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Abstract

Normalization has been recognized as a necessary preprocessing step in in a variety of high throughput

biotechnologies. A number of normalization methods have been developed specifically for microarrays, some

general and others tailored for certain experimental designs. All methods rely on assumptions on what values are

expected to stay constant across samples. Most assume some quantities related to the specific signal stay the

same, which is usually not verifiable. Some recent platforms has began to include a large number of negative

control probes that cover a great range of the measured intensity. Using these probes as normalization basis

finally makes it possible to normalize without making assumptions on the behavior of biological signal. We

present a subset quantile normalization procedure that normalizes based on the distributions of nonspecific

control features, without restriction on the behavior of specific signals. This method is compared to two other

leading non-linear normalizations, quantile normalization and loess normalization, using data from Affymetrix

Tissue experiment on Human Gene 1.0 St Array. This method preserves the most biological variation after

normalization while reducing the noise observed on control features. Although the illustration dataset is from an

gene expression experiment, this method is general for all platforms that include a large set of control features,

regardless of the biomedical application. It does not require equal number of features in all samples and

tolerates missing data.
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1 Introduction

High throughput biotechnologies have become increasingly important in biomedical research. Among these,

DNA microarrays is probably the most widely used in applications studying variations of the

transcriptome, the genome and the epigenome. The microarray technology simultaneously quantifies a

large number of DNA or RNA species with various sequences by labeling the target sample with fluorescent

dyes and hybridizing it to features (probes) with complimentary sequences of the target molecules. The

target concentration is reflected in the fluorescent intensities observed on the complementary feature.

Because the hybridization efficiency of each feature is different and unknown, microarrays only provide a

measure of relative abundance of the target molecules. Thus the the quantity of interest on each feature is

the biological variation of its target molecule in different samples. In addition to the quantity of interest, a

number of other factors affect the feature intensities on an array in a systematic way. These factors include

sample preparation, hybridization and array processing. The systematic variations caused by these factors

are of no biological interest and are sometimes referred to as “obscuring variations” (Bolstad et al., 2003).

Sometimes the obscuring variations even exceed the level of biological variations. It has been well

recognized that normalization is a necessary step to remove or reduce such variations and make the data

from different arrays more comparable before further analysis is carried out.

A number of normalization methods have been developed since the introduction of the microarray

technology. Some methods are general and some are tailored towards specific experimental designs.

Regardless of the biological applications, all normalization methods reflect the observation that many

factors causing obscuring variations affect the entire array in some systematic fashion, otherwise the

biological and technical variations on each feature would not be identifiable. For example, one sample may

have higher labeling efficiency and the feature intensities in this sample tend to be higher in general than

that from other samples, or one scanner may give higher readings than another scanner. If the overall

hybridization in different samples is not expected to differ, we would like to remove the global “array

effect” in normalization. When the labeling or scanner effect is the same for all features, a scaling

normalization such as aligning the medians or means of each sample would suffice.

This example illustrates a key issue in normalization: what is expected to be constant across samples? All

normalization methods make such assumptions, explicitly or implicitly. Normalization is then achieved by

equalizing certain summary statistics based on the assumption. The scaling normalization works well only

when the obscuring variation is a linear effect, which is rare in reality. A number of non-linear methods

have been proposed to allow more flexible normalization. Using gene expression as an example, if one
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assumes that only a small set of genes have differential expression, or that up- and down- regulation are

approximately symmetrical, the distribution of gene expression measures on an array should be the similar

across all samples. Quantile normalization (QN) (Amaratunga and Cabrera, 2001; Bolstad et al., 2003)

can be applied in such cases and has been demonstrated to have favorable properties (Bolstad et al., 2003).

Loess normalization removes intensity-dependent biases in differential expression and works well under

similar assumptions (Yang et al., 2002) Sometimes a group of house keeping genes are assumed to have

constant expression across samples and are used as internal controls for normalization. However, there

have been numerous reports that housekeeping genes are found to be quite variable in given situations

(Thellin et al., 1999). Another choice is to use a rank-invariant set of genes (Tseng et al., 2001), whose

expression levels remain a similar rank on an array across samples, and normalize so that expression

measures of these genes are constant. The size of the rank-invariant set depends on the sample data and

measurements from this set may not span the entire intensity range (Yang et al., 2002).

