
Johns Hopkins University, Dept. of Biostatistics Working Papers

5-3-2007

A REPRODUCIBLE RESEARCH TOOLKIT
FOR R
Roger Peng
Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, rpeng@jhsph.edu

This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commercially reproduced without the permission of the
copyright holder.
Copyright © 2011 by the authors

Suggested Citation
Peng, Roger, "A REPRODUCIBLE RESEARCH TOOLKIT FOR R" (May 2007). Johns Hopkins University, Dept. of Biostatistics
Working Papers. Working Paper 142.
http://biostats.bepress.com/jhubiostat/paper142

http://biostats.bepress.com/jhubiostat


A Reproducible Research Toolkit for R

Roger D. Peng
Department of Biostatistics

Johns Hopkins Bloomberg School of Public Health

May 3, 2007

Abstract

We present a collection of R packages for conducting and distributing reproducible research
using R, Sweave, and LATEX. The collection consists of the cacheSweave, stashR, and SRPM pack-
ages which allow for the caching of computations in Sweave documents and the distribution of
those cached computations via remotely accessible key-value databases. We describe the caching
mechanism used by the cacheSweave package and tools that we have developed for authors and
readers for the purposes of creating and interacting with reproducible documents.

Key words: R, Literate programming, Cached Computation, Sweave

1 Introduction

Reproducible research is a phrase that is typically used to describe research that is conducted in
such a manner that published results can be recreated by a third party by running the original
analysis programs on the original data. Reproducible research is distinguished from replication in
that replication requires a third party to obtain similar results using new data and an identical or
comparable analytic approach. A minimum requirement for reproducible research is that the data
and computer programs used to analyze the data are made available and distributed to others.

The idea of a “compendium” is described by Gentleman and Temple Lang (2007) as a way to
publish a reproducible analysis by including multiple levels of detail. Readers with a casual interest
in the paper may only read the finished product while more interested readers can dig deeper into
the specifics of the data and computation. Users of the R programming language have tools such
as Sweave (Leisch, 2002) and Emacs Speaks Statistics (Rossini et al., 2004) to assist them in the
development of such compendiums and other reproducible documents.

The distribution of reproducible research is a problem for which the solution varies depend-
ing on the nature of the research. Small investigations involving moderately sized datasets and
standard computational techniques can be archived and distributed in their entirety. Readers can
subsequently re-run the entire analysis from start to finish to see if they can obtain the same results
as the authors. Complex investigations involving large or multiple linked datasets and sophisticated
statistical computations will be more difficult for readers to reproduce because of the resources and
time required for running the analysis. In such a situation a method is needed to give readers with-
out such resources the ability to conduct an initial examination of the details of the investigation
and to reproduce or verify some of the results.

1

Hosted by The Berkeley Electronic Press



Peng and Eckel (2007) describe a framework in which reproducible research can be distributed
using cached computations. Cached computations are saved results that are stored in a database as
an analysis is being conducted. These stored results can be distributed in “shared reproducibility
packages” via websites or central repositories so that others may explore the datasets and computer
code for a given scientific investigation.

In this paper we describe in detail the design and implementations of the cacheSweave and
SRPM packages. Together with the stashR package, these packages implement the framework of
distributed reproducible research using cached computations described in Peng and Eckel (2007).
We describe the mechanism by which computations in Sweave are cached to key-value databases
and describe the organization of “shared reproducibility packages” and how they can be created
and explored with the SRPM package. Details of the stashR package have already been written up
in Eckel and Peng (2006) so we do not place as much emphasis on describing that package.

2 Caching Sweave Computations

The Sweave system of Leisch (2002) is a literate programming tool based on ideas of Knuth (1984)
and is currently part of the core R installation. Specifically, Sweave is a system for processing
documents that mix LATEX document formatting with R code. R code can be interspersed within
the LATEX markup by indicating “code chunks”. These code chunks are evaluated by the Sweave

function in R and the code is replaced with the results of the evaluation. For example, the code
for fitting a linear model and summarizing the estimated regression coefficients might be replaced
by a formatted table of estimated regression coefficients along with standard errors and p-values.
Another possibility is for the code to replaced by a plot which shows the data and the fitted regression
line. In either case, the author writes the code to generate the output and Sweave runs the code and
places the output in the final document.

