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Abstract

Procedures for analyzing and comparing healthcare providers�e¤ects on health services delivery and out-

comes have been referred to as provider pro�ling. In a typical pro�ling procedure, patient-level responses are

measured for clusters of patients treated by providers that in turn, can be regarded as statistically exchange-

able. Thus, a hierarchical model naturally represents the structure of the data. When provider e¤ects on

multiple responses are pro�led, a multivariate model rather than a series of univariate models, can capture

associations among responses at both the provider and patient levels. When responses are in the form of

charges for healthcare services and sampled patients include non-users of services, charge variables are a mix

of zeros and highly-skewed positive values that present a modeling challenge. For analysis of regressor e¤ects

on charges for a single service, a frequently used approach is a two-part model (Duan, Manning, Morris, and

Newhouse 1983) that combines logistic or probit regression on any use of the service and linear regression on

the log of positive charges given use of the service. Here, we extend the two-part model to the case of charges

for multiple services, using a log-linear model and a general multivariate log-normal model, and employ the

resultant multivariate two-part model as the within-provider component of a hierarchical model. The log-

linear likelihood is reparameterized as proposed by Fitzmaurice and Laird (1993), so that regressor e¤ects

on any use of each service are marginal with respect to any use of other services. The general multivariate

log-normal likelihood is constructed in such a way that variances of log of positive charges for each service

are provider-speci�c but correlations between log of positive charges for di¤erent services are uniform across

providers. A data augmentation step is included in the Gibbs sampler used to �t the hierarchical model,

in order to accommodate the fact that values of log of positive charges are unde�ned for unused service.

We apply this hierarchical, multivariate, two-part model to analyze the e¤ects of primary care physicians

on their patients�annual charges for two services, primary care and specialty care. Along the way, we also

demonstrate an approach for incorporating prior information about the e¤ects of patient morbidity on re-

sponse variables, to improve the accuracy of provider pro�les that are based on patient samples of limited

size.

Key Words: Gibbs sampler; Data augmentation; Rejection sampling; Primary care; Referral to special-

ists; Point-of-service health plan.
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1 INTRODUCTION

1.1 Provider Pro�ling

Procedures for analyzing and comparing providers�e¤ects on healthcare delivery and outcomes have been

referred to as provider pro�ling (DeLong et al. 1997; Normand, Glickman, and Gatsonis 1997; Daniels and

Gatsonis 1999). In early pro�ling studies, provider e¤ects were typically represented as �xed parameters

(Blumberg 1988; Hannan, Kilburn, O�Donnell, Lukacik, and Shields 1990; Williams, Nash, and Goldfarb

1991; Salem-Schatz, Moore, Rucker, and Pearson 1994), applying what Goldstein and Spiegelhalter (1996)

have referred to as an "independent" model. In more recent studies, statisticians have consistently preferred

hierarchical models (Thomas and Longford 1994; Goldstein and Spiegelhalter 1996; Normand, Glickman,

and Gatsonis 1997; Daniels and Gatsonis, 1999; Burgess, Christainsen, Michalak, and Morris 2000; Shaihan

et al. 2001; Landrum, Normand, and Rosenheck 2003; Liu, Louis, Pan, Ma and Collins 2003). This evolving

consensus stems from the design of the typical pro�ling study, in which a patient-level response is measured

for clusters of patients treated by providers that in turn, can be regarded as statistically exchangeable

(Goldstein and Spiegelhalter 1996). Patient sample sizes and morbidity burden often vary widely between

pro�led providers, and although researchers routinely employ structural models to control for variation in

morbidity, the e¤ectiveness of such approaches is incomplete and inconsistent (Green and Wintfeld 1995;

Iezzoni 1997; Shaihan et al. 2001). Thus, hierarchical models represent a better conceptual �t and can

be expected to provide more accurate and precise estimates of provider e¤ects (Goldstein and Spiegelhalter

1996; DeLong et al. 1997; Burgess et al. 2000; Shaihan et al. 2001).

1.2 Multivariate Provider Pro�ling

The majority of reported hierarchical pro�ling studies have involved univariate responses (Landrum,

Normand, and Rosenheck 2003). However, important research and policy questions often involve multivariate

responses and the associations among them. For example, the association between the use of primary care

and specialty care is of interest to healthcare policy-makers and payers. There is evidence that medical

and surgical specialists provide more resource-intensive services than do primary care physicians (PCPs),

even when managing common, uncomplicated problems (Green�eld et al. 1992; Carey et al. 1995). Such

evidence has contributed to concerns that patients who self-refer to specialists for routine care might incur

unnecessary expense and expose themselves to unnecessary tests or procedures (Franks, Clancy, and Nutting

1992); concerns that in turn, have contributed to decisions by managed care organizations to establish

"gatekeeping" rules for health maintenance organization (HMO) members, whereby a visit to a specialist

1
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is paid for only if referral to the specialist was approved by a member�s PCP (Kerr, Mittman, Hays, Siu,

Leake, and Brook 1995).

Gatekeeping has been unpopular with patients (Bodenheimer 1996, Grumbach et al. 1999) and PCPs

(Halm, Causino, and Blumenthal 1997; Peter, Reed, Kemper, and Blumenthal 1999) who regard it as a

barrier to care, and in response, managed care organizations have increasingly o¤ered "point-of-service"

(POS) plans, that blend HMO, preferred-provider, and traditional indemnity bene�ts, allowing members to

bypass their PCPs and self-refer to specialists in exchange for higher out-of-pocket payments (Bodenheimer

1996). In a study of 3 geographically diverse POS plans, 17% to 30% of members who visited specialists

self-referred (exercising their preferred-provider or indemnity bene�t) while the remainder obtained referrals

from their PCPs (Forrest et al. 2001). Those who self-referred reported less satisfaction with their PCPs

and more established relationships with their specialists (Braun et al. 2003), suggesting that PCPs a¤ect

patients�utilization of specialists both directly by approving or disapproving referrals and indirectly through

the quality of their work with patients.