All of the normalization methods mentioned above have one aspect in common: assumptions are made on

the stability of expression levels of certain genes, that is, assumptions on the behavior of specific biological

signal. These assumptions are rarely verifiable. Recently, a series of oligonucleotide arrays with a new

design became available, including the Affymetrix Exon arrays, Gene St arrays, tiling arrays and Illumina

arrays. These arrays include a good number (over ten thousand) of negative control probes that are

designed to monitor the extent of nonspecific binding and to assist background estimation and correction.

Consistent with previous observation (Wu et al., 2004), although designed to measure background noise,

the intensities observed on these negative control probes cover almost the entire range of intensities from

all features, as shown in Figure 1.

The availability of a large number of negative control probes makes it possible to observe the impact of

systematic obscuring variations that normalization procedures hope to remove. These probes are designed

to have no complementary match to the genome/transcriptiome of the targeting species, thus we expect

their specific binding induced intensities to be constantly zero. The nonspecific binding intensities,

however, would be affected by the factors that have overall impact for the entire array, such as labeling

efficiency, scanner setting, time of experiment etc. This makes them the perfect controls for normalization

purpose, since we do expect the intensities on these features to stay constant regardless of how the

biological signal varies from sample to sample. For the first time, we do not have to make assumptions on

the specific biological signals to do normalization.

In this paper, we propose a normalization methods based on a group of negative control features that are
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Figure 1: Probability density function of feature intensities (log2 scale) from an Affymetrix Human Gene
1.0 St array. The 99th percentile and the maximum of negative control (bg) probes are marked to show that
the intensity of control probes span almost the entire range of probe intensity.

designed to measure nonspecific binding, without restriction on the biological signal. We present the results

on an gene expression experiment and demonstrate the improvement in preserving biological variation

while reducing systematic noise. However, the application of this normalization method is applicable to all

platforms that include such controls, regardless of the technology or biomedical application.

2 Data

For illustration, we use the Affymetrix Tissue experiment dataset on Human Gene 1.0 ST Array. A

collection of 11 tissues (brain, breast, heart, kidney, liver, pancreas, prostate, skeletal muscle, spleen, testes

and thyroid), each with three biological replicates, are included in the experiment, giving a dataset of 33

samples (arrays). This data set is provided to the public by Affymetrix at

http://www.affymetrix.com/support/technical/sample data/gene 1 0 array data.affx On this platform,

there are 16,943 negative control probes and 764,885 perfectMatch probes.
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3 Methods

The proposed normalization method does not make assumption on the property of biological signals in

different samples. Instead, we use quantiles of the negative control probes as “anchors” and require that

these statistics are equalized after normalization. Intensities of all probes on an array are adjusted

according to their relationship to the control quantiles on the same array. We term this method the

“subset quantile normalization”, in order to differentiate with the complete QN that makes the

distributions of the entire array equal.

Specifically, for each array a, we estimate the cumulative distribution function (CDF) Fa of the subset of

probes that serve of controls. We use the estimates of Fa to define a reference control distribution F as the

target distribution for the control probes. Now consider any probe on an array, if its raw intensity equals

the qth quantile of the control probes on the same array, its normalized intensity is defined as the qth

quantile from the reference distribution F . That is,

ỹa,j = F−1{Fa(ya,j)}.

We can estimate Fa by the empirical CDF F̂a and use the median of each quantile to define a reference

control distribution F̂ . This works well for most of the data except the tails of the distributions because

F̂−1 is bounded by the observed intensities from the control probes. The probes whose intensity is beyond

the maximum of the control set would have normalized values truncated at F̂−1(1). To avoid the problem

in tail areas, we use a semi-parametric approach. We first estimate Fa parametrically as a mixture of

normal distributions,

Φk
a(x) =

k∑

i=1

πaiΦ(
x − µai

σai

),

where Φ is the standard normal CDF.

The final estimate of Fa is defined as a weighted average of the empirical CDF and the normal mixture

CDF,

F̃a(x) = wΦk
a(x) + (1 − w)F̂a(x).

F is defined with a similar approach. From each array a, let ya,(k) be the kth order statistic of the control

probes. The medians of the order statistics, ȳa,(k) = Mediank(ya,(k)), define the reference control intensity

vector. We use the values ȳa,(k) to estimate a normal mixture distribution Φk =
∑k

i=1 πiΦ(x−µi

σi

) and

compute a weighted average of Φk and the empirical CDF,

F̃ (x) = wΦk(x) + (1 − w)F̂ (x).
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With the CDF estimates F̃ (x) and F̃a(x) available, we define the normalized intensities as

ỹa,j = F̃−1{F̃a(ya,j)}.

