

et al., 2002 for a description of CJS model assumptions and consequences of

possible violation), the likelihood is product-multinomial

[R,m|φ,p] ∝
I∏

i=1

χRi−ri
i

I+1∏
j=i+1

{
φipj

j−1∏

k=i+1

φk(1− pk)

}mij

(1)

where [X] denotes the distribution of X, φi, i = 1, . . . , I, is the probability

that an animal survives to time ti+1 given that it is alive at time ti and pj,

j = 2, . . . , I+1 denotes the encounter probability of being detected at time tj

(see e.g. Brooks et al., 2000). We adopt the convention that a null sequence

has product 1 so that for example
∏j−1

k=i+1 φk(1− pk) = 1 for j = i + 1.

Other terms involve ri =
∑I

j=i+1 mij, the number of animals subsequently

recaptured after release at time ti and χi, the probability that an animal,

alive at time ti, is not subsequently encountered. This can be calculated

recursively as χi = 1− φi {1− (1− pi+1)χi+1}, with χI+1 = 1 (e.g. Lebreton

et al., 1992).

Factors possibly affecting both survival and capture probabilities, such

as sex or location can be easily handled by considering an m-array for each

value of the factor in formula (1) (e.g. Lebreton et al., 1992). Note that age
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classes can be accommodated in a similar way (Brownie and Robson, 1983).

2.2 Nonparametric regression of survival

We consider a nonparametric regression model for the probability that

an animal survives from time ti to time ti+1 of the form

logit(φi) = f(xi) + εi, i = 1, . . . , I (2)

where xi is the value of the covariate for the ith sampling occasion, εi are

i.i.d N(0, σε), εi is independent of xi and f is a smooth function. Here,

the random effects {εi} allow us to model the residual sampling-occasion-

to-sampling-occasion variation not handled by the covariates alone (Barry

et al., 2003). Variations on the model of Equation (2) include:

• Semiparametric regression models in which some of the predictors enter

linearly in the model, as illustrated in Section 3, and

• Models including interactions between covariates which is discussed in

the last section.

Penalized splines using the truncated polynomial basis (Ruppert, 2002) were

used to model the smooth function

f(x|η) = β0 + β1x + . . . + βP xP +
K∑

k=1

bk(x− κk)
P
+ (3)

where P ≥ 1 is an integer, η = (β1, . . . , βP , b1, . . . , bK)T is a vector of regres-

sion coefficients, (u)p
+ = upI(u ≥ 0) and κ1 < κ2 < . . . < κK are fixed knots.

The crucial problem in using relation (3) is the choice of the number and the

position of the knots. A small number of knots may result in a smoothing

function that is not flexible enough to capture variability in the data, whereas
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a large number of knots may lead to overfitting. Similarly, the position of the

knots will influence estimation. For fitting we used a penalty approach in-

spired by smoothing splines (Green and Silverman, 1994). To ensure enough

flexibility a fixed number of knots is chosen. Following Ruppert (2002), we

considered K = min{1

4
I, 35} and let κk be ”equally-spaced sample quantiles”

ie the sample quantile of the xi’s corresponding to probabilities k/(K + 1).

Other choices are possible like equally spaced knots within the domain of x,

and Crainiceanu et al. (2004a) provide a simulation study comparing these

two alternatives with a discussion. Then, following Ruppert et al. (2003) a

quadratic penalty is placed on b which is here the set of jumps in the P th

derivative of f(•|η) so that with Equation (3) we associate the constraint

bTb ≤ λ (4)

where λ is called the smoothing parameter. Equations (3) and (4) lead to

the so-called P-splines approach (see e.g. Lang and Brezger, 2004). Because

roughness is controlled by the penalty term (4), once a minimum number of

knots is reached, the fit given by a P-spline is almost independent of the knot

number and location (Ruppert, 2002).