1.3 A Multivariate Two-Part Model

In analyses that include users and non-users of a health service, charges for that service are a mixture

of zeros and highly-skewed, continuously distributed, positive values that cannot be approximated by any

simple parametric form. This mixture can be thought of as arising from a two-part process, the �rst part

determining whether any use of the health service occurs and the second part determining the amount of

charges given use, hence, the conceptual basis for the two-part model (Duan, Manning, Morris, and Newhouse

1983). Under the two-part model, charges for a health service are represented by a binary variable, U that

equals 1 if any of the service was used and 0 if not, and a continuous variable Y that equals the log of

charges if U = 1. E¤ects of covariates on U are modeled using logistic or probit regression and on Y jU = 1 ,

using a linear model with normal errors or generalized linear model with gamma errors (Diehr, Yanez, Ash,

Hornbrook, and Yin 1999).

Here, we extend the two-part model to the case of multiple charge variables, using a log-linear model

and a general multivariate log-normal model, and employ the resultant multivariate two-part model as the

within-provider, or likelihood component of a hierarchical model. For p charge variables, or services, the

multivariate two-part model involves p deterministic and
pP
k=1

4 (k � 1) stochastic associations between ele-

ments of variable vectors U and Y. These within-patient associations and approaches to modeling them are

presented schematically for p = 2, in Figure 1. Following Fitzmaurice and Laird (1993), we re-parameterize

the log-linear model, so that random provider e¤ects on a patient�s probability of use of each service are
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marginal with respect to use of other services, while within-patient associations between use of di¤erent

services are represented as conditional log odds ratios.

Modelling the logs of positive charges is complicated by the fact that observed vectors, y =(y1; :::; yp)
0

contain unde�ned elements for patients who do not use all services. Thus, we assume the presence of an

underlying vector, Y� =
�
Y �1 ; :::; Y

�
p

�0
from a general multivariate normal distribution, representing the

potential logs of positive charges, and let Yk = Y �k if Uk = 1 and Yk be unde�ned if Uk = 0, for k = 1; :::; p.

To �t the model as a function of Y�, we include a data augmentation step in the Gibbs sampler used to �t

the hierarchical model, that replaces unde�ned elements of y with random draws from the full conditional

distribution of the corresponding subvector of Y� at each Gibbs iteration (Tanner and Wong 1987; Gelfand

and Smith 1990). The resultant augmented response vectors, y� are free of unde�ned elements, yet are

informed only by the observed data and model assumptions. Hence, the augmentation is true to the fact

that unde�ned elements correspond to observed values of charges that are zero, not missing.

Three other points about the speci�cation of the general multivariate log-normal model deserve emphasis:

First, as suggested in Figure 1, we regress each element of Y �k , on indicators of any use of services other

than k, in order to estimate the e¤ects of any use of one service on the log of positive charges for each other

service. Second, we allow the variance of log of positive charges to be provider-speci�c, but moderate that

assumption through the use of a prior speci�cation. And third, we assume that correlations between the

logs of positive charges for di¤erent services are uniform across providers.

1.4 Related Work

Landrum, Normand, and Rosenheck (2003) describe a hierarchical multivariate pro�ling model that

is similar to ours in many respects, but takes an entirely di¤erent approach to modeling within-patient

associations. They use a pair of two-part models to estimate provider e¤ects on utilization of two services,

outpatient and inpatient mental health care. The �rst part of each of their two models is a probit regression

on any use of service and the second part is a multivariate normal regression on 3 measures of level of service

use. Substantive considerations led them to represent the within-patient association between utilization of

the two services solely through random patient e¤ects that are shared between the two probit regressions

but not with the second part of either of the two models. The result is that each patient�s e¤ect on the

probability of any use of one service is assumed to be the same as that patient�s e¤ect on the probability

of any use of the other service and given any use of the other service, independent of the level of use of the

other service. Additionally their models assume that if both services are used, the level of use of each service

is independent of the level of use of the other. None of these assumptions would have been appropriate to

3
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the application that we were considering, as suggested by the above discussion of the association between

the use of primary care and specialty care.

A small number of other reported hierarchical pro�ling studies have also involved multivariate responses.

Landrum, Bronskill, and Normand (2000) pro�led hospitals that treated patients for myocardial infarction, by

estimating a latent quality trait using 4 binary measures of treatment quality and outcome. Burgess, Lourdes,

and West (2000) pro�led psychiatric hospitals by estimating hospital-speci�c time-series parameters a¤ecting

a binary indicator of appropriate post-hospitalization care, measured in 10 consecutive years. Bronskill,

Normand, Landrum, and Rosenheck (2002) pro�led cardiac surgeons by estimating parameters that described

their longitudinal e¤ects on post-operative mortality over 6 consecutive years and pro�led mental health

networks by estimating their longitudinal e¤ects on rates of psychiatric re-admission. None of these three

studies involved health care charges as a response or employed a two-part model as we do here.

2 DATA SOURCE AND RISK ADJUSTMENT

2.1 The POS Health Plan Study

To evaluate the performance of our pro�ling model, we drew a sample of 50 primary care physicians

(PCPs), all family physicians, participating in a POS plan o¤ered by a not-for-pro�t insurer in the Northeast.

The POS plan was one of three that contributed administrative data to a large study of referral patterns in

POS health plans (Forrest et al. 2001). Each member of the northeastern POS plan selected a PCP from

among those participating in the plan; female members could optionally select an obstetrician-gynecologist

as a second PCP (an "ObGyn-PCP"); and all members could change PCPs and/or ObGyn-PCPs as often

as they wished. When a member exercised the HMO bene�t, the member�s PCP or ObGyn PCP functioned

as a gatekeeper, deciding whether to authorize specialist referrals. Alternatively, a member could exercise

the preferred-provider or indemnity bene�t and self-refer to a specialist, at higher out-of-pocket cost.