We leave k and w as tuning parameters for smoothness. Given k, the parameters for the mixture

distributions πs,µs and σs can be estimated by maximum likelihood using EM algorithm. In practice,

k = 5 gives very good flexibility to a wide variety of distributions. We have used k = 5 and w = .9 in our

example. Our implementation of the method uses the R package Mclust (Fraley and Raftery, 2009) for the

EM estimation of mixture parameters and the R package nor1mix (Mchler, 2007) for the computation of

mixture distribution quantiles.

4 Results

We compare the proposed normalization, subset QN, with two other most widely used nonlinear

normalization methods, the complete QN, and the loess normalization, both found to perform well and are

incorporated in numerous preprocessing modules (Smyth, 2005; Yang et al., 2007; Gautier et al., 2004).

There are several variants of the loess normalization and we have used the cyclic loess normalization

(Bolstad et al., 2003) in this comparison.

First, we examine the distributions of raw intensities on the negative control probes. Since the sequences of

these probes are not present in the human genome, we expect the their intensities to reflect the systematic

array variation instead of biological variation. The empirical distributions of the raw intensities on these

antigenomic probes appear to have different location and scale, as demonstrated by the various medians

and inter-quartile-ranges in Figure 2A, indicating the need for normalization.

The loess and complete QN normalization do not make a lot progress in making these control probes more

comparable across samples, as seen in Figure 2A and 2B. This shows that after loess or complete QN, what

is expected to be constant may still have considerable variation. In contrast, the subset quantile

normalization forces the control probes to have the identical distribution by design (Figure 2D). The loess

normalization is very similar to the complete QN in all comparisons to follow. The results from loess

normalization are therefore omitted in the main text and are provided in supplementary material.

The goal of normalization is certainly not just to make the control data stable. More importantly, we want

to reduce or remove the obscuring variability on the signal-bearing probes. Since the variation observed in

the raw data is a combination of biological variation and obscuring processing variation, we would expect a

good normalization procedure to reduce the variation among replicates and make them more similar. We
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Figure 2: The boxplots of the feature intensities (log2 transformed) from the negative control probes in the
33 samples from 11 tissue types. A. Raw intensities without normalization. B. Cyclic loess normalization is
applied to the complete set of probes including the perfectMatch probes and the negative controls. Shown are
boxplots of the negative controls after normalization. C. Like B but with complete quantile normalization.
D. Like B but with subset quantile normalization.

thus compute the within-tissue variances for all 11 tissue types and average the 11 variances for each probe

as a pooled within-tissue variance. Since the probe intensity variance is commonly observed to vary across

log intensity levels, we stratify the probes into 20 groups based on the average raw intensity level.

Figure 3 compares the pooled within-tissue variances before and after normalization, across the range of

observed intensities. All normalization methods reduce the variability among replicates, compared to the

unnormalized data. Interestingly, the complete QN appears to do a more aggressive adjustment (a grater

reduction of variance), although Figure 2C shows that it does not fully normalize the control probes.

Reducing certain variability alone is only one side of the story and never enough to show the benefit of one

normalization method over another. We also want to make sure that variations of interest, i.e, the actual

biological variations, are preserved in the normalized data. We proceed to compare the cross tissue type

variances. A good normalization would reduce technical variation among replicates, but retain real

biological variation. Figure 10 shows that the complete QN reduces a lot of the between tissue variance,

while the subset QN preserves the variation at the same level as the unnormalized data. This suggests that

the complete QN may have paid the price of reducing signal in order to reduce noise, and may have over
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Figure 3: The within-tissue variance comparison. For each probe, the biological replicate variances for each
of the 11 tissue types are averaged to give a pooled within-tissue variance. The probes are stratified by
average raw intensities into 20 equal-sized groups. Boxplots of the within-tissue variances from before and
after normalization are overlaid for easy comparison.

adjusted in this example.

In order to evaluate the variance and bias trade-off of these normalization methods, we compare the

between- and within-tissue variances of each probe. Since a greater extent of differential expression is

expected between different tissue types than between biological replicates of the same tissue, we compute

the ratio of between and within tissue variances. Because there are real biological variations even between

replicates, a good normalization method may not have the greatest reduction of variance, but will increase

the ratio of between and within tissue variances. In Figure 11 we compare the variance ratio over the range

of average intensity. The ratio in the subset QN group is greater than that from the complete QN over the

entire range of log intensities. The loess normalization result is again very similar to that from complete

QN.