Given a file written in the Noweb format (Ramsey, 1994), one can generate a LATEX file by running
in R

> Sweave("foo.Rnw")

where “foo.Rnw” contains both LATEX markup and R code. Calling Sweave in this manner results in
a the file “foo.tex” being created, which can subsequently be processed by standard LATEX tools. In
particular, the tools package contains the R function texi2dvi which calls the system’s texi2dvi

program if it is available.
Sweave has many potential uses, but it is particularly useful for creating statistical documents

that are reproducible, where the results of computation can be reproduced by executing the original
code using the original data. Since the code used for analysis is embedded directly into the relevant
document, there is a tighter correspondence between the descriptive text and the computational
results and a decreased potential for mismatches between the two. In addition, Sweave’s ability to
recompute results to reflect changes or updates to the datasets and analytic code is a great benefit
to authors who must maintain statistical documents. With Sweave, all of the relevant text and code
reside in a master document from which different outputs can be derived by either “weaving” to
create a human-readable document or “tangling” to produce a machine-readable code file.

One aspect of Sweave’s default mode of operation is that all code chunks are evaluated whenever
the document is read/processed by the Sweave function in R (except when an authors explicitly
indicates that a code chunk should not be evaluated). While this is generally considered a feature, it
can be cumbersome during the development of a document if the code chunks contain calculations

2

http://biostats.bepress.com/jhubiostat/paper142



that are lengthy or resource intensive. In particular, changes to text portions of the document require
that the entire document be re-Sweaved so that the resulting LATEX file can reflect the changes to the
text. In such cases, it might be desirable for the code chunks to either not be evaluated or to be
cached in some manner so that subsequent evaluations take less time.

One approximate solution to the problem described above is to indicate that code chunks should
not be evaluated (i.e. by setting eval=false as an option for each code chunk) so that the Sweave

function will skip over them and create the LATEX file. However, such an approach is probably not
desirable since then no results can be displayed in the document. Another approach is to separate
out the code chunks that contain lengthy computations into a separate file and then include the
resulting file via LATEX’s \input directive. This way, the file with the expensive code chunks can be
Sweaved once while the text can be modified independently in a separate file. This approach has
merit and can also benefit greatly from the use of the make utility, but it also breaks the principle
of including all of the text and code in a single file. The need to manage multiple files has the
potential to lead to the same problems that Sweave and other literate programming tools were (in
part) designed to solve.

Consider the following code chunk.

> set.seed(1)

> x <- local({

+ Sys.sleep(10)

+ rnorm(100)

+ })

> results <- mean(x)

Admittedly, this code chunk is not very interesting or realistic but it is useful for demonstrating
the basic approach of the cacheSweave package. In the code chunk, we (1) set the random number
generator seed; (2) generate 100 standard Normal random numbers after sleeping for 10 seconds;
and (3) calculate the mean of the Normal random numbers. After executing the code chunk, there
are two objects in the user’s workspace (i.e. the global environment): x and results (there is also
a hidden object .Random.seed that is created by set.seed).

On a modern computer executing the code chunk above should take about 10 seconds since the
operations other than the call to Sys.sleep use a negligible amount of wall clock time. Although
the use of Sys.sleep here is artificial, one can imagine replacing it with a call to a function that
executes a complex or resource intensive statistical calculation. For the purposes of the task at hand,
we may only be interested in the mean of the vector x, but we have to spend a reasonable amount
of time getting there. Repeated evaluation of this code chunk may be neededlessly time consuming
if the code and data do not change after the first evaluation.

The cacheSweave package allows users to cache the results of evaluating a Sweave code chunk.
In the above example, the basic approach would be to cache the objects x and results in a key-
value database with the key being the object name and the value being the R object itself. On future
evaluations of this code chunk (assuming the code has not changed otherwise), we could load x

from the database rather than wait the 10 seconds as we did on the first evaluation. Using the
cached value of x we could compute various summary statistics. If we were interested in the mean
of x we could simply load the cached value of results from the database (although in this case
direct recalculation of the mean would not take much time).

3

Hosted by The Berkeley Electronic Press



2.1 Expression caching mechanism

A simple code chunk in a Sweave document might appear as follows.

<<FitLinearModel>>=

library(datasets)

library(stats)

data(airquality)

fit <- lm(Ozone ~ Temp + Solar.R + Wind, data = airquality)

@

This code chunk loads the airquality dataset from the datasets package and fits a linear model
using the lm function from the stats package. In this case, two objects are created in the workspace:
the airquality data frame and the fit object containing the output from the lm call.