2.2 Pro�ling Study Sample Selection

In order to justify the assumption of provider exchangeability, we chose to pro�le PCPs from one primary

care specialty, family practice, and in order to assure that each PCP�s patient sample would include an

adequate number of users of specialty care, we selected the 50 family practice PCPs with the largest case-

loads of POS plan members. Our patient sample consisted of all adult, male POS plan members who were

enrolled for 12 months of 1996, were assigned solely to one of the 50 selected PCPs, received at least one

claimed health service, and were not diagnosed with a psychiatric disorder. Reasons for the exclusions were

4
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as follows: females and members that changed PCPs during 1996 because our model could not estimate

the combined e¤ects of two or more PCPs on a patient�s utilization; members younger than 18 because we

planned to later compare family practice PCPs with internal medicine PCPs, who do not generally treat

that age group; members 65 and older because the POS plan did not cover seniors; members enrolled fewer

than 12 months because we required 12 months of claims data; members with psychiatric diagnoses because

psychiatric claims data was not available; and members without claims because at least one claim was

necessary for risk adjustment. Applying these criteria, 3,308 patients were included, resulting in within-PCP

sample sizes ranging from 30 to 152.

We used annual allowed charges per patient by service to measure utilization. We chose allowed charges

rather than billed charges, because allowed charges were set by the managed care plan and therefore generally

uniform across providers. Although the model presented in Section 3 can be applied to any number of services,

the application presented in Section 4 involves just two, primary care and specialty care; where primary care

and specialty care refer to outpatient evaluation and management services provided by PCPs and medical

and non-ophthalmologic surgical specialists, respectively.

2.3 Risk Adjustment Using ACGs

For the POS study, each patient had been assigned to one of 93 Adjusted Clinical Groups (ACGs),

mutually exclusive categories based on age, gender, and 12 months of diagnoses. The ACGs were developed

by researchers and practicing physicians to sort patients, solely based on information from health care claims,

into face-valid categories predictive of current and future health services utilization (Health Services Research

and Development Center 2001). The ability of ACGs to predict utilization can be roughly measured by an

ANOVA of annual, per patient charges for ambulatory health services, using ACGs as a one-way classi�cation.

Investigators have done so, using data from various public- and private-sector health plans, and have obtained

values of R2 ranging from .34 to .47 (Weiner, Star�eld, Steinwachs, and Mumford 1991; Reid, MacWilliam,

Verhulst, Roos, and Atkinson 2001).

Each of the 3,308 selected patients was in one of 40 ACGs. (Only 40 of 93 ACGs were represented

because many applied only to women or children.) Some of the 40 ACGs were represented so infrequently

that we could not validly estimate their e¤ects on utilization solely on the basis of information contained in

our patient sample. For example, six ACGs had frequencies of less than 10 among the full 3,308 patients,

and �ve had frequencies of one or two among the 1,004 patients with positive charges for specialty care.

However, each of the 40 ACGs was well represented in the overall POS plan membership from which our

sample had been drawn. Thus, using the 38,878 adults enrolled in the POS plan for 12 months of 1996, we

5
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ranked the 40 ACGs on each of the two services, primary care and specialty care, on the basis of percent

of members using the service and mean charges among users of the service, resulting in four sets of ranks.

Hence, for each ACG that was infrequent in our pro�led sample, we had identi�ed other ACGs of similar

rank that were better represented, allowing us through model speci�cation (described in Section 3.1) to

borrow strength from well-represented ACGs in estimating the e¤ects of infrequent ACGs.

3 MODEL SPECIFICATION

3.1 Likelihood

Let Cijk =

8><>: 0 if Uijk = 0

exp
�
Y �ijk

�
if Uijk = 1

, where Cijk represents annual allowed charges (in dollars) for

service k, for patient j , of PCP i , and Uijk and Y �ijk are distributed as de�ned in Sections 3.1.1 and 3.1.2.

3.1.1 Part One: Reparameterized Log-Linear Model

For part one of the likelihood, let

P (Uij = uij j	ij ;
) = exp
�
	0
ijuij +


0wij �A(	ij ;
)
	
;

whereUij = (Uij1; : : : ; Uijp)
0;	ij =

�
 ij1; : : : ;  ijp

�0
;Wij = (Uij1Uij2; : : : ; Uijp�1Uijp; : : : ; Uij1Uij2 � � � Uijp)0

is a vector of 2p�p�1 two- and higher-way cross products of elements ofUij ; 
 =
�
!12; ::; !(p�1)p; : : : ; !12:::p

�0
;

and A(	ij ;
) = log
P
Uij

exp(	0
ijuij +


0wij ) is a normalizing constant, with
P
Uij

representing summation over

all 2p possible values of Uij .

Note that  ijk represents the log odds of any use of service k, given no use of any other service. However,

since we are interested in parameters that represent the marginal, rather than conditional log odds of any use

of each service, following Fitzmaurice and Laird (1993), we make the 1:1 transformation (	ij ;
)! (�ij ;
),

where �ij = (�ij1 ; :::; �ijp) and �ijk = E(Uijk ), k = 1; :::; p. We then characterize the e¤ects of ACGs and

PCPs on the probability of any use of service k by letting �ijk = logit
�1 ��ijk� = exp ��ijk� =�1 + exp ��ijk�	,

where

�ijk = �
0
kB(x

a
h(ij )k) + �

a
h(ij )k + �

a
ik :

Here, h = 1; :::; q represent ACGs; h(ij ) indicates that h is a function of i and j (because each patient is as-

signed to one and only one ACG); xah(ij )k is the prior rank of ACG h with respect to the percentage of members

using service k in the larger POS plan sample (as described in Section 2.3); B(�) = fB0(�); B1(�); :::; B5(�)g0

is a B-spline sequence for a piecewise cubic polynomial with two equally-spaced interior knots, each with two
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continuous derivatives (de Boor 1978); �k= (�k0; �k1; : : : ; �k5)
0 is a corresponding parameter vector; �ah(ij )k

is the "extra-rank" e¤ect of ACG h; and �aik is the e¤ect of PCP i . By "extra-rank" e¤ect we mean that

�ah(ij )k is the e¤ect of ACG h that cannot be explained by the B-spline expansion of its prior rank.