P-spline models can be fruitfully expressed as GLMMs, which facilitates

their implementation in standard software (Ngo and Wand, 2004; Crainiceanu

et al., 2004b), and above all provides a unified framework for generaliza-

tions of the nonparametric model. Let φ = (φ1, . . . , φI)
T , X be the matrix

with the ith row Xi = (1, xi, . . . , x
P
i )T , and Z be the matrix with ith row

Zi = {(xi − κ1)
P
+, . . . , (xi − κK)P

+}T . Consider the vector β = (β0, . . . , βP )T

as fixed parameters and the vector b = (b1, . . . , bK)T as a set of random

parameters with E(b) = 0 and cov(b) = σ2
b IK . If b and ε are independent,

7
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then an equivalent model representation of the P-spline model in the form of

a GLMM is

logit(φ) = Xβ + Zb + ε, cov

(
b
ε

)
=

(
σ2

b IK 0
0 σ2

εII

)
(5)

for which E(logit(φ)) = Xβ and cov(logit(φ)) = σ2
εV where V = II +λ2ZZT

with λ = σb/σε (Brumback et al., 1999).

Note that the connection between the P-spline model and the mixed

model of Equation (5) allows us to extend the nonparametric model to in-

corporate other nonparametric components as well (Ruppert et al., 2003).

3. Semiparametric regression of survival

In the preceding section, a regression model for survival over a continuous

predictor modeled as a smooth function was considered. In this section, we

extend this model by including qualitative predictors assumed to enter the

model linearly. Without loss of generality, we will consider only one paramet-

ric categorical component s with one non-parametric component smoothing

a continuous predictor x by linear P-splines. We wish to let the relation be-

tween logit(φi) and xi vary differently but in parallel according to the variable

si taking discrete values, i.e.

logit(φi) = β0 + γsi + β1xi +
K∑

k=1

bk(xi − κk)+ + εi, i = 1, . . . , I. (6)

Once again, the GLMM representation can be used to handle the semipara-

metric model. Let us adjust the matrix X so that its ith row is Xi =

(1, si, xi)
T and β = (β0, γ, β1)

T , while the ith row of matrix Z is Zi =

{(xi−κ1)+, . . . , (xi−κK)+}T . Then the mixed model defined by Equation (5)
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can still be used to describe the semiparametric regression just defined in

Equation (6) (Ruppert et al., 2003).

4. Bayesian inference

In this section, we will focus on the Bayesian analysis of the nonparamet-

ric model defined in Section 2.2. However, within the GLMM framework

introduced before, the extension to additive and semiparametric models is

straightforward (see Section 5).

4.1 Parameter estimation

The frequentist approach would require maximising the likelihood, which

is obtained by integrating the distribution [R,m|φ,p] over the random ef-

fects εi and bk. This is therefore a problem involving a high dimensional in-

tegral that could be handled by using approximations like Laplace’s method

(Chavez-Demoulin, 1999; Wintrebert et al., 2005) or asymptotic arguments

(Burnham, 2002). We expressed our models in the form of Directed Acyclic

Graphs, that are analysed by a Bayesian approach through Gibbs sampling.

4.2 Bayesian graphical modeling

In Figure 1, structural relations between the quantities called nodes that

form our model are represented by a Directed Acyclic Graph (DAG, see

Spiegelhalter, 1998).

[Figure 1 about here.]

Invoking conditional independence properties, the DAG representation leads

us to a recursive factorization of the posterior distribution as:

[β,b, ε, σ2
b , σ

2
ε ,p|R,m]

∝ [R,m|φ,p][φ|β,b, ε][β][b|σ2
b ][ε|σ2

ε ][σ
2
b ][σ

2
ε ][p]. (7)
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Even if one is only interested in the marginal posterior distribution of some

parameters, high-dimensional integrations have to be carried out. In gen-

eral, such complex integrals are intractable analytically and we will make

use of MCMC methods which provide powerful computer-intensive methods

for making approximations (e.g. Brooks, 1998). Because of its close relation-

ships with Bayesian graphical modeling, we will make use of Gibbs sampling

(Casella and George, 1992). When Gibbs sampling is used for estimating

capture-recapture model parameters, generally full conditional distributions

are non-standard (Brooks et al., 2000; Barry et al., 2003; Johnson and Hoet-

ing, 2003), so that usual random variate generation algorithms cannot be

used. In place however, more elaborate algorithms are needed such as adap-

tive rejection sampling or Metropolis-within-Gibbs sampling (see Gilks, 1996

for a review). We will therefore use software WinBUGS (Spiegelhalter et al.,

2003), which performs the latter.