To make use of the caching mechanism provided in cacheSweave, the user must set the option
cache=true in the code chunk declaration. The modified code chunk would be

<<FitLinearModel,cache=true>>=

library(datasets)

library(stats)

data(airquality)

fit <- lm(Ozone ~ Temp + Solar.R + Wind, data = airquality)

@

The user must also modify the standard invocation of Sweave by using the cacheSweaveDriver

function instead of the default RweaveLatex driver function. If the above code chunk were contained
in the file “foo.Rnw”, then one would call

> library(cacheSweave)

> Sweave("foo.Rnw", driver = cacheSweaveDriver)

to process the file with the caching mechanism.
On the first evaluation the cacheSweaveDriver function does a number of computations in ad-

dition to the standard Sweave processing:

1. For each code chunk, a key-value database is created, by default, in the current working di-
rectory for storing data objects. The database implementation comes from the stashR pack-
age. The name of the database is derived from the name of the code chunk and an MD5
digest (Rivest, 1992) of the entire code chunk. Users can change the location of the key-value
database by calling the setCacheDir function and providing a path.

2. Within each code chunk, there may be multiple expressions and the each expression is handled
separately. For each expression:

(a) The MD5 digest of the expression is taken and looked up in the key-value database. If the
digest does not exist, then the expression is evaluated in a temporary environment that
has the global environment as a parent.

(b) After evaluation, the names of the objects created as a result of the evaluation are stored
in the key-value database as a character vector with the digest expression as the key.

(c) The objects created as a result of the evaluation are then stored separately in the database
using their own names as keys.

4

http://biostats.bepress.com/jhubiostat/paper142



(d) The objects are then lazy-loaded (see e.g. Ripley, 2004) into the global environment via
the dbLazyLoad function from the filehash package (Peng, 2006).

3. A “map file” is created which is a text file that contains metadata about the code chunks and
any resulting databases or figures produced.

The result of running Sweave with the cacheSweaveDriver function is a LATEX file, a collection of
stashR databases either in the current directory or in a directory specified by setCacheDir, and a
map file which contains information about each of the code chunks.

On a subsequent evaluation, the processing is slightly different. Namely, for each expression in a
code chunk:

1. The MD5 digest of the expression is taken and looked up in the key-value database. If the
digest exists (indicating that the same expression has been evaluated previously), the names
of the objects associated with this expression are retrieved.

2. Given the names of the objects associated with this expression, the objects are then lazy-loaded
into the global environment via the dbLazyLoad function.

In this situation, the evaluation of a cached expression is replaced by the lazy-loading of the objects
associated with that expression into the global environment.

If a future expression (either within the same code chunk or in a subsequent code chunk) requires
an object created in a previous code chunk, then that object will be automatically loaded into the
global environment via the lazy-loading mechanism.

2.2 Lazy-loading of objects

The lazy-loading of objects into the global environment once they have been cached is a useful
feature of the cacheSweave package when large objects are used in a code chunk. For example, one
code chunk might read in a large dataset and calculate a summary statistic based on that dataset,
e.g.

<<loadLargeDataset,cache=true>>=

data <- readLargeDataset("datafile")

x <- computeSummaryStatistic(data)

@

With caching turned on for this code chunk, the objects data and x are stored in the cached com-
putation database for this code chunk. A future code chunk then might simply print the summary
statistic x, for example,

<<printX>>=

print(x)

@

If the primary interest is in the summary statistic x, then on future evaluations of both of these
code chunks, the object data is never needed. It is only needed on the first evaluation so that the
summary statistic can be calculated and stored in the object x. When data is lazy-loaded in future
Sweave runs, it is never accessed and hence never actually loaded from the database. Therefore,
code can be written in the manner shown above and there is no need to worry about the data object
being loaded repeatedly into R when it is not actually needed.

5

Hosted by The Berkeley Electronic Press



2.3 Construction of cacheSweaveDriver

The construction of the cacheSweaveDriver function is modeled on the RweaveLatex function from
the utils package. The cacheSweaveDriver function returns a list of five functions:

1. setup, creates a list of available options. We add an extra option cache for indicating whether
a code chunk should be cached. We also add the name of the map file so that it can be updated
after evaluating each code chunk.

2. runcode, based on the RweaveLatexRuncode function in the utils package, this function ex-
ecutes code in each code chunk and saves objects to stashR databases. While much of the origi-
nal code is retained, we replace the call to RweaveEvalWithOpt with our own cacheSweaveEvalWithOpt

function, which handles the evaluation of the expression, creation of the stashR database, and
the saving of objects to the database. We also add a call to the function writeChunkMetadata

which writes out information to the map file.