The interpretation of the parameter vector, 
 is not a¤ected by the variable transformation, thus the

elements of 
 represent conditional log odds ratios, log ratios of conditional odds ratios, and so on, as in the

untransformed log-linear model (Liang, Zeger, and Qaqish 1992). Note that if p = 2, 
 consists of a single

element, representing the log odds ratio for any use of the two services.

3.1.2 Part Two: General Multivariate Log-Normal Model

Let Y�
ij =

�
Y �ij1; : : : ; Y

�
ijp

�0 v Np ��ij ;�i�, where �ij = (�ij1 : : : ; �ijp)0 and
�ijk = �

0
kB(x

b
h(ij)k) + �

b
h(ij)k + �

b
ik + 


0
kuij;�k:

Here, xbh(ij)k is the prior rank of ACG h with respect to mean charges among users of service k in the larger

POS plan sample (as described in Section 2.3); B(�) = fB0(�); B1(�); :::; B5(�)g0 is a B-spline sequence for a

piecewise cubic polynomial with two equally-spaced interior knots, each with two continuous derivatives; �k =

(�k0; �k1; : : : ; �k5)
0 is a corresponding parameter vector; �bh(ij)k is the extra-rank e¤ect of ACG h; �

b
ik is the

e¤ect of PCP i ; and uij;�k = (uij1; : : : ; uij;k�1; uij;k+1; : : : ; uijp)0, is the vector, uij less element uijk. The

p � 1 elements of 
k represent the change in mean of log of positive charges for service k given any use of

each of the other services.

Covariance matrix, �i, is modeled using a "separation strategy" (Barnard, McCulloch, and Meng 2000),

letting �i = diag (�i)R diag (�i), where �2i =
�
�2i1; :::; �

2
ip

�0
is PCP-speci�c. Because Cijk>0 is assumed

to have a log-normal distribution, the posterior expectation of Cijk depends on both the expectation and

variance of Y �ijk . Thus, by allowing the variance of Y
�
ijk to be PCP-speci�c, each PCP�s e¤ect on charges can

be more accurately estimated. Note that correlation matrix, R contains information about within-patient

correlations between log of positive charges for di¤erent services and that those correlations are assumed to

be uniform across PCPs. Also note that R is assumed to be independent of U, an assumption that may be

inappropriate for some applications involving p > 2.

3.2 Prior Distributions

PCP Regression E¤ects. Let �i =
�
�a0i ;�

b0
i

�0
� N(0;D), identically and independently for PCPs

i = 1; : : : ;m, where �ai = (�ai1; : : : ; �
a
ip)

0 and �bi = (�bi1; : : : ; �
b
ip)

0 are regression e¤ects from parts one and

two of the likelihood, respectively.
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ACG Extra-Rank E¤ects. Let �ah v N(0;Ta) and �
b
h v N(0;Tb), identically and independently for

ACGs h = 1; : : : ; q, where �ah = (�ah1; : : : ; �
a
hp)

0 and �bh = (�bh1; : : : ; �
b
hp)

0 are regression e¤ects from parts

one and two of the likelihood, respectively.

PCP-Speci�c Variances, �2i =
�
�2i1; :::; �

2
ip

�0
. For k = 1; : : : ; p, let �2ik � IG

�
no=2; no�

2
ok=2

�
identically

and independently for each i = 1; : : : ;m, where IG (:; :) represents the inverse gamma distribution. Thus,

the prior mean of �2ik is fno= (no � 2)g�2ok, no > 2. The value of no is discussed in Section 4.1.

Correlation Matrix, R. Assume that the prior distribution of R is uniform over the space of correlation

matrices of dimension p (Barnard, McCulloch, and Meng 2000).

Other likelihood parameters. Assume vague priors: For k = 1; : : : ; p, let �k � N6
�
��k ;diag

�
106
	�
,

�k � N6
�
��k ;diag

�
106
	�
, and 
k � N(p�1)

�
�
k ;diag

�
106
	�
, where ��k =(�

�
k0; : : : ; �

�
k5)

0, ��k = (�
�
k0; : : : ; �

�
k5)

0,

and �
k=(�


k1; : : : ; �



k;k�1; �



k;k+1; : : : ; �



k;p)

0 are approximate estimates of �k , �k , and 
k from a non-Bayesian

analysis of the same data. Let 
 � N(p2�p�1)
�
0;diag

�
106
	�
.

Lastly, assume that the prior distributions are mutually independent:

p(�;�;
;
;�;�;�2;R) = p(�)p(�)p(
)p(
)p(�)p(�)p(�2)p(R):

3.3 Hyperprior Distributions

PCP E¤ects Covariance Matrix. Let D� IW(2pDo; 2p), where IW (:; :) represents the inverse Wishart

distribution and Do is diagonal, with diagonal elements equal to rough estimates of the variances of the

elements of �.

ACG Extra-Rank E¤ects Variances, T. Let T = diag (Ta;Tb) = diag
�
(�a1 ; ::; �

a
p; �

b
1; :::; �

b
p)
0	, where

� lk� IG
�
:5; :5�lk

�
, for l = a; b and k = 1; : : : ; p, and the �lk are rough estimates of the �

l
k. T is taken

as diagonal because there is no conceptual basis for suspecting a within-ACG association between the 2p

extra-rank e¤ects.

Prior Means of Variances of Log of Positive Charges, �2o =
�
�2o1; :::; �

2
op

�0
. Assume �2ok� G

�
:5; :5��2k

�
,

for k = 1; : : : ; p, where where G(:; :) represents the gamma distribution and the �2k are set equal to rough

estimates of the �2ok.

Lastly, assume p(D;T;�2o) = p(D)p(T)p(�2o).
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4 MODEL ESTIMATION

4.1 Gibbs Sampler: Design

The model presented in Section 3 can be estimated using a Gibbs sampler comprised of the 12 con-

ditional distributions listed in the Appendix. Seven of the conditionals have closed forms and can be

directly simulated. One of these, f
�
Y�
ij(u=0)

����;
;�bi ;�b;R;�2i ;yij(u=1)�, having a multivariate nor-
mal form, corresponds to the data augmentation step, where Y�

ij(u=1) and Y
�
ij(u=0) are the subvectors

of Y�
ij =

�
Y �ij1; : : : ; Y

�
ijp

�0
corresponding to services that were used and not used, respectively. Note that

no augmentation is necessary for an observation wherein uij = 0, since such an observation contributes no

information to part two of the likelihood.