5. Application to Snow petrels data

We illustrate the approach of the paper with data from a 40-year study on

individually marked Snow petrels, nesting at Petrels Island, Terre Adélie,

from 1963-2002. Two previous studies have showed that a large part of

the variation in annual survival was explained by climatic covariates such

as the extent of sea-ice and air temperature (Barbraud et al., 2000; Jenou-

vrier, Barbraud and Weimerskirch, unpublished results). Here we used the

whole dataset (I = 39, 630 males and 640 females), and considered the

Southern Oscillation Index (a covariate denoted by SOI) as a summary of

the overall climate condition, with positive (respectively negative) values

of the SOI corresponding to cold (respectively warmer) climatic conditions.
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Briefly speaking, while the NAO is a useful synthesis of climatic variables

that might affect ecology in the Northern hemisphere, the SOI provides its

counterpart for the Southern hemisphere (see Stenseth et al., 2003 for a

general discussion). The SOI is available from the Climatic Research Unit

(http://www.cru.uea.ac.uk/cru/data/soi.htm).

We modeled the survival probability nonparametrically as a function of

the SOI using P-splines. The effect of this covariate was additively differen-

tiated according to the sex of individuals. We used linear splines (P = 1)

but quadratic or even cubic splines could have been used instead, resulting

mainly in a smoother survival curve (Ruppert et al., 2003). We used K = 10

knots chosen so that the kth knot is the sample quantile corresponding to

probability k/(K +1). Note that the covariate SOI was first standardized in

order to avoid numerical instabilities and to improve MCMC mixing (Gilks

and Roberts, 1996). We therefore considered the following model

logit(φl
i) = β0 + γSEX + β1SOIi +

10∑

k=1

bk (SOIi − κk)+ + εi (8)

where φl
i is the survival probability over the interval [ti, ti+1] for l = male

(SEX = 0) or l = female (SEX = 1) and SOIi denotes the SOI in year i,

i = 1, . . . , I. The random effects {bk} are independent as well as the {εi}.
Let us denote φ = (φfemale

1 , . . . , φfemale
39 , φmale

1 , . . . , φmale
39 )T . Then, in ma-

trix notation, Equation (8) can be expressed in the form of Equation (5)

using

β =
(

β0 γ β1

)T

11
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X =




1 1 SOI1
...

...
...

1 1 SOI39

1 0 SOI1
...

...
...

1 0 SOI39




for the fixed effects and

b =
(

b1 . . . b10

)T

Z =




(SOI1 − κ1)+ . . . (SOI1 − κ10)+
...

...
...

(SOI39 − κ1)+ . . . (SOI39 − κ10)+




for the random effects.

The model proposed here differs from the semiparametric approach pre-

sented before in that the sex parametric component acts at the individual

level rather than on sampling occasions. The likelihood is therefore slightly

modified consisting of the product of two sub-components, one for each sex,

based on the product-multinomial structure of the m-array. Note that for

illustration, we considered a constant encounter probability p. According

to other studies on Snow petrels, complex patterns in encounter probabili-

ties are likely to occur, including sex effects, and this would deserve further

attention (Barbraud et al., 2000; Jenouvrier, Barbraud and Weimerskirch,

unpublished results). We do not anticipate that allowing p to vary would

affect conclusions relating to survival.

To completely specify the Bayesian nonparametric model, we need to
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provide prior distributions for all parameters. Specifically, we chose

[p] = Beta(Ap, Bp), [εi] = N(0, σ2
ε), i = 1, . . . , I

[β0] , [β1] , [γ] = N(0, σ2
β),

[bk] = N(0, σ2
b ), k = 1, . . . , K,

where the parameter σb controls the degree of smoothing for the covariate.

Following Brooks et al. (2000), we chose Ap = Bp = 1 which leads to a

uniform distribution, while following Ruppert et al. (2003), σ2
β was set to

106 and priors for hyperparameters were chosen as

[
σ2

b

]
,

[
σ2

ε

]
= Γ−1(0.001, 0.001).

