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Random Effects Models in a Meta-Analysis of the Accuracy of Diagnostic Tests 

without a Gold Standard in the Presence of Missing Data 

 

Summary 

In evaluating the accuracy of diagnosis tests, it is common to apply two imperfect 

tests jointly or sequentially to a study population. In a recent meta-analysis of the accu-

racy of microsatellite instability testing (MSI) and traditional mutation analysis (MUT) in 

predicting germline mutations of the mismatch repair (MMR) genes, a Bayesian approach 

(Chen, Watson, and Parmigiani 2005) was proposed to handle missing data resulting 

from partial testing and the lack of a gold standard. In this paper, we demonstrate an im-

proved estimation of the sensitivities and specificities of MSI and MUT by using a 

nonlinear mixed model and a Bayesian hierarchical model, both of which account for the 

heterogeneity across studies through study-specific random effects. The methods can be 

used to estimate the accuracy of two imperfect diagnostic tests in other meta-analyses 

when the prevalence of disease, the sensitivities and/or the specificities of diagnostic tests 

are heterogeneous among studies. Furthermore, simulation studies have demonstrated the 

importance of carefully selecting appropriate random effects on the estimation of diag-

nostic accuracy measurements in this scenario. 

Key Words: diagnostic test; generalized linear mixed model; missing data; gold standard; 

meta-analysis; Bayesian hierarchical model. 

Running Title: Multivariate meta-analysis of diagnostic tests. 
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1. Introduction  

The performance of a binary diagnostic test is usually represented by sensitivity 

(Se) and specificity (Sp). Sensitivity is also referred to as the true positive fraction, de-

fined as the probability of testing positive given diseased person. Specificity is also 

known as the true negative fraction, defined as the probability of test negative given non-

diseased person (Zhou, Obuchowski, and McClish 2002; Pepe 2003). The true disease 

status is usually measured by a “gold standard” test. However, a definitive “gold stan-

dard” may not be available for some diseases. For example, due to the limitation of labo-

ratory techniques, it is difficult to diagnose Lynch syndrome with certainty (Lynch and de 

la Chapelle 1999), caused by a deleterious germline mutation in one of the mismatch re-

pair (MMR) genes, mainly MSH2 and MLH1.  

When a “gold standard” is not readily available, it is common to apply two or 

more imperfect screening or diagnostic tests to improve accuracy. There is a considerable 

literature discussing the challenges and approaches to assess the performance of diagnos-

tic tests from a single population (Gart and Buck 1966; Joseph, Gyorkos, and Coupal 

1995; Andersen 1997; Johnson, Gastwirth, and Pearson 2001). Under the assumption that 

the two imperfect tests are conditionally independent given the latent true disease status, 

the challenge is to estimate five parameters (i.e., prevalence, the two sensitivities and the 

two specificities) from only three independent cells in a two by two table. Since the 

model is over-parameterized and not identifiable, even Bayesian approaches ⎯ which 

can take advantage of prior knowledge about the accuracy of the tests and the disease 

prevalence ⎯ do not generally converge to the “true” values as the sample size increases 

(Johnson, Gastwirth, and Pearson 2001). 
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To overcome the identifiability problem, sampling from a second population with 

a different prevalence was suggested (Hui and Walter 1980). Assuming that the tests have 

the same accuracy measures in both populations, there are six conditionally independent 

cells which provide enough degrees of freedom to estimate the six parameters (including 

two prevalences, two sensitivities and two specificities). In a recent meta-analysis of sev-

enteen studies to evaluate the accuracy of microsatellite instability testing (MSI) and tra-

ditional mutation analysis (MUT) in predicting germline mutations of mismatch repair 

(MMR) genes, a Bayesian approach  was proposed to handle missing data resulting from 

partial testing (Chen, Watson, and Parmigiani 2005). However, the meta-analysis as-

sumed that the sensitivity of both tests does not differ from study to study, and after cate-

gorizing the studies into a high risk and a low risk groups, the prevalence is homogeneous 

within each group.  

In this article, we relax the above assumptions. We present improved methods for 

estimating the sensitivities and specificities of two imperfect tests based on meta-analysis 

using a nonlinear mixed effects model, which take into account heterogeneity across 

studies through study-specific random effects. We reanalyzed the data published in Chen 

et al. (2005) using the improved methods. 

2. Study Background 

We introduce the scientific question that Chen et al. (2005) and we address. The 

DNA mismatch repair (MMR) system repairs the mismatches in the genome that occur 

during cell duplication. When a person carries a deleterious germline mutation in the 

MMR genes, mainly MLH1 and MSH2, the impaired mismatch repair mechanism gives 

rise to the most common hereditary colorectal cancer syndrome, Lynch syndrome (also 
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known as Hereditary Nonpolyposis Colorectal Cancer, or HNPCC). These Lynch syn-

drome individuals are also at increased risk of a number of other cancers, most notably 

endometrial cancer among females.  

The diagnosis of Lynch syndrome is synonymous with detecting a mutation in the 

MMR genes. However, mutation analysis (MUT) of the MMR genes is costly and not 

always accurate. The main reason is that most mutation analysis techniques fail to detect 

large genomic deletions and rearrangements, which constitute a significant fraction of all 

MMR mutations. Because a defective DNA mismatch repair system can also give rise to 

a tumor phenotype called microsatellite instability (MSI), and MSI testing is relatively 

inexpensive and believed to have a high negative predictive value, it has become a stan-

dard pre-screening procedure for Lynch syndrome (Umar et al. 2004). However, the posi-

tive predictive value of MSI is not known as many sporadic cases (i.e., non-cases who are 

carries) also exhibit MSI. Therefore, understanding the sensitivity and specificity of MSI 

testing in predicting Lynch syndrome has become a priority in the identification of MMR 

mutation carriers. 