Five of the conditionals have non-conjugate priors and thus, do not have closed forms, but can be

simulated using the rejection sampling approach described by Zeger and Karim (1991). That approach

uses a multivariate normal envelope, with mean equal to the conditional posterior mode of the simulated

parameter and variance equal to the product of a constant (typically, 2) times the inverse Fisher information

of the log conditional posterior density. The mode and Fisher information for three of the �ve conditionals

without closed forms, f
�
�;


���a;�a; ��; �
;u�, f (�ah j�;
;�a;Ta;u ), and f
�
�ai

����;
;�a;�bi ;D;ui�,
can be readily obtained using a slight modi�cation of the approach described by Fitzmaurice and Laird

(1993) for deriving the maximum likelihood estimates and Fisher information for �;
. The modi�cation

involves adding the �rst and second derivatives of the log of the prior distribution to the respective derivatives

of the log likelihood before solving the score equations and taking the expectation of the Hessian matrix. Since

the priors of all three distributions are multivariate normal, the necessary computations are straightforward.

The fourth conditional without a closed form is f
�
�2i

����;
;�b;�bi ;R; no ;�2o ;y�i �, for i = 1; :::;m, which
can be expressed as the product of a constant that does not depend on �2i and

p
�
�2i
�
=

�
pQ
k=1

�
�2ik
���(no+n+i �p+3)=2

� exp
�
�1
2
tr
�
no diag

�
�2o � ��2i

�
+ Si diag

�
��1i

�
R�1 diag

�
��1i

�	�
;

where Si =
niP
j=1

n
I (10uij > 0)

�
y�ij � �ij

� �
y�ij � �ij

�0o
, y�ij represents the augmented vector of log of positive

charges, n+i =
niP
j=1

I (10uij > 0), and I (�) represents the indicator function. Thus, n+i is the number of

patients of PCP i with use of at least one service (and thus, a vector y�ij with no unde�ned elements). In

deriving p
�
�2i
�
we employed the Jacobian,

�
pQ
k=1

(�ik)

�p�1
for the transformation �i �!

�
�2i ;R

�
. The �rst
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derivative and Hessian matrix of log p
�
�2i
�
are

@ log p
�
�2i
�
=@
�
�2i
�
=
1

2

�
�
�
no + n

+
i � p+ 3

�
��2i + no�

2
o � ��4i + diag

�
��3i

� �
Si �R�1���1i 	

;

and

@2 log p
�
�2i
�
=@
�
�2i
�2
=
1

2

�
no + n

+
i � p+ 3

�
diag

�
��4i

�
� no diag

�
�2o � ��6i

�
� 3
4
diag

�
diag

�
��5i

� �
Si �R�1���1i 	

� 1
4
diag

�
��3i

� �
Si �R�1� diag ���3i �

:

To implement rejection sampling, the conditional posterior mode of �2i can be located using Newton�s method

and its asymptotic variance can be approximated as minus the inverse Hessian of log p
�
�2i
�
evaluated at

the posterior mode.

From p
�
�2i
�
, it is apparent that the shrinkage of �2i toward the prior mean, fno= (no � 2)g�2o , no > 2,

increases with no=n
+
i . For the model estimation described in Section 4.2, we set no = 50, implying that the

prior mean carried a weight roughly equivalent to 50 observations and that for a PCP with n+i = 50, equal

weight was given to Si=n
+
i and �

2
o in estimating �

2
i .

The last conditional without a closed form, f
�
R
����;
;�b;�b;�21; :::;�2m;y�� can be expressed as the

product of a constant that does not depend on R and p (R) = jRj�
n+

2 exp
�
� 1
2 tr

�
R�1A

�	
;where A =

mP
i=1

�
diag

�
��1i

�
Si diag

�
��1i

�	
and n+ =

mP
i=1

n+i . The correlation coe¢ cients in R can be sampled one at a

time, conditioning on the most recent sampled values of the other correlation coe¢ cients and assuring the

positive de�niteness of R, as suggested by Barnard, McCulloch, and Meng (2000). The �rst derivative of

and expected Hessian matrix of log p (R) are

@ log p (R) =@ vechR =
1

2
H0 �R�1 
R�1� vec �A� n+R� ;

and

E
n
@2 log p (R) =@ (vechR)

2
o
= �n

+

2
H0 �R�1 
R�1�H;

where vechR denotes the vector that is obtained from vecR by eliminating the supradiagonal (redundant)

elements of R and H is de�ned by vecR = H vechR (Magnus and Neudecker 1999, pp. 316-318).
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4.2 Gibbs Sampler: Implementation

A program for the Gibbs sampler was written in SAS Interactive Matrix Language (SAS Institute 1999)

and implemented for the case of two services (p = 2), primary care and specialty care, where primary

care and specialty care refer to outpatient evaluation and management provided by PCPs and medical and

non-ophthalmologic surgical specialists, respectively. To select starting points, the posterior distribution of

the model parameters was approximated using non-Bayesian methods. Then for each model �tted, three

parallel chains were initiated from systematically selected, over-dispersed locations in this approximate target

distribution, as suggested by Carlin and Louis (1996, p.196). Convergence was monitored using potential

scale reductions (PSRs) as proposed by Gelman and Rubin (1992). PSRs for all model parameters fell

below 1.1 within the �rst 1,000 iterations of all chains, each of which was then run for an additional 5,000

iterations. The initial 1,000 iterations from each chain were discarded and the �nal 5,000 retained. Posterior

estimates for all models were based on 15,000 retained draws combined from three chains. Each chain of

6,000 iterations required approximately 40 hours of computing time on a Dell Precision 340 workstation with

a 2.4 Gigahertz Pentium 4 processor.