All priors were selected as sufficiently vague in order to induce little prior

knowledge, but can be easily refined if required. We generated two chains

of length 1100000, discarding the first 100000 as burn-in. These simulations

took approximatively 100 hours on a PC (512Mo RAM, 2.6GHz CPU). Con-

vergence was assessed using the Gelman and Rubin statistic also called the

potential scale reduction, which compares the within to the between vari-

ability of chains started at different and dispersed initial values (Gelman,

1996). We found that the Markov chains exhibit good mixing and moderate

autocorrelation. According to our experience, inference based on P-splines

within the Bayes framework may be sensitive to the choice of priors, espe-

cially regarding σb (see Crainiceanu et al., 2004a for a discussion of prior

distributions for nonparametric P-spline regression). In order to check for

the robustness of our results, we ran our model using different priors and in

all cases there were only minimal changes.
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We used the software WinBUGS (downloadable freely from http://www.mrc-

bsu.cam.ac.uk/bugs/) by calling it from software R through the package

R2WinBUGS (see R web site at http://r-project.org/ and Crainiceanu et

al, 2004b for implementation examples of nonparametric Bayesian P-splines

in WinBUGS). Priors and likelihood are specified with WinBUGS, while it

appears more useful in practice to process data, set initial values, check for

convergence and draw inference after the model is fitted using R. The codes

used for fitting the model are available from the first author on request.

Posterior medians, standard deviations, and 95% credible intervals are

given in Table 1.

[Table 1 about here.]

Because it does not contain 0, the posterior credible interval for parame-

ter γ suggests that the sex of individuals affects the survival probability.

As demonstrated by other studies (Jenouvrier, Barbraud and Weimerskirch,

unpublished results), male petrels survive better than females, whatever the

climatic conditions (see Figure 2).

Of particular interest, it appears clear that survival is nonlinearly re-

lated to the SOI covariate (Figure 2). When the SOI increases, survival first

decreases and then clearly increases, being maximal for higher SOI values.

From a biological point of view, lower values of the SOI may favor access to

prey, whereas higher values may improve prey abundance (Loeb et al., 1997),

resulting in the non-linearity found.

[Figure 2 about here.]
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Note that the encounter probability was around 53%, in agreement with

a recent study on Snow petrels (Jenouvrier, Barbraud and Weimerskirch,

unpublished results).

6. Discussion

This paper presents a Bayesian approach for nonparametric modeling of sur-

vival estimated using capture-recapture data, where smooth functions were

modeled as penalized splines. Extensions such as additive and semipara-

metric models are straightforward within the unified framework based on

the mixed model representation. In addition, due to the hierarchical struc-

ture of our Bayesian approach, the degree of smoothness is data-driven and

controlled by the smoothing parameter estimated jointly with the unknown

regression parameters. There are several directions in which the methodology

used here could be extended in future research.

The simplest way of looking at patterns of variation in survival would be

to consider a nonparametric trend with time. Due to their importance in a

context of global warming, we focused on the effect of a climate indicator

on survival but other covariates are possible such as e.g. age or density (see

Section 1). Individual covariates may affect survival as well. For example,

survival of small birds is often believed to increase with increasing body

mass (e.g. Covas et al., 2002). In such a case, sufficient statistics like the

m-array no longer exist and we would have to evaluate the probability of each

individual capture history. This is the subject of ongoing work. Individual

covariates changing over time can exhibit missing values when individuals are

undetected. In this regard, the Bayesian approach can be easily extended by

specifying a probability distribution for the covariate (Pollock, 2002).

15
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Of course, we dealt with survival only, but other demographic parameters

can be considered. A Bayesian approach has already been used by Dupuis

(1995) and King and Brooks (2003) for example to estimate dispersion pa-

rameters and by Brooks et al. (2004) to estimate growth rate, so that non-

parametric and semiparametric modeling of those demographic parameters

could be easily performed.

Here, we did not consider interactions. In our example, an interaction

between sex and the climatic covariate would have consisted in considering

different smooth functions for male and female individuals. To implement

an interaction between two continuous covariates can be achieved using bi-

variate smoothing (Ruppert et al., 2003) but would depend on the nature of

the covariates involved. For example, it would be interesting to include an

interaction between density and climate in a model (Coulson et al., 2001), re-

quiring an extension of the power truncated function basis to a tensor product

basis (Green and Silverman, 1994). However, because of numerical problems,

we expect radial smoothers to be a better choice (Crainiceanu et al, 2004b).