All the above results are done at the feature level. Since this is an experiment on the transcriptome, we

also summarized the data at feature set level, using the RMA (Irizarry et al., 2003) method. We compared

the within-, between-tissue variances and the ratio of variances again. The results are very similar to those

shown in Figures 3 - 11, and are provided in the supplementary file.
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Figure 4: The between-tissue variance comparison. For each probe, the average intensity from the triplicates
of each tissue type is computed and the variance of the tissue average intensities is computed. The probes
are stratified by average raw intensities into 20 equal-sized groups. Boxplots of the between-tissue variances
from before and after normalization are overlaid for easy comparison.

5 Discussion

In this paper we present a normalization method using a subset of antigenomic features. The original

purpose of including these features is to measure the extent of nonspecific binding, in order to estimate and

adjust for background. However, they also serve as great source for normalization for two reasons. First,

they are not expected to hybridize to the target genome or transcriptome, thus the observed intensities on

these features reflect the systematic variation that we hope to remove, and not the biological signal that we

hope to preserve. Second, the empirical observation shows that intensities from these features span almost

the entire range of all intensities, so that we do not have to extrapolate much in the normalization. Using

these probes as a basis for normalization allows us to avoid making assumptions on how the biological

signal behaves in various samples. This is especially useful in situations when we are not comfortable with

the usual assumptions such as the majority of genes do not have significant differential expression or

symmetric up- and down-regulation. Examples include radiation experiments that disrupt the

transcription of a large fraction of genes (Rea et al., 2003) and asymmetric expression regulation under

stress (Weber et al., 2006).

The example we used in the paper is a gene expression experiment. However, this normalization method is
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Figure 5: The ratio of between and within-tissue variances stratified by average raw intensities. Boxplots of
the variance ratio from before and after normalization are overlaid for easy comparison.

applicable to other applications. For example, in studying epigenome, often a sample enriched in

methylated regions is compared to a sample of genomic DNA. The methylation enriched samples tend to

have different composition than the reference genomic sample, probably biased towards GC-rich regions.

To assume that the overall distribution of intensities in these two types of samples to be the same, as done

in complete QN, is less realistic than in many gene expression experiments. Similar problem applies to

ChIP-chip experiments. Using the subset QN methods, samples with large scale differences expected can

still be normalized.

Another benefit of the subset QN is that we no longer require the number of signal bearing probes to be

the same across samples. This would make it easier to handle missing values, or even combining data from

different platforms, as long as the same set of control features are used. This flexibility of subset QN also

allows it to be applied to other high throughput technologies, as long as a subset of control features can be

identified.
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6 Supplementary Figures
The following figures compare the within- and between- tissue variances, and the variance ratio from data
before and after the sub QN or loess normalization. The comparison is done on feature intensity level.
Compared to the sub QN, the loess normalization does a more agreesive adjustment and reduces the within
tissue variance more (Figure 1), but at the price of reducing between tissue variance (Figure 2). The sub
QN preserves the between tissue variance, such that the between/within tissue variance ratio is in general
higher (Figure 3).
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Figure 6: The within-tissue variance comparison for sub QN and loess normalization. For each probe, the
biological replicate variances for each of the 11 tissue types are averaged to give a pooled within-tissue
variance. The probes are stratified by average raw intensities into 20 equal-sized groups. Boxplots of the
within-tissue variances from before and after normalization are overlaid for easy comparison.
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Figure 7: The between-tissue variance comparison for sub QN and loess normalization. For each probe,
the average intensity from the triplicates of each tissue type is computed and the variance of the tissue
average intensities is computed. The probes are stratified by average raw intensities into 20 equal-sized
groups. Boxplots of the between-tissue variances from before and after normalization are overlaid for easy
comparison.

The following figures compare the within- and between- tissue variances, and the variance ratio at the
gene level. The sub QN reduces within tissue variance (Figure 4) and also preserves the between tissue
variance (Figure 5), such that the between/within tissue variance ratio is in general higher (Figure 6).
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Figure 8: The ratio of between and within-tissue variances from sub QN and loess normalization. Ratios
are stratified by average raw intensities. Boxplots of the variance ratio from before and after normalization
are overlaid for easy comparison.
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Figure 9: The within-tissue variance comparison at the gene expression level. Gene level summarization is
calculated with RMA and genes are stratified by average average expression into 20 equal-sized groups. The
genes are stratified by average expression from RMA at default setting.
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Figure 10: The between-tissue variance comparison at the gene expression level. For each gene, the aver-
age expression from the triplicates of each tissue type is computed and the variance of the tissue average
expression is plotted. The genes are stratified by average expression from RMA at default setting.
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Figure 11: The ratio of between and within-tissue variances at the gene level.
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