Model �t was assessed by comparing observed annual rates of any use and mean annual charges for each

service to posterior predictions, for groups of patients conditional on their PCP and ACG assignments, and

marginally, for all patients taken together. For the assessment of marginal �t, 300 samples of the parameters

were drawn systematically from the 15,000 retained iterations from the �nal model and used to simulate

300 samples of annual charges for each of the 3,308 patients, for each service. Medians and 95% credible

intervals were computed for each of the quantiles of the simulated distributions. The medians of simulated

quantiles were found to closely track the quantiles of the observed distributions, for both services. For the full

patient sample, the observed and simulated annual rates of service use were 80.6% and 80.7%, respectively

for primary care, and 30.4% and 30.4%, respectively for specialty care; and the observed and simulated mean

annual per patient charges were $122 and $125, respectively for primary care, and $52 and $52, respectively

for specialty care. (Note that mean annual charges include non-users of a service.)

4.3 Estimation of Posterior Deviations

The risk-adjusted e¤ects of individual PCPs on measures of service utilization can be represented by

functions of the model parameters averaged over each PCP�s actual patient sample, here referred to as

"deviations". To de�ne a deviation, we introduce terms similar to those proposed by Normand, Glickman,

and Gatsonis (1997). Each term is with respect to a PCP�s patient sample: A "standardized" mean value

refers to the mean of patients�expected values given the e¤ects of ACGs only, while a "predicted" mean
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value refers to the mean of patients�expected values given the e¤ects of ACGs and the PCP. A "predicted

deviation" is the di¤erence between the predicted and standardized mean values. An "observed deviation"

is the di¤erence between the mean of patients�observed values and the standardized mean value. In each

of these de�nitions, "value" refers the value of a utilization measure, such as the annual probability of any

use of, the log of positive annual charges for, or annual charges for a service type. The observed deviations

are essentially risk-adjusted, �xed e¤ects, while the predicted deviations incorporate both risk adjustment

and the shrinkage due to the hierarchical model assumptions. Because the deviations and standardized

and predicted means are functions of the model parameters, their posterior distributions can be accurately

estimated using the Gibbs sampler output.

For example, for service type k, for PCP i, the predicted mean annual charge is

�Pik =
1

ni

niX
j=1

h
logit�1

n
�0kB(x

a
h(ij )k) + �

a
h(ij )k + �

a
ik

o
� exp

n
�0kB(x

b
h(ij )k) + 


0
kuij;�k + �

b
h(ij)k + �

b
ik + �

2
ik=2

oi
;

standardized mean annual charge is

�Sik =
1

ni

niX
j=1

h
logit�1

n
�0kB(x

a
h(ij )k) + �

a
h(ij )k

o
� exp

n
�0kB(x

b
h(ij )k) + 


0
kuij;�k + �

b
h(ij)k + �

2
ok=2

oi
;

predicted deviation is �Pik = �Pik � �Sik; and observed deviation is �
O
ik =

1
ni

niP
j=1

Cijk � �Sik. The posterior

distribution of each of these quantities can be accurately estimated using the Gibbs output. Note that �Pik is

a function of the PCP-speci�c variance, �2ik, while �
S
ik is a function the prior mean of PCP-speci�c variances,

fno= (no � 2)g�2ok.

4.4 In�uence of the Prior on D

Simulative studies have suggested that the inverse Wishart prior, even with fully minimized degrees of

freedom, can signi�cantly in�uence the posterior distribution of a variance matrix, D, especially if the prior

scale matrix divided by the prior degrees of freedom is far from the true mean of D (Natarajan and Kass,

2000). We were particularly interested in whether the inverse Wishart prior had substantially in�uenced the

shape and orientation of our posterior estimate of D, since correlations between PCP e¤ects were a focus of

study. To this end, we decomposed the posterior mean of D into its eigenvalues and normalized eigenvector

matrix, bE, and then compared the distributions of the diagonal elements of bE0DbE for samples from the prior
12
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and posterior distributions. The diagonal elements of bE0DbE represent the size of D along axes oriented by

the eigenvectors of its posterior mean. To simulate the prior distribution of D, we drew 15,000 samples from

D� v IW (4; 4Do), letting Do = diag
�
f:12; :18; :029; :080g0

�
; our prior rough approximation D.

5 RESULTS

5.1 Within-Patient Associations

Table 1 displays posterior means and credible intervals for within-patient associations between the four

response variables, adjusted for ACG and PCP e¤ects. Only the association between U1 and U2, any use of

primary care and any use of specialty care is statistically signi�cant. The odds ratio, exp (!) is estimated to

be :57(95% CI: :45; :73), indicating that the probability that a patient had visited a specialist was signi�cantly

reduced if that patient had visited his or her PCP at least once during the year, regardless of who that PCP

was.

With regression parameter 
k included in the likelihood, predictions regarding Yk jUk = 1 are conditioned

on the observed value of U�k. However, we would like to make predictions of Yk jUk = 1 that are marginal

with respect to U�k. Thus because neither 
1 or 
2 was statistically signi�cant, we re-estimated the model

excluding these parameters. This change did not signi�cantly a¤ect the posterior estimate of any other

model parameter hence below, we only present results for the model without 
1 and 
2 .