A number of research groups compared MSI results to mutation analysis results in 

cancer cases. Table 1 presents a list of seventeen studies included in the Meta-analysis in 

Chen et al (2005). Besides the lack of a gold standard and potential heterogeneity across 

studies, another challenge is the different patterns of missing data due to partial testing. 

The most common missing pattern is that due to the perceived high negative predictive 

value of MSI testing, many studies did not perform mutation analysis on patients whose 

MSI result is negative.  
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Fortunately, the assumption that large genomic deletions and rearrangements do 

not differ from the other mutations in their ability to generate microsatellite instable tu-

mors is biologically reasonable. This gives independence between MSI test result and 

mutation analysis result conditional on the true mutation status. Furthermore, based on 

the studies’ description of subject ascertainment criteria, they can be categorized into low 

risk or high risk groups. We will estimate the accuracy of MSI testing based on the above 

assumptions and observations.   

3. Statistical Methods 

3.1. Notation and the likelihood function 

Let ( )11 10 01 00,  ,  ,  i i i iP P P P  be the probabilities of MSI and MUT both being positive, 

MSI positive and MUT negative, MSI negative and MUT positive, MSI and MUT both 

being negative respectively in study i  for i  = 1, …, I . To describe missing data patterns 

due to partial testing, the following three categories are involved: (I) MSI and MUT both 

measured; (II) MSI measured and MUT unmeasured; (III) MSI unmeasured and MUT 

measured. We define the selection probabilities in the three categories as follows: iAP  = 

Pr (selected to measure MSI only), and iBP  = Pr (selected to measure MUT only), from 

which it follows that the probability of category I is 1 iA iBP P− − . Table 2 presents a typical 

data structure for study i  when a subset of individuals is only tested by MSI or MUT.  

Under the assumption of missing at random for the selection process in the sense 

of Little and Rubin (Little and Rubin 2002), the likelihood function can be factored into 

( ) ( ) ( ), | | |i i i iL data L data L dataϑ ϑ= ×θ θ  where ( ),  i iA iBP Pϑ =  and ( )11 10 01 00,  ,  ,  i i i i iP P P P=θ . 

Assume the independence of study results conditional on iθ , the log likelihood for 

( )1, , I=θ θ θ…  is the summation of the contribution from each study, that is  
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( ) ( ) ( ) ( ) ( ){

( ) ( ) ( ) ( )}
11 11 10 10 01 01 00 00

1 11 10 0 01 00 1 11 01 0 10 00

| log log log log

log log log log

i i i i i i i i
i

i m i i i m i i im i i im i i

LogL data n P n P n P n P

n P P n P P n P P n P P

= + + + +

+ + + + + + +

∑θ
 

Let iπ  be the prevalence of true disease, ( ),  ,  ,  iA iB iA iBSe Se Sp Sp  be the latent sensi-

tivities and specificities for MSI and MUT in study i  respectively. Under the assumption 

of independence for the two testing procedures, we have the following relationship,  

( )( )( )11 1 1 1i i iA iB i iA iBP Se Se Sp Spπ π= + − − − , 

( ) ( )( )10 1 1 1i i iA iB i iA iBP Se Se Sp Spπ π= − + − − , 

( ) ( ) ( )01 1 1 1i i iA iB i iA iBP Se Se Sp Spπ π= − + − − ,  

( )( ) ( )00 1 1 1i i iA iB i iA iBP Se Se Sp Spπ π= − − + − . 

3.2. Accuracy of diagnostic tests based on a random effects model  

To take the potential heterogeneity of the prevalence, sensitivities and specifici-

ties across studies into account, in general, we consider a random effects model, specified 

as follows, 

( ) 0 1logit |i i ij iXπ ε η η ε= + + , 

( )logit |iA iA A iASe µ α µ= + ,  

( )logit |iB iB B iBSe µ α µ= + ,  

( )logit |iA iA A iASp ν β ν= + ,  

( )logit |iB iB B iBSp ν β ν= + ,  

( ) ( )',  ,  ,  ,  ~ ,  i iA iB iA iB Nε µ µ ν ν 0 Σ , 

where log ( ) log( ) log(1 )it p p p= − − , and ijX  denotes the risk group status of the jth individ-

ual in the ith study with value 1 for being in the high risk group and 0 for being in the 

lower risk group. The prevalence of disease, iπ , is usually assumed to be independent of 

sensitivities and specificities of MSI and MUT, thus the variance-covariance matrix Σ  

can be specified as, 
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⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Σ  

The variance parameters in the diagonal of the variance-covariance matrix Σ  

( )2 2 2 2 2, , , ,
A B A Bµ µ ν ν εσ σ σ σ σ  capture the heterogeneity of sensitivities of MSI and MUT, specifici-

ties of MSI and MUT, and the prevalence of disease among studies, respectively. If there 

is statistical or scientific evidence of homogeneity among studies ( )2 2 2 2 2, , , , 0
A B A Bµ µ ν ν εσ σ σ σ σ ≈ , 

the corresponding study-specific random effects ( ), , , ,iA iB iA iB iµ µ ν ν ε  can be dropped from 

the above model. The parameters ( ), , , , ,
A B A BA B µ ν ν µ µ νρ ρ ρ ρ ρ ρ  capture the correlation be-

tween Se and Sp of MSI, the correlation between Se and Sp of MUT, the correlation of 

Se between MSI and MUT, the correlation of Sp between MSI and MUT, the correlation 

between Se of MSI and Sp of MUT, and the correlation between Sp of MSI and Se of 

MUT, respectively.  