3. writedoc, handles writing of output LATEX file; we import the RweaveLatexWritedoc function
from utils.

4. finish, closes the output connection and prints some final messages; we import the RweaveLatexFinish
function from utils.

5. checkopts, checks that code chunk options are valid; we import the RweaveLatexOptions

function from utils.

The bulk of the work is done in the runcode function, which handles the evaluation of the
expressions in each code chunk. The code in that function is based on the code from R version
2.5.0 (R Development Core Team, 2007).

2.4 Expressions with side effects

Simple expressions, such as assignments, will typically result in a single object being created in the
global environment. For example, the expression

> x <- 1:100

results in an object named x being created in the global environment whose value is an integer
sequence from 1 to 100.

However, there are other types of expressions which can result in either multiple objects being
created in the user’s workspace or no objects being created. For example, the source function
is often used to load objects from an R code file. Unless the local argument is set to TRUE, these
objects will by default be created in the global environment. When the cacheSweaveDriver function
evaluates an expression that contains a call to source, there will be objects created outside of the
temporary environment in which the expression is evaluated (again, unless the argument local =

TRUE is specified in the call to source). The set.seed function behaves in a similar way by modifying
(or creating) the .Random.seed object in the global environment.

In order to handle the effects of functions like source the function evalAndDumpToDB, which
evalutes an expression and saves the results to the stashR database, first obtains a character vector
of the names of all the objects in the global environment. After evaluating the expression in a
temporary environment, a check is made to see if any new objects have been created or modified

6

http://biostats.bepress.com/jhubiostat/paper142



in the global environment. If so, those objects are saved to the database as well as any objects
that were created in the temporary environment. Note that we currently make a special case of the
global environment. If the code being evaluated creates objects in some other environment, then
cacheSweave will not be able to cache those objects.

Another example of a function with side effects is the plot function (and related functions) from
the graphics package. Since plot does not create any objects in the global environment, but rather
creates a plot on a graphics device, there is nothing for cacheSweaveDriver to cache. Currently, it
is not clear what is the best way to handle this behavior and so calls to plotting functions cannot be
cached using the cacheSweave package. In the future, we may attempt to detect the creation of a
graphics file (e.g. a PDF or EPS file) and store that file along with the cached computations.

There are many other types of expressions that have side effects and do not result in the cre-
ation of objects in the global environment. Expressions such as calls to system or functions which
write out files (e.g. save, save.image, write.table, dput, etc.) all result in objects being created
outside of R. In general, these expressions cannot yet take advantage of the caching mechanism in
cacheSweave and must be executed every time Sweave is run.

When caching is used, it is useful to divide the code into chunks which setup the data and results
(and can use caching) and chunks that present or display the results (and cannot use caching). For
example, with the linear model example from the previous section, one might have one code chunk
for loading the data and fitting the model

<<FitLinearModel,cache=true>>=

library(datasets)

library(stats)

data(airquality)

fit <- lm(Ozone ~ Temp + Solar.R + Wind, data = airquality)

@

and another code chunk for summarizing the results in a standard table of regression coefficients.

<<LinearModelTable,results=tex>>=

library(xtable)

print(xtable(fit))

@

Here, we use the xtable package to create a formatted LATEX table of the regression output. A similar
approach could be used for plots by separating out the code that generates the plot, e.g.

\begin{figure}

\centering

<<LinearModelDiagnosticPlot,fig=true>>=

par(mfcol = c(2, 2))

plot(fit)

@

\caption{Linear model diagnostic plots}

\end{figure}

7

Hosted by The Berkeley Electronic Press



3 Packaging Reproducible Documents

While one can certainly use the cacheSweave package as a standalone tool for developing Sweave
documents, its primary purpose is to create the cached computation databases and metadata so that
they can be distributed to others. We describe the mechanism for distributing reproducible research
via cached computations in this section.

The SRPM package (“Shared Reproducibility Package Management”) provides tools for creating
and interacting with what we call “shared reproducibility packages”. These shared reproducibility
packages (SRPs) are not true R packages but rather contain information related to a Sweave docu-
ment that can be distributed to a wide audience and used to reproduce the results. The format of an
SRP is meant to be simple so that it can be used on different systems.