5.2 Risk Adjustment Using ACGs

Figure 2 shows posterior estimates of P (U2 = 1), the probability of any use of specialty care, and

E (C2 jU2 = 1), the expected charges for specialty care given any use of it, adjusted for PCP e¤ects, plotted

against ACG. ACGs are ordered by their prior ranks to demonstrate the �t of the regression splines. (Note

that prior ranks in the two plots correspond to di¤erent ACGs, since ranks on percentage of users and

charges among users were assigned separately.) The estimated posterior means and 95% credible intervals

incorporate both the prior rank e¤ects, �02B(x
a
h2) and �

0
2B(x

b
h2), and the extra-rank e¤ects, �

a
h2 and �

b
h2, and

thus, represent a compromise between the prior rank e¤ects and the observed data. As expected, shrinkage

toward the �tted splines is greater among ACGs with smaller sample sizes. Analogous plots for P (U1 = 1)

and E (C1 jU1 = 1) are not shown, but demonstrate similar phenomena.
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5.3 PCP Regression and Variance E¤ects

Table 2 represents the posterior estimate of D, the covariance matrix of PCP risk-adjusted regression

e¤ects in terms of standard deviations and correlations. The correlation matrix reveals three important

�ndings: First, PCPs that were more likely to see each of their patients at least once during the year had

a lower rate of specialist use by their patients (estimated correlation: �:40; 95% CI: �:71;�:008). Second,

PCPs that provided more services to patients that they saw also had a lower rate of specialist use (estimated

correlation: �:53; 95% CI: �:77;�:21). And third, PCPs that were more likely to see their patients at least

once during the year provided more services to patients that they saw (estimated correlation: :45; 95% CI:

:086; :72).

Figure 3 displays estimated means of individual PCPs�deviations on two measures, the annual probability

of any use of service and the log of positive annual charges given use, for primary care and specialty care.

The distributions of the deviations re�ect the statistically signi�cant positive correlation between �a1 and �
b
1

and lack of a substantial correlation between �a2 and �
b
2, shown in Table 2. The shrinkage from observed to

predicted deviations is not precisely toward 0 (the prior mean of �) because D is not diagonal. (Analogous

deviations from a model estimated with o¤-diagonal elements of D �xed at zero did shrink precisely toward

0 [results not shown].) The greatest overall shrinkage occurs among deviations of log of positive charges

for specialty care, evidently because this measure was informed by the smallest number of observations (as

noted in section 4.2.)

Figure 4 compares estimated posterior means of PCP-speci�c variances of log of positive annual charges,

�2ik, i = 1; :::; 50, k = 1; 2, against PCP-speci�c means of squared residuals from the regression of log of

positive annual charges on ACG and PCP e¤ects. (Only residuals for observed y, not augmented y� were

used in computing the latter quantities.) The number of observations on log of positive charges per PCP

ranged from 20 to 124 for primary care and from 5 to 53 for specialty care hence, the greater overall shrinkage

in Figure 4b compared to 4a.

5.4 Deviations of Charges

Figure 5 displays estimated means and 95% credible intervals for predicted deviations, �Pik, k = 1; 2, of

annual charges for (a) primary care and (b) specialty care for all PCPs, ordered by mean of �Pik. Examining

the credible intervals in Figure 5a reveals that four PCPs provided signi�cantly less and seven provided

signi�cantly more primary care than expected after risk-adjustment. In Figure 6, the estimated means of

PCPs�predicted and observed deviations of annual charges for primary care and specialty care are shown to

have an inverse relationship. Comparison of Figures 5a and 6 reveals that the estimated means of predicted
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deviations of charges for specialty care are positive for all four PCPs identi�ed in Figure 5a to have low

primary care charges and negative for six of seven noted to have high primary care charges.

In Figure 5b, none of the 95% credible intervals for predicted deviations of charges for specialty care

excludes zero. This appears to be due less to a lack of precision of the estimates, and more to the narrowness

of their range, from �$12 to $18. In contrast, the range of the estimated means of predicted deviations of

charges for primary care is from �$37 to $40.

5.5 In�uence of the Prior on D

Figure 7 compares the empirical distributions of the diagonal elements of bE0D�bE and bE0DbE, based on
15,000 draws, as described in Section 4.4. The prior densities of the four diagonal elements are su¢ ciently

�at that it does not appear that the prior distribution of D was substantially informative with respect to

the eigenvalues and eigenvectors, or shape and orientation of the posterior mean of D.

6 DISCUSSION

When pro�ling providers�e¤ects on multiple responses, �tting a multivariate model rather than a series

of univariate models can yield informational gains in the form of insights about provider- and patient-level

associations between responses. For instance, we found that PCPs who were more likely to see their patients

at least once during the year or provided more services to patients that they saw had a lower rate of specialist

use by their patients. This suggests that some PCPs substituted their services for those of specialists while

others may have intentionally or unintentionally encouraged the substitution of specialists�services for their

own. Thus, the overall e¢ ciency of a PCP�s practice could not have been fairly assessed by examining

utilization of primary care or specialty care in isolation.

In addition to informational gains, a multivariate model can yield e¢ ciency gains, speci�cally, by increas-

ing the precision of estimated regression coe¢ cients (Zellner 1962). To evaluate this possibility, we repeated

the estimation described in Section 4.2 excluding patient-level associations, by setting 
 = 0, R = I, and


 = 0. Resultant estimates of regression parameters and their standard errors (not shown) were virtually

identical to those reported in Section 5 for the model that included patient-level associations. A likely ex-

planation for the absence of an e¢ ciency gain was that the design matrices for the regression equations for

primary care and specialty care were highly collinear (Zellner 1962). Each of the design matrices consisted

of indicator variables for 50 PCPs and 40 ACGs and 6 covariates resulting from the B-spline expansions of

prior ACG ranks. For a given patient, the indicators for ACG and PCP were of course, identical across the

regressions while the B-spline covariates were similar (because the prior ACG ranks on utilization of the two
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services were similar).

The distinction drawn by the multivariate two-part model between the probability of any use of a service

and the amount of charges given use facilitated �ndings of substantive importance. For instance, we found

a statistically signi�cant within-patient association between any use but not between the amount of use of

the two services, and not between any use of one service and the amount of use of the other.

The risk-adjustment approach employed here allowed providers to be compared to an internal, as opposed

to external standard, while taking advantage of prior information about the e¤ects of risk categories on

response variables. We consider the standardized mean values introduced in Section 4.3, to represent an

internal standard because they are derived from the pro�led sample. Alternatively, we might have developed

an external standard by estimating e¤ects of ACGs on responses using a separate, larger and more diverse

patient sample (DeLong et al. 1997). We chose an internal standard so that PCPs would be compared to

their peer group of family physicians with moderate-to-large case-loads of POS plan members. An advantage

of this approach was that the marginal distribution of annual per-patient charges simulated using the �tted

model closely matched the observed distribution, a result that would have been unlikely had an external

standard been used. The challenge of estimating an internal standard in this application was that some of

the ACGs were very infrequently represented in the pro�led sample. Our remedy was to incorporate external

information about the e¤ects of ACGs in the form of prior ranks, and then to use those prior ranks to borrow

strength across ACGs within the pro�led sample. The result was an internal standard that was far more

robust than could have been developed solely on the basis of information contained in the pro�led sample.