3.3. Parameter estimation and selection of random effects  

We adopted two approaches to make inference from the above random effects 

model. The first is a nonlinear mixed effects model (Davidian and Giltinan 1995; Vonesh 

and Chinchilli 1997; Molenberghs and Verbeke 2005); and the second is a Bayesian hier-

archical model (Carlin and Louis 2000; Gelman et al. 1995). The nonlinear mixed effects 

model was fitted using PROC NLMIXED in SAS version 9.1 (SAS Institute Inc., Cary, 

NC). PROC NLMIXED maximizes an approximation to the likelihood integrated over 

the random effects (Pinheiro and Bates 1995), and the random effects are computed using 

empirical Bayes estimates. The adaptive Gaussian quadrature approximation and dual 
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quasi-Newton algorithm optimization techniques in PROC NLMIXED were used to 

maximize the approximate integrated likelihood. We used PROC NLMIXED built-in 

ability using the delta method to compute the population estimates of the prevalence for 

the high and low risk groups, sensitivities and specificities of MSI and MUT on the trans-

formed scale and their confidence intervals based on the normal approximation. In the 

presence of random effects, those estimates represent the population median estimates. 

To obtain the population mean estimates, numerical integration over the estimated distri-

butions of random effects can be implemented (Halloran, Preziosi, and Chu 2003).  

To avoid over-fitting the data with an excess of random effects (including all of 

the five random effects in the model), we used a forward selection procedure based on 

information criteria. The basic idea is to minimize the Kullback-Leibler information 

(Kullback S and Leibler RA 1951), which measures the divergence of the true model to 

the fitted model. Specifically, Akaike’s Information Criterion (AIC) and Bayesian Infor-

mation Criterion (BIC) were used as the guideline (Burnham and Anderson 1998).  

In the Bayesian hierarchical model, computation was done using Markov chain 

Monte Carlo (MCMC) (Gelfand and Smith 1990) in WinBUGS (Spiegelhalter, Thomas, 

and Best 2002). Burn-in consisted of 105 iterations, and 4×105 iterations were used for 

posterior summaries. Convergence of Markov chains was assessed using the Gelman and 

Rubin convergence statistic (Gelman and Rubin 1992; Brooks and Gelman 1998). The 

95% posterior credible intervals on the transformed scale are available directly from the 

approximation to the posterior distribution from the MCMC chains. Deviance informa-

tion criterion (DIC) was used as the guideline to avoid over-fitting the data (Spiegelhalter 

et al. 2002). The hyper-priors for the precision parameters were assumed to be as follows: 
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1) 2 ~ (1,  1)Gammaεσ
− , which corresponds to a wide 95% confidence interval (CI) of (0.27, 

39.50) for the variance parameter 2
εσ , allowing large heterogeneity for the prevalence; 2) 

( )2 2 2 2, , , ~ (2,  2)
A B A B

Gammaµ µ ν νσ σ σ σ− − − − , which corresponds to a 95% CI of (0.36, 8.26) for the 

variance parameters ( )2 2 2 2, , ,
A B A Bµ µ ν νσ σ σ σ , providing moderate heterogeneity for the latent 

sensitivities and specificities. Vague priors of N(0, 22) were assumed for the fixed pa-

rameters ( )0 , , , ,A B A Bη α α β β , which corresponds a 95% CI of log-odds ranging from 0.02 

to 50 (Chu et al. 2006). A vague prior of N(0, 22) is used for 1η  on the log scale to ensure 

the constraint that the prevalence of the high risk group is greater than that in the low risk 

group for any study i (Chen, Watson, and Parmigiani 2005). We selected the above non-

diffuse priors instead of diffuse priors since the latter can lead to inaccurate posterior es-

timates (Natarajan and McCulloch 1998).  

4. Results of the case study 

To identify the best fitting model, we started with the model presented in Chen et 

al. (2005), which assumed no random effects (referred as Model I). Using the forward-

selection procedure presented in Section 3.3, Table 3 presents the goodness of fit statis-

tics using the twice negative log-likelihood, AIC and BIC for the non-linear random ef-

fects model and DIC for the Bayesian hierarchical model. At each forward step, we add a 

random-effects component that provides the largest improvement based on the above 

model selection criteria.  

In the first step, adding any random-effects improved the goodness of fit under all 

criteria, with the exception of Model IIc using DIC. The largest improvement was 

achieved by allowing for study-specific prevalence iε , referred as Model IIa. For exam-
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ple, the DIC decreased by 69.4 points compared to Model I. This revealed an important 

characteristic of this meta-analysis, that is, the studies varied considerably in their criteria 

for selecting individuals to be tested. As a result, the study-specific mutation prevalence 

differed across studies. Based on the Bayesian hierarchical Model IIa, the posterior 

means of prevalence ranged from 0.125 to 0.860 for the high-risk group, and from 0.016 

to 0.098 for the low-risk group.  

In the second step, the largest improvement (under all criteria) was seen by adding 

a random-effects component for mutation analysis sensitivity iBµ , referred as Model IIIc. 