Each package is simply a directory which contains the following subdirectories:

• article/: contains the original Sweave file and a “weaved” version of the file (e.g. in PDF
format)

• figures/: contains files corresponding to any figures in the document

• cacheDB/: contains a collection of stashR databases storing any cached computations from
code chunks

• code/: contains code files corresponding to the R code for each code chunk in the Sweave
document (these are produced with the Stangle function with the argument split = TRUE).

Each SRP also has a file called metadata.dcf which is a text file containing information about each
of the code chunks in the document. This file is written in the Debian Control File format.

In addition, a package may contain a file named REMOTE which contains the URL of the location of
any remote stashR databases containing cached computations. If the size of the cached computation
databases is large, an author may wish to post them on a webserver rather than distribute them
with the SRP itself. The REMOTE file indicates the location of the cached computation databases
and configures the other tools in the SRPM package to retrieve data from this location using the
functionality in the stashR package.

3.1 Author tools

A shared reproducibility package can be constructed with the makeSRP function from the SRPM
package which takes as arguments the name of the package to create and the name of the Sweave
file for the original document. The makeSRP function

1. creates the necessary directories for the SRP;

2. calls Stangle to create individual code files for each code chunk and copies the files into the
code/ subdirectory;

3. copies the stashR databases containing the cached computations into the cacheDB/ subdirec-
tory;

4. copies graphics files corresponding to figures into the figures/ subdirectory;

5. copies the article PDF file and Sweave file into the article/ subdirectory;

8

http://biostats.bepress.com/jhubiostat/paper142



6. creates the metadata file by reading the map file produced by the cacheSweave package and
writes it to the metadata.dcf file.

Currently, the SRPM package requires that both the graphics files for the figures and the weaved
version of the article be in PDF format, however we hope to remove this limitation in the near
future.

Another function that is available to authors is the makeWebpage function which produces a
simple webpage corresponding to an SRP. The webpage lists all of the code chunks in a document
with links to the code itself. Also, there are links to cache databases as well as the PDF versions
of figures so that readers can browse an SRP using a web browser and without having to have R
installed.

3.2 Reader tools

Sweave is an example of a tool that is useful to authors of statistical or scientific documents in that
it assists in the development of documents by ensuring that the text and data analysis are closely
integrated into a single document. However, readers of reproducible documents also need tools to
assist them with interacting with the data analyses therein and reproducing key results.

In the SRPM package we provide some basic tools for readers of Sweave documents that allow
them to interact with the code and data provided by a shared reproducibility package created by the
author. The basic functions are

• code: When called with no arguments, a listing of all the code chunks in the article is printed
to the console. The code function can also take a numeric argument corresponding to the
code chunk sequence number of a character argument corresponding to the code chunk name.
When code is passed a numeric or character argument, it returns an object of class “codeOb-
ject” which contains the code and pointers to any cached computation databases or figures
associated with the code chunk.

• article: This function takes no arguments; when called it launches the article PDF document
in the PDF viewer.

• figure: This function must be given a numeric argument corresponding to the figure number
in the original article. When called, it displays in the PDF viewer the figure corresponding to
the figure number.

• cache: This function takes a code chunk sequence number or a code chunk name (character)
as an argument and returns an object of class “localDB” or “remoteDB” depending on whether
the SRP is using local or remote cached computation databases. This object can be explored
with the methods defined in the stashR package (see also details in Eckel and Peng, 2006).

• loadcache: This function lazy-loads cached computation databases into the global environ-
ment. It takes a numeric vector of code chunk sequence numbers or a character vector of
code chunk names and loads the cached computation databases associated with those code
chunks in the order that they are specified. Once a database is lazy-loaded, the object names
appear in the environment into which the database was loaded, but they do not occupy any
extra memory until they are first accessed. If a specified code chunk does not have a database
associated with it, no action is taken.

9

Hosted by The Berkeley Electronic Press



• runcode: The runcode function takes as input a numeric vector of code chunk sequence num-
bers or a character vector of code chunk names and executes the code in those code chunks.
Each code chunk is evaluated in the order in which it appears in the input vector. By default,
if a cached computation database is associated with a code chunk, then the database is lazy-
loaded via loadcache rather than executed. In order to force evaluation of code in a code
chunk with a cache database, one needs to set useCache = FALSE when calling runcode. If
an error occurs when executing the code in a code chunk, a message is printed to the console
indicating the error and the code chunk is skipped.

• edit: A method is provided for the edit generic function for objects of class “codeObject”
which can be used to edit the R code corresponding to a code chunk. The modified “codeOb-
ject” object can be executed with the runcode function. The edit method returns the modified
copy of the object so that the original code is not modified. The editor used is that which is
launched by the file.edit function and will be system dependent.