7 APPENDIX

The model presented in Section 3 can be estimated using a Gibbs sampler comprised of the following 12

conditional distributions:

1. f
�
�;


���a;�a; ��; �
;u� :
2. f (�ah j�;
;�a;Ta;u ) for ACGs h = 1; :::; q:

3. f
�
�ai

����;
;�a;�bi ;D;ui� for PCPs i = 1; :::;m:
4. f

�
Y�
ij(u=0)

����;
;�bi ;�b;R;�2i ;yij(u=1)� for patients j = 1; :::; ni of PCPs i = 1; :::;m:
5. f

�
�;


����b;�b;R;�21; :::;�2m; �� ; �
 ;y�� :
6. f

�
�bh

����;
;�b;R;�21; :::;�2m;Tb;y�� for ACGs h = 1; :::; q:
7. f

�
�bi

����;
;�b;R;�2i ;�ai ;D;y�i � for PCPs i = 1; :::;m:
8. f

�
�2i

����;
;�b;�bi ;R; no ;�2o ;y�i � for PCPs i = 1; :::;m:
9. f

�
R
����;
;�b;�b;�21; :::;�2m;y�� :
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10. f
�
�2ok

���21k; :::; �2mk; no ; �2k �, for services k = 1; :::; p:
11. f (D j�1; :::;�m;Do ) :

12. f
�
� lk

����l1k; :::; �lqk; �lk � for l = a; b and k = 1; : : : ; p.

Seven of the distributions involve conjugate priors and take closed forms that can be directly simulated

using multivariate normal (#4, 5, 6 and 7), gamma (#10), inverse Wishart (#11), and inverse gamma (#12)

distributions. Inverse Wishart draws can be simulated using the method proposed by Odell and Feiveson

(1966). The remaining �ve distributions have non-conjugate priors and thus, do not have closed forms, but

can be simulated using rejection sampling, as outlined in Section 4.1
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9 TABLES

Table 1. Within-Patient Associations Between Utilization of Primary Care (PC) and

Specialty Care (Spc): Estimated Posterior Means and 95% Credible Intervals

Measure of Association Mean 95% CI

exp (!): odds ratio for any use of PC given any use of Spc :57 (:45; :73)

r21: correlation of log of positive charges between PC and Spc :033 (�:035; :10)


1: change in log of positive charges for PC given any use of Spc �:033 (�:092; :024)


2: change in log of positive charges for Spc given any use of PC �:036 (�:18; :11)

Table 2. Standard Deviations and Correlations of PCP Regression E¤ects:

Estimated Posterior Means and 95% Credible Intervals

Std Dev: Correlation: Mean (CI)

PCP E¤ect Mean (CI) �a1 �a2 �b1 �b2

�a1 : log odds any PC :40(:28; :53) �a1 1 (�:71;�:0083) (:086; :72) (�:60; :48)

�a2 : log odds any Spc :39(:28; :52) �a2 �:40 1 (�:77;�:21) (�:50; :53)

�b1: log($>0) for PC :17(:13; :21) �b1 :45 �:53 1 (�:33; :64)

�b2: log($>0) for Spc :11(:063; :16) �b2 �:078 �:002 :19 1

Note: PC = primary care, Spc = specialty care

10 FIGURE CAPTIONS

Figure 1. Within-patient associations between response variables in a multivariate two-part model. The

association between binary variables, U1 and U2 is represented as an odds ratio, between continuous variables

Y1 jU1 = 1 and Y2 jU2 = 1 as a correlation, and between binary and continuous variables, Uk and Yl jUl = 1 ,

k 6= l as a regression of Yl jUl = 1 on Uk.

Figure 2. Posterior estimates of (a) P (U2 = 1), probability of any use of specialty care, and (b)

E (C2 jU2 = 1), expected annual charges for specialty care given any use of it, adjusted for PCP e¤ects,

for ACGs ordered by their prior ranks. Line represents posterior mean of spline function of prior rank.

Scored bars represent posterior means and 95% credible intervals of spline function of prior rank plus extra-

rank e¤ects, �. Dots represent observed (a) proportion of patients with any use of specialty care and (b)

mean charges among users of specialty care in the pro�led sample. Selected ACGs demonstrate relationship

between sample size, n, and shrinkage. (In {b}, n represents number of patient-users of specialty care.)
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Figure 3. Deviation of log of positive annual charges v. deviation of annual probability of any use of

service for (a) primary care and (b) specialty care, for 50 PCPs, each represented by a line. Dots represent

estimated mean of observed deviation and squares represent estimated mean of predicted deviation.

Figure 4. PCP-speci�c variances of log of positive annual charges for (a) primary care and (b) specialty

care for 50 PCPs, each represented by a line. Line intersects bottom axis at mean of estimated posterior

variance and top axis at mean of squared residuals from regression of log of positive charges on ACG and

PCP e¤ects, using PCP�s patient sample. (Scale of top axis is same as bottom axis.)

Figure 5. Deviations of annual charges in dollars, for (a) primary care and (b) specialty care for 50 PCPs

ranked by mean predicted deviation. Dots represent estimated mean of observed deviation. Scored bars

represent estimated mean and 95% credible interval of predicted deviation.

Figure 6. Deviations of annual charges in dollars, for primary care v. specialty care for 50 PCPs, each

represented by a line. Dots represent estimated mean of observed deviation and squares represent estimated

mean of predicted deviation.

Figure 7. Prior and posterior distributions of 15,000 draws of the four diagonal elements of bE0DbE
("variance components" of D) where bE is the matrix of normalized eigenvectors of the posterior mean of D.
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