Although the improvement was modest compared to adding the first random-effects, but 

it is still notable (e.g., the DIC decreased by 15.3 points compared to Model IIa). This is 

plausible because each study was conducted in a different laboratory using a variety of 

mutation analysis techniques. As a result, the mutation analysis sensitivities ranged from 

0.424 to 0.871 based on the Bayesian hierarchical Model IIIc.  

The last step that introduced any improvement was by adding random effects for 

microsatellite instability testing sensitivity iAµ , referred as Model IVa. The DIC de-

creased by 9.6 points compared to Model IIIc. Thus, the final model included the ran-

dom-effects on: 1) prevalence iε ; 2) mutation analysis sensitivity iBµ ; and 3) microsatel-

lite instability testing sensitivity iAµ . It is worth noting that the model selection proceeded 

identically under the non-linear mixed effects model and the Bayesian hierarchical model 

in this case study.  

For comparison, the main effects (MSI sensitivity, MSI specificity, MUT sensitiv-

ity, MUT specificity, prevalence in the high risk group and prevalence in the low risk 

group) from Model I, Model IIa, Model IIIc and Model Iva were presented in Table 4 us-
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ing the non-linear mixed effects models and the Bayesian hierarchical models. The main 

effects estimates were highly concordant between the two approaches, except some dif-

ference in the estimates of MSI sensitivity. Based on the final model, the posterior me-

dian of MSI sensitivity was 0.92 with 95% equal tail credible sets (0.74, 0.99), while the 

point estimate from the non-linear random effects model was 0.97 with 95% confidence 

interval (0.92, 1.00).  

The Bayesian posterior means with 95% equal tail credible sets of the study-

specific effects from the final model are shown in Figure 1. The study-specific MSI sen-

sitivity estimates were quite homogeneous, with study 13 being the only exception (See 

Figure 1C), which is consistent with the expert belief that MSI is a relatively standard and 

simple test and the measurement variability associated with it is low. A possible explana-

tion for the exception is that the missense mutations found in those studies may be non-

pathogenic, such that the tumors emerged through a pathway different from the MMR 

mechanism thus did not exhibit the MSI characteristic (Samowitz et al. 2002). On the 

other hand, the study-specific estimates of mutation prevalence and MUT sensitivity are 

quite heterogeneous suggesting difference in the selection of study populations and in the 

laboratory work for MUT test.  

Figure 2 presents the posterior kernel smoothed density of MSI sensitivity, MSI 

specificity, MUT sensitivity and MUT specificity based on the final Bayesian hierarchi-

cal model IVa using 4×105 Monte Carlo samples, suggesting a very skewed posterior 

density of MSI sensitivity, which may partially explain the difference in MSI sensitivity 

estimates between the non-linear mixed effect model and the Bayesian hierarchical model.     

5. Simulation studies 
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Four sets of simulations with 2000 replications each were performed to evaluate 

the sampling properties of potential misspecification of random effects in the estimation 

of MSI sensitivity. To reduce the complexity of selecting potential random effects and 

computational time, we only considered random effects on the disease prevalence and/or 

test sensitivities ( ), ,i iA iBε µ µ  and only fitted models with up to two random effects.  

Specifically, data were generated from: 1) no random effects; 2) random effects 

on prevalence ( iε ); 3) random effects on MSI sensitivity ( iAµ ); and 4) random effects on 

prevalence and MSI sensitivity ( ,i iAε µ ). For each simulation, 20 meta-studies were gen-

erated with 7 studies having a high risk group, 7 studies having a low risk group, and 6 

studies having both high-risk and low-risk groups. Eighty observations for the high risk 

group and 250 for the low risk group were generated, which roughly match the average 

sample sizes per study group in the case study. Each low risk group has a probability of 

0.40 to only conduct MUT testing among those with positive MSI test. It is a common 

scenario in diagnostic testing literature when the reference test (MUT) is expensive or 

invasive. In the absence of random effects, the prevalence of true mutation were set to be 

50% for the high risk group and 10% for the lower risk group, the sensitivity and speci-

ficity were both 90% for MSI testing, and 70% and 98% for MUT analysis, respectively. 

In the presence of random effects, the variances of ( ), ,i iA iBε µ µ  were set to be 0.52 which 

gives the prevalence a 95% CI of 27-73% for the high risk group and 4-23% for the low 

risk group, and the MSI sensitivity a 95% CI of 77-96%.  

For each generated dataset, we fit seven models using both NLMIXED and BHM: 

1) no random effect; 2) one random effect (on ,   or i iA iBε µ µ ); and 3) two random effects 

(on [ ],i iAε µ , [ ],i iBε µ , or [ ],iA iBµ µ ). Table 5 summarizes the Monte Carlo frequency of se-
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lecting each candidate model as the “best” model for each set of simulations. Model se-

lection was based on AIC and BIC for the non-linear random effects model using SAS 

PROC NLMIXED and DIC for the Bayesian hierarchical model using WinBUGs. In 

summary, DIC has a probability of 0.55-0.70 to identify the true random effects model, 

while the performance of AIC and BIC is highly variable with a probability of 0.25-0.95.  