In the study of spatial patterns in demographic parameters, geographical

covariates would be worth considering, for example latitude and longitude

coordinates. In such cases, the close relationships between splines and kriging

(Cressie, 1993) would be useful in extending our approach (Ruppert et al.,

2003). The possibility to include geographical and non-geographical covari-

ates within the framework we developed here is the object of ongoing work.

Model selection is another important research topic. King and Brooks

(2002a; 2002b) successfully made used of Reversible Jump MCMC (Green,

1995) in order to select among a large set of models for estimating sur-
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vival and dispersion parameters. However, this approach is not yet imple-

mented in standard software and a particular treatment is therefore needed

for each model considered. Another option is the deviance information crite-

rion (DIC) introduced by (Spiegelhalter et al., 2002). The DIC is a Bayesian

analogue to the Akäıke information criterion penalizing the fit of a model

measured by the deviance with the complexity of a model represented by

its number of parameters. This criterion is available in WinBUGS. Model

selection provides a test for nonlinearity by contrasting the DIC value for a

model that fits the relevant covariates nonparametrically with the DIC value

for the corresponding model that fits the terms linearly. Barry et al. (2003)

recommend caution in using the DIC for comparing models. However, for

the Snow petrels example, the semiparametric model of Equation (8) has

a DIC value of 17030.6, while for the model where the covariate is entered

linearly, we found a DIC value of 18349.3; this very large difference suggests

that nonlinearities were needed to represent variation in survival.

Goodness-of-fit has not been considered here, but Bayesian p-values may

be obtained, as explained in Brooks et al. (2000).

We made the implicit assumption that the covariates were measured with-

out error. However, in trying to exhibit density-dependence phenomena for

example, covariates such as population sizes are often subject to measure-

ment error. Among several methods for dealing with imperfect measurements

in regression models (e.g. Carroll et al., 1995), we regard the approach pro-

posed by Carroll et al. (1999) and its recent Bayesian extension (Berry et al.,

2002) as the most promising, since the regression function is modeled with

P-splines, while the covariate is treated as a latent random variable and
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integrated out using MCMC methods.
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Résumé

Les modèles de capture-recapture servent à estimer la survie d’une population

sauvage, grâce à des données issues du marquage et du suivi dans le temps

d’individus. Il est d’une importance toute particulière de pouvoir expliquer

les variations de survie en fonction de variables judicieuses. Nous développons

des modèles de régression nonparamétriques et semiparamétriques pour la

probabilité de survie des modèles de capture-recapture. Nous nous plaçons

dans un cadre Bayésien, et l’estimation des paramètres s’effectue grâce à des

méthodes MCMC. Nous illustrons notre travail par l’étude de la survie de

Pétrels des neiges comme une fonction non-linéaire d’une variable climatique,

en utilisant des données d’un suivi de 40 années concernant des individus

nichant sur l’ile des Pétrels, en Terre Adélie.
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Figure 1. Graphical model for the nonparametric survival model (see
Equation (3)): the large rectangle represents repetition over sampling occa-
sions; variables are shown within circles; constants are shown within squares;
stochastic dependencies are denoted by full arrows whereas logical depen-
dencies are denoted by broken arrows. Here, i = 1, . . . , I, p = 0, . . . , P and
k = 1, . . . , K.
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Figure 2. Annual variations in survival of male (solid line) and female
(dashed line) Snow petrels, as a function of the standardized Southern Oscil-
lation Index (SOI) using the semiparametric model ( Equation (8)). Medians
with 95% pointwise credible intervals are shown.
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Table 1
Posterior medians, standard deviations, and 95% credible intervals for the

semiparametric model applied to the Snow petrels data set (see
Equation (8)).

Parameter Median St. Dev. 95% Cred. Int.
β0 0.22 2.66 [-4.79;4.01]
γ -0.22 0.09 [-0.40;-0.05]
β1 -4.36 2.07 [-7.64;-1.85]
σb 3.76 1.66 [1.33;7.26]
σε 8.85 1.38 [6.46;11.75]
p 0.53 0.01 [0.52;0.55]
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