These functions consist of the primary user interface for readers to interact with shared repro-
ducibility package. Certain SRPs may also require that other R packages be installed in order to
execute the code in the code chunks and these should be installed before attempting to execute the
code with runcode.

Other utility functions available to the user are currentPackage, which shows the currently
registered SRP, getRemoteURL, which returns the URL of the remote cached computation databases
(if any), and getLocalDir, which returns the path to the directory where local copies of the remote
cache databases will be stored.

3.3 Example

The SRPM package depends on the methods and stashR packages and additionally imports the
utils, filehash, and cacheSweave packages. Once those dependencies are installed, the SRPM
package can be loaded using library in the usual way.

The first thing a user must do is register a shared reproducibility package (SRP) using the
setPackage function. We will use as an example the package srp seasonal which can be down-
loaded from

http://www.biostat.jhsph.edu/~rpeng/RR/srp_seasonal.zip

This package corresponds to the article Peng et al. (2005), a national study of air pollution and
mortality in the United States.

Once the package is unzipped, it can be registered by passing the name of the directory to the
setPackage function.

> library(SRPM)

> setPackage("srp_seasonal")

Upon registering a package one can call the article function (with no arguments) to open a PDF
copy of the full article in the PDF viewer (as identified by getOption("pdfviewer")). Another
useful function to begin with is the code function. Called with no arguments, code lists all of the
code chunks in the article.

> code()

10

http://biostats.bepress.com/jhubiostat/paper142



1 SetupCacheSweave

2 mortalityTop10setup [C]

3 mortalityTop10plot [Figure 1]

4 seasonRegionPM10setup [C]

5 seasonRegionPM10plot [Figure 2]

6 ComputeNonSeasonalEstimates [C]

7 ComputeSeasonalStepFunctionEstimates [C]

8 ComputeNationalAverageEstimates [C]

9 nationalAverageEstimates

10 ComputeSeasonalPeriodic [C]

11 ComputePeriodicSeasonByRegion [C]

12 periodicSeasonByRegionPlot [Figure 3]

13 ComputeOrthogonalEstimates [C]

14 ComputePeriodicPosteriorBeta [C]

15 periodicPosteriorBeta [Figure 4]

16 SensitivityAnalysisSetup [C]

17 ComputeSensitivityLag0 [C]

18 ComputeSensitivityLag1 [C]

19 ComputeSensitivityLag2 [C]

20 CombineSensitivityAnalysisResults [C]

21 ComputePeriodicDfTimeSensitivity [C]

22 periodicDfTimeSensitivity [Figure 5]

23 setupCopollComputation [C]

24 CopollNO2 [C]

25 CopollO3 [C]

26 CopollSO2 [C]

27 CopollPM10 [C]

28 ComputeCopollutantModelTable [C]

29 copollutantModelTable

30 ComputePeriodicLags012 [C]

31 periodicLags012 [Figure 6]

The code chunk listing is annotated with three different types of tags. The first is the code chunk
sequence number which appears to the left of the code chunk name. This number can be used to
identify a code chunk in other operations. The second is a [C] which indicates caching has been
turned on and that the corresponding code chunk gives rise to a cached computation database.
Lastly, code chunks with the tag [Figure ?] produce figures or plots. For example, code chunk 5
produces Figure 2 in the original article.

Code in any of the code chunks can be executed with the runcode function by passing the code
chunk name or sequence number. Sequences of code chunks can be executed by passing a numeric
or character vector to runcode. For example, to execute the code in chunks 1 through 3 to create
the boxplot in Figure 1 of the original article, we can call

> runcode(1:3)

which prints the following messages

running code in code chunk 1

11

Hosted by The Berkeley Electronic Press



ERROR: unable to run code chunk 1

could not find function "setCacheDir"

loading cache for code chunk 2

running code in code chunk 3

and produces a series a boxplots on the graphics device. Here, there was an error in executing
code chunk 1. This code chunk calls setCacheDir and sets the directory for storing the cached
computation databases. The error occurs because setCacheDir is from the cacheSweave package
which is not currently loaded. However, the error is irrelevant in this case and does not prevent other
code chunks from being executed. Code chunk 2 has a cached computation database associated with
it so the database is lazy-loaded into the workspace instead of the code being executed. Code chunk
3 creates the plot and it is executed successfully.