Closer examination of the results reveals that the Bayesian approach (DIC) has a stronger 

tendency to select additional random effect(s) not included in the true model than does 

the non-linear random effects approach (overall probability of 0.17 for DIC, 0.06 for AIC 

and 0.03 for BIC averaging overall four scenarios). Similarly, the overall average prob-

ability that the Bayesian approach fails to find true random effects is lower than the non-

linear random effects approach (0.17 based on DIC, 0.30 based on AIC and 0.36 based on 

BIC). For the random effect in the prevalence ( iε ), it is almost always identified if pre-

sent. Under-fitting are mainly due to the failure to include the random effect in MSI sen-

sitivity ( iAµ ), which has a narrower distribution than iε  by simulation design due to the 

logit transformation. Overall, the probability of selecting completing incorrect random 

effects (i.e. including fake random effects while failing to include true random effects) is 

very low under all criteria (0.03 for DIC, 0.03 for AIC, 0.01 for BIC, respectively).  

Table 6 records the means, the standard errors, 95% CI lengths and 95% CI cov-

erage probabilities for the MSI sensitivity based on each candidate model using the 

nonlinear random effects model and the Bayesian hierarchical model, respectively. The 

coverage probabilities are all close to the nominal value of 0.95 under the true model. 

When over-fitting occurs, the coverage probabilities are not much affected. When under-

fitting or mis-fitting occurs, failure to include random effects in prevalence ( iε ) does not 
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affect the coverage probabilities for the MSI sensitivity; however failure to include ran-

dom effects in MSI sensitivity ( iAµ ) will have a less than nominal coverage. It empha-

sizes the need to carefully select a random effects model on the estimation of diagnostic 

accuracy measurements from a meta-analysis without a gold standard.   

6. Discussion 

In this paper, we demonstrate an improved estimation of the sensitivity and speci-

ficity of MSI and traditional mutation analysis by using a non-linear random effects 

model and a Bayesian hierarchical model from a meta-analysis without a gold standard in 

the presence of missing data, which has taken the heterogeneity across studies into con-

sideration through study-specific random effects. Simulation studies have demonstrated 

the importance of carefully selecting appropriate random effects on the estimation of di-

agnostic accuracy measurements in this scenario. The proposed methods can be used to 

estimate the accuracy of two imperfect diagnostic tests in other meta-analyses when the 

prevalence of disease, the sensitivities and/or the specificities of diagnostic tests may be 

heterogeneous across studies.  

In this meta-analysis, the model selection criteria consistently showed that allow-

ing for the appropriate random effects improves the goodness of fit. This also made an 

impact to the estimates of the parameters of interest, the sensitivity and specificity of MSI 

and MUT. In particular, the MSI sensitivity estimate has increased noticeably.  It was be-

lieved that all tumors from Lynch syndrome individuals (i.e. mutation carriers) exhibit 

MSI, only a small fraction may show a low level of MSI, or MSI-L, which is categorized 

into missense mutations in this meta-analysis according to conventions. Therefore, the 

new higher estimate is more biologically plausible (Vasen and Boland 2005). Further-
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more, random effects models may be useful in identifying studies that are outliers. For 

example, the missense mutations found in study 13 might be non-pathogenic and did not 

exhibit the MSI characteristic such that MSI had a very low sensitivity. 

When estimating random effects in the presence of frequent missing data, the 

convergence may become an issue. For example, we were not able to fit the non-linear 

mixed effects model with random effects on prevalence, MSI sensitivity, MSI specificity, 

MUT sensitivity and MUT specificity simultaneously using PROC NLMIXED. Further-

more, about 0.1-0.5% simulations did not converge when using PROC NLMIXED with 

starting values set to be the true parameters.  

In this case study, we assumed independence between MSI test result and muta-

tion analysis result given the true mutation status conditional on the study-specific ran-

dom effects, which is biologically plausible since large genomic deletions and rear-

rangements do not differ from the other mutations in their ability to generate microsatel-

lite instable tumors. If the conditional independence assumption is suspicious, methods 

incorporating dependent errors need to be considered (Torrance-Rynard and Walter 1997; 

Dendukuri and Joseph 2001). However, given the complexity of meta-analysis (e.g., het-

erogeneity across studies and missing data due to partial testing), further research is 

needed on how to incorporate dependent errors.   

 
References 

 

 1.  Andersen S (1997) Bayesian estimation of disease prevalence and the parameters 
of diagnostic tests in the absence of a gold standard. American Journal of Epide-
miology 145 (3):290. 

 2.  Brooks SP and Gelman A (1998) Alternative methods for monitoring conver-
gence of iterative simulations. Journal of Computational and Graphical Statistics 
7:434-455. 

http://biostats.bepress.com/jhubiostat/paper149



 17

 3.  Burnham KP, Anderson DR (1998) Model Selection and Inference: A Practical 
Information-Theoretic Approach. Springer-Verlag: New York. 

 4.  Carlin BP, Louis TA (2000) Bayes and Empirical Bayes Methods for Data Analy-
sis. 2nd ed. Chapman & Hall/CRC. 

 5.  Chen S, Watson P, and Parmigiani G (2005) Accuracy of MSI testing in predict-
ing germline mutations of MSH2 and MLH1: a case study in Bayesian meta-
analysis of diagnostic tests without a gold standard. Biostat 6 (3):450-464. 

 6.  Chu H et al (2006) Sensitivity analysis of misclassification: a graphical and a 
Bayesian approach. Ann Epidemiol 16:834-841. 

 7.  Davidian M, Giltinan DM (1995) Nonlinear models for repeated measurement 
data. 1st ed. Chapman & Hall/CRC: Boca Raton. 

 8.  Dendukuri N and Joseph L (2001) Bayesian approaches to modeling the condi-
tional dependence between multiple diagnostic tests. Biometrics 57 (1):158-167. 