In order to explicitly lazy-load a cached computation database into the workspace one can use
the loadcache function. For example, to load the database for code chunk 11, one can call

> loadcache(11)

> ls()

[1] "b" "B" "bc" "cityRegion"

[5] "conf" "curve" "curveRegion" "exclude"

[9] "g" "ndays" "nRegions" "pooledRegion"

[13] "pooledRegionSD" "r" "regionFullNames" "regionInd"

[17] "regionNames" "rng" "V" "x"

[21] "y" "Y" "zero"

The “localDB” object representing the cached computation database can be explicitly retrieved
by calling the cache function and accessed using the methods defined in the stashR package. The
above code fragment is roughly equivalent to

> library(stashR)

> db <- cache(11)

> show(db)

'localDB' database 'ComputePeriodicSeasonByRegion'

> dbList(db)

[1] "exclude" "r" "cityRegion" "regionNames"

[5] "regionInd" "ndays" "B" "bc"

[9] "pooledRegion" "pooledRegionSD" "zero" "curveRegion"

[13] "V" "b" "curve" "regionFullNames"

[17] "Y" "conf" "rng" "y"

[21] "nRegions" "x" "g"

> dbLazyLoad(db)

3.4 Remote packages

Shared reproducibility packages can be structured in such a way that the cached computation
databases can be stored on a remote server and accessed over the web using R’s Internet capa-
bilities. In that case the SRP that is distributed does not have any of the stashR databases in it but

12

http://biostats.bepress.com/jhubiostat/paper142



rather contains a REMOTE file containing the URL indicating the location of the cached computation
databases on the web. A remote version of the srp seasonal package called srp seasonal R is
available from

http://www.biostat.jhsph.edu/~rpeng/RR/srp_seasonal_R.zip

The REMOTE file for this package contains the following information:

> remote <- readLines("srp_seasonal_R/REMOTE")

> writeLines(remote)

RemoteURL: http://www.biostat.jhsph.edu/~rpeng/RR/seasonal

The RemoteURL field in the file contains the URL for the cached computation databases. If a
REMOTE file exists it is automatically read by the setPackage function. The remote URL can be
retrieved in an R session via the getRemoteURL function. Once a remote package is registered with
setPackage all of the functions mentioned above will work, however, depending on the speed of the
network connection there may be some delay in downloading large objects when they are accessed.

3.5 Package websites

If the author has created a webpage via the makeWebpage function, the reader may prefer to view
that first. The webpage created by makeWebpage corresponding to the srp seasonal package can be
found at

http://www.biostat.jhsph.edu/~rpeng/RR/seasonal/html/

Currently, the webpage created by makeWebpage resembles the output provided by the R functions
at the console. The cached computation databases can be browsed in a limited fashion—smaller
objects can be viewed in their entirety while for larger objects a summary is provided by showing
the output from str.

4 Discussion

We have described the design and implementation of the cacheSweave and SRPM packages which,
together with the stashR package, provide authors tools for conducting and distributing repro-
ducible research. The SRPM and stashR packages also provide tools for readers to interact with the
research behind a document via shared reproducibility packages (SRPs). These SRPs contain the
code and cached computation databases corresponding to an article. They can be distributed widely
to others over the web and the cached computation databases can be served over the web separately
if they are too large to be efficiently distributed in their entirety.

The functionality of the cacheSweave package will likely be useful to those running very lengthy
or resource intensive computations. For example, the analysis conducted for the article described in
Section 3.3 takes approximately 6 hours to run on an AMD Athlon 64 X2 4800+ machine running
Fedora Core 5 Linux. An interested reader of the article may not initially be interested in reproducing
the analysis in its entirety but may want to explore certain parts of the analysis or dataset. The
cached computation databases allow the reader to conduct this type of preliminary examination
prior to fully reproducing an analysis.

13

Hosted by The Berkeley Electronic Press



It should be noted that the SRPs can be created without any caching being used. In particular,
for shorter documents whose computations do not take substantial time to run, there is no need
to cache any of the code chunks. In that case, one can still generate an SRP with the SRPM pack-
age for distribution and it will contain the code, figures, and article. One still needs to use the
cacheSweaveDriver function in the cacheSweave package because the information written to the
map file is used in creating the SRP.

Currently, the cacheSweave package works for fairly standard analyses but cannot handle more
complex or nonstandard ones, for example, when objects are created in environments other than
the global environment. Another feature missing from cacheSweave is code dependency checking
between code chunks. That is, if code chunk 2 depends on the results of code chunk 1, then any
changes to code chunk 1 will likely result in the need to re-run code chunk 2 if code chunk 2 has
been cached. However, cacheSweave cannot detect the dependence of code chunk 2 on code chunk
1 and will not re-run code chunk 2 in this situation.

The weaver package (Falcon, 2007) from the Bioconductor Project implements similar function-
ality to cacheSweave and makes use of the codetools package (Tierney, 2007) to detect dependen-
cies between code chunks (and re-run code chunks when necessary). The weaver package caches
the results of expressions in separate files stored in the R workspace format. These results are then
loaded (rather than lazy-loaded) into R upon subsequent evaluation of the same expression.

The SRPM package provides rudimentary tools for interacting with a shared reproducibility pack-
age and further development is needed to create more useful interfaces for readers. Also, more tools
are needed for authors to develop “views” of their research that are amenable to different types of
readers (see e.g. Gentleman and Temple Lang, 2007). Currently, the makeWebpage function creates
an interface that is browsable with a web browser, but there may be better ways to present the
information to other readers.

There are substantial benefits to scientists and statisticians if future research is made repro-
ducible. By expediting the dissemination of ideas and publishing the full details of a scientific inves-
tigation, researchers can more easily adapt the findings of others and build off of existing knowledge.
However, progress in reproducible research will be impeded if the proper tools are not developed
and made available to both authors and readers.

5 Acknowledgements

This research was supported in part by a Faculty Innovation Fund award from the Johns Hopkins
Bloomberg School of Public Health, grant ES012054-03 from the National Institute of Environmental
Health Sciences.

References

Eckel SP, Peng RD (2006). “Interacting with local and remote data repositories using the stashR
package for R.” Technical Report 127, Johns Hopkins University Department of Biostatistics.
http://www.bepress.com/jhubiostat/paper127.

Falcon S (2007). weaver: Tools and extensions for processing Sweave documents. R package version
1.2.0.

14

http://biostats.bepress.com/jhubiostat/paper142



Gentleman R, Temple Lang D (2007). “Statistical Analyses and Reproducible Research.” Journal of
Computational and Graphical Statistics, 16(1), 1–23.

Knuth DE (1984). “Literate Programming.” Computer Journal, 27(2), 97–111.

Leisch F (2002). “Sweave: Dynamic generation of statistical reports using literate data analysis.”
In W Härdle, B Rönz (eds.), “Compstat 2002 — Proceedings in Computational Statistics,” pp.
575–580. Physika Verlag, Heidelberg, Germany. ISBN 3-7908-1517-9.

Peng RD (2006). “Interacting with data using the filehash package.” R News, 6(4), 19–24.

Peng RD, Dominici F, Pastor-Barriuso R, Zeger SL, Samet JM (2005). “Seasonal Analyses of Air
Pollution and Mortality in 100 US Cities.” American Journal of Epidemiology, 161, 585–594.

Peng RD, Eckel SP (2007). “Distributed reproducible research using cached computations.” Technical
report, Johns Hopkins University Department of Biostatistics.

R Development Core Team (2007). R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.

R-project.org.

Ramsey N (1994). “Literate Programming Simplified.” IEEE Software, 11(5), 97–105.

Ripley BD (2004). “Lazy Loading and Packages in R 2.0.0.” R News, 4(2), 2–4. URL http://CRAN.

R-project.org/doc/Rnews/.

Rivest RL (1992). The MD5 Message-Digest Algorithm. RFC 1321. http://tools.ietf.org/html/rfc1321.

Rossini AJ, Heiberger RM, Sparapani RA, Mächler M, Hornik K (2004). “Emacs Speaks Statistics:
A Multiplatform, Multipackage Development Environment for Statistical Analysis.” Journal of
Computational and Graphical Statistics, 13(1), 247–261.

Tierney L (2007). codetools: Code Analysis Tools for R. R package version 0.1-1.

15

Hosted by The Berkeley Electronic Press

http://www.R-project.org
http://www.R-project.org
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/

	5-3-2007
	A REPRODUCIBLE RESEARCH TOOLKIT FOR R
	Roger Peng
	Suggested Citation


	Introduction
	Caching Sweave Computations
	Expression caching mechanism
	Lazy-loading of objects
	Construction of cacheSweaveDriver
	Expressions with side effects

	Packaging Reproducible Documents
	Author tools
	Reader tools
	Example
	Remote packages
	Package websites

	Discussion
	Acknowledgements