 9.  Gart JJ and Buck AA (1966) Comparison of A Screening Test and A Reference 
Test in Epidemiologic Studies .2. A Probabilistic Model for Comparison of Diag-
nostic Tests. American Journal of Epidemiology 83 (3):593-&. 

 10.  Gelfand AE and Smith AFM (1990) Sampling-Based Approaches to Calculating 
Marginal Densities. Journal of the American Statistical Association 85 (410):398-
409. 

 11.  Gelman A, Carlin JB, Stern HS, Rubin DB (1995) Bayesian Data Analysis. 
Chapman & Hall/CRC. 

 12.  Gelman A and Rubin DB (1992) Inference from iterative simulation using multi-
ple sequences. Statistical Science 138:182-195. 

 13.  Halloran ME, Preziosi MP, and Chu HT (2003) Estimating vaccine efficacy from 
secondary attack rates. Journal of the American Statistical Association 98 
(461):38-46. 

 14.  Hui SL and Walter SD (1980) Estimating the Error Rates of Diagnostic-Tests. 
Biometrics 36 (1):167-171. 

 15.  Johnson WO, Gastwirth JL, and Pearson LM (2001) Screening without a "gold 
standard": The Hui-Walter paradigm revisited. American Journal of Epidemiology 
153 (9):921-924. 

 16.  Joseph L, Gyorkos TW, and Coupal L (1995) Bayesian estimation of disease 
prevalence and the parameters of diagnostic tests in the absence of a gold standard. 
Am.J.Epidemiol. 141 (3):263-272. 

Hosted by The Berkeley Electronic Press



 18

 17.  Kullback S and Leibler RA (1951) On information and sufficiency. Annals of 
Mathematical Statistics 22:79-86. 

 18.  Little RJA, Rubin DB (2002) Statistical Analysis With Missing Data. 2nd ed. 
John Wiley & Sons. 

 19.  Lynch HT and de la Chapelle A (1999) Genetic susceptibility to non-polyposis 
colorectal cancer. J Med Genet 36 (11):801-818. 

 20.  Molenberghs G, Verbeke G (2005) Models for Discrete Longitudinal Data. 
Springer. 

 21.  Natarajan R and McCulloch CE (1998) Gibbs sampling with diffuse proper priors: 
a valid approach to data-driven inference? Journal of Computational and Graphi-
cal Statistics 7 (3):267-277. 

 22.  Pepe MS (2003) The statistical evaluation of medical tests for classification and 
prediction. Oxford University Press: Oxford. 

 23.  Pinheiro JC and Bates DM (1995) Approximations to the log-likelihood function 
in the nonlinear mixed-effects model. Journal of Computational and Graphical 
Statistics 4 (1):12-35. 

 24.  Samowitz WS et al (2002) Missense Mismatch Repair Gene Alterations, Microsa-
tellite Instability, and Hereditary Nonpolyposis Colorectal Cancer. J Clin Oncol 
20 (14):3178-3179. 

 25.  Spiegelhalter DJ et al (2002) Bayesian measures of model complexity and fit. 
Journal of Royal Statistical Society, Series B 63 (4):583-639. 

 26.  Spiegelhalter, D. J., Thomas, A., and Best, N. G. WinBUGS user manual, version 
1.4.  2002.  
Ref Type: Unpublished Work 

 27.  Torrance-Rynard VL and Walter SD (1997) Effects of dependent errors in the as-
sessment of diagnostic test performance. Statistics in Medicine 16 (19):2157-2175. 

 28.  Umar A et al (2004) Revised Bethesda Guidelines for Hereditary Nonpolyposis 
Colorectal Cancer (Lynch Syndrome) and Microsatellite Instability. J Natl Cancer 
Inst 96 (4):261-268. 

 29.  Vasen HFA and Boland CR (2005) Progress in Genetic Testing, Classification, 
and Identification of Lynch Syndrome. JAMA 293 (16):2028-2030. 

 30.  Vonesh EF, Chinchilli VM (1997) Linear and Nonlinear Models for the Analysis 
of Repeated Measurements. Marcel Dekker: New York. 

http://biostats.bepress.com/jhubiostat/paper149



 19

 31.  Zhou XH, Obuchowski NA, McClish DK (2002) Statistical methods in diagnostic 
medicine. John Wiley & Sons: New York. 

 

Hosted by The Berkeley Electronic Press



 20

Table 1. A list of the studies included in the Meta-analysis. 
 
Study ID High Risk 11in 10in 01in 00in 1i mn  0i mn  1imn 0imn
Bapat et al. (1999) 1 Y 16 1 2 20 0 0 0 0
Calistri et al. (2000) 2 Y 8 8 0 9 0 0 0 0
Cederquist et al. (2001) 3 Y 8 15 0 0 12 43 0 0
Debniak et al. (2000) 4 Y 5 4 1 15 0 0 0 0
Debniak et al. (2000) 4 N 0 5 0 38 0 0 0 0
Dietmaier et al. (1997) 5 N 0 0 0 0 18 130 0 0
Dieumegard et al. (2000) 6 Y 7 7 0 2 0 0 0 0
Dieumegard et al. (2000) 6 N 0 0 0 7 0 0 0 0
Lamberti et al. (1999) 7 Y 13 22 2 10 0 0 0 0
Liu et al. (2000) 8 Y 16 6 1 36 0 0 0 0
Loukola et al. (1999) 9 N 10 53 0 0 0 446 0 0
Percesepe et al. (2001) 10 N 0 0 0 0 28 308 0 0
de Leon et al. (2004) 11 Y 0 0 0 0 0 0 89 75
Salahshor et al. (1999) 12 N 0 0 0 0 22 159 0 0
Scartozzi et al. (2002) 13 Y 0 1 4 22 0 0 0 0
Salovaara et al. (2000) 14 N 18 48 0 0 0 469 0 0
Terdiman et al. (2001) 15 Y 21 11 0 0 0 63 0 0
Wahlberg et al. (2002) 16 Y 14 14 0 20 0 0 0 0
Wang et al. (2003) 17 Y 92 88 0 0 0 188 0 0
Note: ( )11 10 01 00 1 0 1 0, , , , , , ,i i i i i m i m im imn n n n n n n n  correspond to the number of subjects with MSI = 
1 & MUT = 1, MSI = 1 & MUT = 0, MSI = 0 & MUT = 1, MSI = 0 & MUT = 0, MSI = 
1 & MUT = missing, MSI = 0 & MUT = missing, MSI = missing & MUT = 1, and MSI = 
missing & MUT = 0, respectively. MSI = microsatellite instability testing, MUT = muta-
tion analysis testing. 
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Table 2. Typical data displays for study i (i = 1, …, I) with missing data. 
 

MUT MSI Positive (+) Negative (−) Missing 
Positive 

(+) 
11in  

( ) 111 iA iB iP P P− −  
10in  

( ) 101 iA iB iP P P− −  
1i mn  

( )11 10iA i iP P P+  

Negative 
(−) 

01in  
( ) 011 iA iB iP P P− −  

00in  
( ) 001 iA iB iP P P− −  

0i mn  
( )01 00iA i iP P P+  

Missing 1imn  
( )11 01iB i iP P P+  

0imn  
( )10 00iB i iP P P+  ⎯ 

Note: Probabilities corresponding to a given cell are shown in the second line.  
          MSI = microsatellite instability testing, MUT = mutation analysis testing. 
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Table 3. Selection of random effects using a forward selection procedure 

 
NLMM Using NLMIXED BHM Using WinBUGSRandom Effects Models 
-2logL AIC BIC DIC Dp  

I 91.3 103.3 108.3 104.2 5.6 
IIa ( iε ) 44.5 58.5 64.4 34.8 17.7 
IIb ( iAµ ) 67.9 81.9 87.7 67.0 14.5 
IIc ( iAν ) 81.7 95.7 101.5 119.9 10.8 
IId ( iBµ ) 64.0 78.0 83.8 65.0 14.6 
IIe ( iBν ) 66.0 80.0 85.8 68.4 8.5 
IIIa ( iε , iAµ ) 39.8 55.8 62.4 23.1 15.9 
IIIb ( iε , iAν ) 44.2 60.2 66.9 24.3 17.3 
IIIc ( iε , iBµ ) 36.8 52.8 59.4 19.5 24.8 
IIId ( iε , iBν ) 42.6 58.6 65.3 27.3 17.8 
IVa ( iε , iBµ , iAµ ) 30.6 48.6 56.1 9.9 24.0 
IVb ( iε , iBµ , iBν ) 34.9 52.9 60.4 16.1 21.2 
IVc ( iε , iBµ , iAν ) 36.5 54.5 62.0 14.8 26.2 
IVd ( iε , iBµ , iAµ , µρ ) 30.9 50.9 59.2 14.2 24.2 
IVe ( iε , iBµ , iBν , Bρ ) 34.6 54.6 63.0 22.7 25.9 
IVf ( iε , iBµ , iAν ,

A Bν µρ ) 36.7 56.7 65.0 43.9 27.8 
Va ( iε , iBµ , iAµ , iAν ) 31.0 51.0 59.3 12.1 24.9 
Vb ( iε , iBµ , iAµ , iBν ) 30.9 50.9 59.2 8.5 23.0 

*Test A and B correspond to the microsatellite instability (MSI) and mutation analysis 
(MUT) testing, respectively. NLMM = non-linear mixed effects model; BHM = Bayesian 
hierarchical model; AIC = Akaike’s Information Criterion; BIC = Bayesian Information 
Criterion; DIC = Deviance Information Criterion; Dp  = the effective number of parame-
ters. For the Bayesian analysis, priors for precision parameters of random effects are 
specified as 2 ~ Gamma(1, 1)εσ

−  and ( )2 2 2 2, , , ~ (2,  2)
A B A B

Gammaµ µ ν νσ σ σ σ− − − − . The random effects 
( ), , , ,i iA iA iB iBε µ ν µ ν  correspond to study-specific prevalence, MSI sensitivity, MSI specific-
ity, MUT sensitivity and MUT specificity, respectively. Thirty-three hundred points have 
been deducted from -2logL, AIC, BIC and DIC for presentation. 
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Table 4. Summary of parameter estimates using the non-linear random effects models and the Bayesian hierarchical models: 
the triple notation of LPU denotes the point estimate P with 95% confidence limits (L, U) for the non-linear random effects 
models, or the posterior median P with 95% equal tailed credible limits (L, U) using Bayesian hierarchical models. The num-
bers have been multiplied by 1000 for presentation. 

 
 Non-linear Random Effects Models* Using NLMIXED  Bayesian Hierarchical Models Using WinBUGS

I IIa IIIc IVa  I IIa IIIc IVa 
Random Effects Models 

None iε  iε , iBµ  iε , iBµ , iAµ   None iε  iε , iBµ  iε , iBµ , iAµ

MSI Specificity 902920937 893912932 889909929 894914934  898917936 898916934 893912938 895914939 

MSI Sensitivity 735 819904 8929781000 8809821000 9229681000  745842951 843934985 872957996 740922990 

MUT Specificity 100010001000 906953999 8989521000 9479861000  917980998 926968996 916958990 935981998 

MUT Sensitivity 564622679 536594653 508656805 495641786  565621678 537590645 531630726 488645801 

High-risk Prevalence 491555618 318495673 302465629 442532622  460536610 354520694 328476641 380532685 

Low-risk Prevalence 284765 01843 01739 82847  244266 92975 92772 113382 

εσ (prevalence) ⎯ 44510341624 3549041454 311601890  ⎯ 67210601790 6059591626 4977981384 

Aµ
σ  (sensitivity) ⎯ ⎯ ⎯ 88025294177  ⎯ ⎯ ⎯ 73716493766

Aν
σ (specificity) ⎯ ⎯ ⎯ ⎯  ⎯ ⎯ ⎯ ⎯ 

Bµ
σ  (sensitivity) ⎯ ⎯ 111742 1373 1377561375  ⎯ ⎯ 6019441650 5979321610 

Bν
σ (specificity) ⎯ ⎯ ⎯ ⎯  ⎯ ⎯ ⎯ ⎯ 

  *95% confidence intervals based on normal approximation. 
 

Hosted by The Berkeley Electronic Press



 24

Table 5. The empirical probability of selecting a candidate random effects model as the 
final model using AIC, BIC or DIC* based on simulation studies with 2000 replicates. 
The bolded cells represent the probability of identifying correctly specified random ef-
fects model. The numbers have been multiplied by 1000 for presentation. 
 

*AIC = Akaike’s Information Criterion; BIC = Bayesian Information Criterion; DIC = 
Deviance Information Criterion. 
 

Selected Random Effects Model True Random 
Effects Model None iε  iAµ  iBµ  ,i iAε µ  ,i iBε µ  ,iA iBµ µ
None AIC 885 30 41 42 1 1 1
 BIC 940 16 21 24 0 0 0
 DIC 707 21 188 58 7 3 18

iε  AIC 1 914 0 1 34 50 1
 BIC 2 961 0 1 16 21 0
 DIC 0 701 1 1 200 97 1

iAµ  AIC 602 24 321 31 9 1 12
 BIC 711 14 247 19 4 0 5
 DIC 335 13 554 29 20 2 49

,i iAε µ  AIC  0 632 0 0 324 44 1
 BIC 1 731 1 1 248 20 0
 DIC 0 330 1 0 605 64 1
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Table 6. The impact of using different random effects models on MSI sensitivity (true value = 0.90) based on 
simulation studies with 2000 replicates. The numbers have been multiplied by 1000 for presentation. The 
bolded cells represent the estimates from a model with correctly specified random effects.  
 

*95% CICP = 95% confidence interval coverage probability, 95% CICP and 95% CI length are based on logit-normal assumption for 
the random effects models using NLMIXED and equal tail credible intervals for the Bayesian hierarchical models using WinBUGS. 
 

Random Effects Models Using NLMIXED Bayesian Hierarchical Models Using WinBUGS 
True Models 

None iε  iAµ  iBµ  ,i iAε µ ,i iBε µ ,iA iBµ µ None iε  iAµ  iBµ  ,i iAε µ ,i iBε µ ,iA iBµ µ
None Mean 902 900 903 900 901 900 902 897 900 919 902 918 902 922
 Std Err 21 21 23 21 22 021 22 20 21 27 21 26 21 26

95% CI length* 83 89 98 89 96 89 97 79 84 105 83 101 81 101
95% CICP* 961 968 975 964 977 969 976 938 949 944 951 942 946 920

iε  Mean 902 900 897 896 902 900 890 897 900 902 897 916 902 896
 Std Err 21 20 28 22 22 20 29 21 21 32 22 27 20 33

95% CI length* 85 86 123 92 96 87 129 80 81 126 86 103 79 130
95% CICP* 961 966 972 956 977 968 956 941 958 981 946 950 945 977

iAµ  Mean 893 891 900 891 898 891 899 888 892 911 894 911 895 915
 Std Err 21 21 26 21 25 21 26 21 22 29 22 28 21 28

95% CI length* 85 91 111 91 111 91 111 81 86 112 85 108 83 108
95% CICP* 864 879 949 873 942 876 950 829 879 959 890 951 875 948

,i iAε µ  Mean 893 892 890 887 899 892 882 889 893 894 888 909 895 887
 Std Err 21 21 32 22 25 21 33 21 21 34 22 28 21 35

95% CI length* 85 86 132 92 106 87 139 82 84 134 88 110 81 138
95% CICP* 860 885 944 852 952 886 898 831 873 977 855 957 866 963
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Captions: 
 
Figure 1. Study-specific posterior means with 95% equal tail credible sets of the preva-
lence of high (panel A) and low (panel B) risk groups, MSI (panel C) and MUT (panel D) 
sensitivities based on the Bayesian hierarchical model IVa. Bold lines are population av-
eraged posterior estimates (see Section 3.2 for computation of the population averaged 
values). 
 
Figure 2. Posterior distributions of MSI and MUT sensitivities (panel A), MSI and MUT 
specificities (panel B). It is based on the kernel smoothed density estimation of 4×105 
Monte Carlo samples. Solid and dashed lines denote MSI and MUT, respectively. 
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